JPH05205995A - Alignment mark - Google Patents

Alignment mark

Info

Publication number
JPH05205995A
JPH05205995A JP1473692A JP1473692A JPH05205995A JP H05205995 A JPH05205995 A JP H05205995A JP 1473692 A JP1473692 A JP 1473692A JP 1473692 A JP1473692 A JP 1473692A JP H05205995 A JPH05205995 A JP H05205995A
Authority
JP
Japan
Prior art keywords
mark
alignment
diffracted light
variation
alignment mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1473692A
Other languages
Japanese (ja)
Inventor
Masataka Shiba
正孝 芝
Yasuhiro Yoshitake
康裕 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1473692A priority Critical patent/JPH05205995A/en
Publication of JPH05205995A publication Critical patent/JPH05205995A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Abstract

PURPOSE:To cancel a situation that a positioning value can not be detected in a diffracted light detection alignment method, which is caused by the variation of process conditions such as level difference between marks or the thickness of an applied resist film. CONSTITUTION:It is ensured that a diffracted light of over certain intensity is generated independent of the variation of processing conditions by an alignment mark 12 composed of mark element groups 21a, 21b, and 21c of various kinds where mark elements 20a, 20b, and 20c which are a1, a2, and a3 different from each other in size are arranged in the field of view of an alignment optical system keeping an arrangement pitch (b) constant. By this setup, a situation that a positioning value car not be detected due to the variation of process conditions is canceled, whereby a light exposure device can be automated or operated with no operator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の製造に用い
られる露光装置における、ウエハ等の基板の精密位置合
わせ装置に最適なタ−ゲット用のアライメントマ−クに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment mark for a target, which is most suitable for a precision alignment apparatus for a substrate such as a wafer in an exposure apparatus used for manufacturing semiconductors and the like.

【0002】[0002]

【従来の技術】半導体製造において、ウエハ上に微細パ
タ−ンを描画もしくは転写する露光装置は、その要求性
能がますます高くなってきている。ウエハを精密に位置
合わせ(アライメント)する技術も、より一層、高精度
かつ高安定な方式が望まれている。
2. Description of the Related Art In semiconductor manufacturing, the required performance of an exposure apparatus for drawing or transferring a fine pattern on a wafer is becoming higher and higher. As for the technique for precisely aligning the wafer (alignment), a highly accurate and highly stable system is desired.

【0003】回折光検出アライメント方式は、特開昭5
6−12729あるいは特開昭60−186845が公
知となっている。図4以下を用いてその原理を説明す
る。
A diffracted light detection alignment method is disclosed in Japanese Patent Laid-Open No.
6-12729 or JP-A-60-186845 is publicly known. The principle will be described with reference to FIG.

【0004】回折光検出では、コヒ−レンシ−の高いレ
−ザ4を光源として使用する。He−Neレ−ザや半導
体レ−ザ等、露光装置の用途や計測の対象物によって最
適な波長のレ−ザが選択される。レ−ザ4より出射した
光は、5、6の凸レンズa,bとピンホ−ル7から成る
ビ−ムエキスパンダにより所望のビ−ム径に成形した
後、ビ−ムスプリッタ8、リレ−レンズ9、先端ミラ−
10を介して、レチクル1のパタ−ンをウエハ2の上に
結像するため縮小レンズ3の入射瞳11の中心に入射
し、ウエハ2の上に設けられたアライメントマ−ク12
にほぼ垂直の方向から照射される。
In detecting diffracted light, a laser 4 having a high coherency is used as a light source. The laser having the optimum wavelength is selected depending on the application of the exposure apparatus and the object to be measured, such as He-Ne laser and semiconductor laser. The light emitted from the laser 4 is shaped into a desired beam diameter by a beam expander composed of convex lenses a and b of 5 and 6 and a pinhole 7, and then a beam splitter 8 and a relay. Lens 9, tip mirror
An image of the pattern of the reticle 1 is made incident on the center of the entrance pupil 11 of the reduction lens 3 to form an image on the wafer 2 via the alignment mark 12 provided on the wafer 2.
Is irradiated from a direction almost vertical to.

【0005】アライメントマ−ク12は、図5に示すよ
うに、サイズaの要素マ−ク20が複数個、等ピッチ
(ピッチb)かつ、一直線上に配置されており、これに
レ−ザ照明光を照射すると、数1に示す関係の方向θn
に回折光D0,D±1,D±2が発生する。
As shown in FIG. 5, the alignment mark 12 has a plurality of element marks 20 of size a, which are arranged at a regular pitch (pitch b) and in a straight line. When illuminated with illumination light, the direction θn of the relationship shown in Equation 1
Diffracted lights D0, D ± 1 and D ± 2 are generated.

【0006】[0006]

【数1】 [Equation 1]

【0007】回折光は、縮小レンズ3、先端ミラ−1
0、リレ−レンズ9、ビ−ムスプリッタ8、対物レンズ
13を介して、空間フィルタ14に達し、ここで、所望
の次数の回折光(通常は±1次回折光)を選択的に通過
させた後、円筒レンズ15によりY方向に圧縮し、リニ
アイメ−ジセンサ16上に結像し、図6のような検出波
形17を得る。そして、ウエハ2がX方向に移動すれ
ば、リニアイメ−ジセンサ16上のアライメントマ−ク
12の像位置も変化し、精密な位置決め量の測定が可能
となる。
The diffracted light is reduced by the reduction lens 3 and the tip mirror -1.
0, a relay lens 9, a beam splitter 8, and an objective lens 13 to reach a spatial filter 14, where diffracted light of a desired order (usually ± 1st order diffracted light) is selectively passed. After that, it is compressed in the Y direction by the cylindrical lens 15 and an image is formed on the linear image sensor 16 to obtain a detection waveform 17 as shown in FIG. Then, if the wafer 2 moves in the X direction, the image position of the alignment mark 12 on the linear image sensor 16 also changes, and the precise positioning amount can be measured.

【0008】[0008]

【発明が解決しようとする課題】実際の露光装置におけ
るアライメントでは、図7に示す様に、ウエハ2上の凹
凸段差によって形成されるアライメントマ−ク12の上
にレジストが塗布されているために、プロセス条件、即
ち、アライメントマ−クの段差t1、あるいはレジスト
の塗布膜厚t2によっては、例えば、±1次の回折光強
度が大きく変化し、条件によっては、回折光強度が小さ
すぎて、位置決め量の測定が不可能になる等の問題が生
じてきた。これに対処するために、従来は、(1)アラ
イメントマ−クの凹凸を逆にする、(2)図5におい
て、マ−ク要素20のピッチbは一定に保ったまま、マ
−ク要素20のサイズaを変える。等、複数種類のアラ
イメントマ−クを用意し、プロセス条件に応じて最適な
ものを選択するという方法がとられていた。
In the alignment in the actual exposure apparatus, as shown in FIG. 7, the resist is applied on the alignment mark 12 formed by the uneven steps on the wafer 2. Depending on the process conditions, that is, the step t1 of the alignment mark or the coating thickness t2 of the resist, for example, the ± 1st-order diffracted light intensity changes greatly, and depending on the conditions, the diffracted light intensity is too small, Problems have arisen, such as the inability to measure the positioning amount. In order to deal with this, conventionally, (1) the unevenness of the alignment mark is reversed, (2) in FIG. 5, the mark b is kept constant while the pitch b of the mark element 20 is kept constant. Change the size a of 20. For example, a method of preparing a plurality of types of alignment marks and selecting an optimum one according to process conditions has been adopted.

【0009】しかし、ウエハサイズの大形化に伴い、ウ
エハ内の段差t1のバラツキあるいはレジスト塗布膜厚
t2のバラツキが大きくなり、同一ウエハ内において
も、検出される回折光の強度が大きく変化するようにな
ってきた。このため、上記のような、最適と考えられる
アライメントマ−クの選択そのものが困難になり、条件
によっては、回折光強度が小さく、位置決め量の検出が
不能となり、作業者のアシストを必要とするため、露光
装置の自動あるいは無人の運転が阻害され、これが大き
な課題となってきた。
However, as the size of the wafer becomes larger, the variation of the step difference t1 or the variation of the resist coating film thickness t2 in the wafer increases, and the intensity of the diffracted light detected changes greatly even within the same wafer. It started to come. For this reason, it becomes difficult to select the optimum alignment mark as described above, the intensity of the diffracted light is small, and the amount of positioning cannot be detected depending on the conditions, which requires the assistance of the operator. Therefore, the automatic or unmanned operation of the exposure apparatus is hindered, which has become a major problem.

【0010】本発明の目的は、回折光検出アライメント
方式におけるアライメントマ−クの段差やレジスト塗布
膜厚等のプロセスの不均一性に起因する検出不能条件の
解消を図り、露光装置の自動あるいは無人運転を実現さ
せるものである。
An object of the present invention is to eliminate undetectable conditions caused by process non-uniformity such as alignment mark steps and resist coating film thickness in a diffracted light detection alignment method, and to automatically or unmanner an exposure apparatus. It realizes driving.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、マ−ク要素の配列ピッチに対して凹ま
たは凸の段差の占める割合の異なる複数種類のマ−ク要
素群によりアライメントマ−クを形成する方式を考案し
た。
In order to achieve the above object, the present invention uses a plurality of types of mark element groups in which the ratio of concave or convex steps to the arrangement pitch of the mark elements is different. A method of forming an alignment mark has been devised.

【0012】[0012]

【作用】即ち、(1)図4のアライメント光学系におい
て、円筒レンズ15によって図5のアライメントマ−ク
12のY方向がリニアイメ−ジセンサ16上に圧縮され
て結像されており、Y方向の視野が広い、(2)既に一
般的に知られているように、アライメントマ−ク12の
ピッチbが等しくとも、マ−ク要素20のサイズaを変
化させることにより回折光強度が変化する、の2つの点
に着目し、リニアイメ−ジセンサ16のY方向視野内
に、サイズaの異なる複数種類のマ−ク要素群を設ける
ことにより、マ−クの段差やレジスト塗布膜厚のバラツ
キが存在しても、いずれかのサイズを有する種類のマ−
ク要素群により、常に、一定以上の強度の回折光の発生
を保証しようとするものである。
That is, (1) In the alignment optical system shown in FIG. 4, the Y direction of the alignment mark 12 shown in FIG. 5 is compressed by the cylindrical lens 15 onto the linear image sensor 16 to form an image. Wide field of view (2) As is generally known, even if the pitch b of the alignment marks 12 is the same, the diffracted light intensity is changed by changing the size a of the mark element 20. Focusing on these two points, by providing a plurality of types of mark element groups having different sizes a in the Y-direction visual field of the linear image sensor 16, there are variations in the mark step and the resist coating film thickness. Even if it is a marker of any size,
It is intended to always guarantee the generation of diffracted light with a certain intensity or more by the group of black elements.

【0013】[0013]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の第1の実施例を示したも
のである。回折光の進行方向に関与するマ−ク要素の配
列ピッチbは常に一定に保ちながら、サイズがa1,a
2,a3と異なる3種類のマ−ク要素20a,20b,
20cからなるマ−ク要素群21a,21b,21cを
一直線上に配置した構成をとる。このマ−クにレ−ザ光
を照射すると、マ−クの段差やレジスト塗布膜厚のよう
なプロセス条件がウエハ内、あるいは個々のウエハ間で
変化しても、サイズa1,a2,a3の3種類のマ−ク
要素群21a,21b,21cのうち、少なくとも1種
類のマ−ク要素群からは回折光が発生し、従来問題とな
っていた検出不能条件の解消を図ることができる。
FIG. 1 shows a first embodiment of the present invention. While the arrangement pitch b of the mark elements relating to the traveling direction of the diffracted light is always kept constant, the sizes are a1 and a.
Mark elements 20a, 20b of three types different from 2, a3,
The mark element groups 21a, 21b, 21c of 20c are arranged in a straight line. When this mark is irradiated with laser light, even if the process conditions such as the step of the mark and the film thickness of the resist coating change within the wafer or between the individual wafers, the size a1, a2, a3 Among the three types of mark element groups 21a, 21b, 21c, diffracted light is generated from at least one type of mark element group, and it is possible to solve the undetectable condition which has been a problem in the past.

【0015】図2は、本発明の第2の実施例を示したも
のである。このマ−クはアライメント光学系のX方向の
解像度が小さい場合、または、図4において、空間フィ
ルタ14の直後に光電子像倍管やフォトダイオ−ド等を
直接配置し、一方で、照射レ−ザ光等を走査し、回折光
強度変化を時間軸にそって検出するようなタイプのアラ
イメント光学系で特に有効である。ここでは、マ−ク要
素の多角形化を図り、回折光の進行方向に関与するマ−
ク要素の配列ピッチbは、常に一定に保ちながら、サイ
ズがa1,a2,a3と異なる形状のマ−ク要素群を一
体化したマ−ク要素を一直線上に配置した構成をとる。
このマ−クにレ−ザ光を照射すると、第1の実施例と同
様、マ−クの段差やレジスト塗布膜厚のようなプロセス
条件がウエハ内、あるいは個々のウエハ間で変化して
も、サイズa1,a2,a3の3種類のマ−ク要素群の
うち、少なくとも1種類のマ−ク要素群からは回折光が
発生し、従来問題となっていた検出不能条件の解消を図
ることができる。
FIG. 2 shows a second embodiment of the present invention. In this mark, when the resolution of the alignment optical system in the X direction is small, or in FIG. 4, a photomultiplier tube, a photodiode or the like is directly arranged immediately after the spatial filter 14, while the irradiation laser is used. This is particularly effective for an alignment optical system of the type that scans the light or the like and detects changes in the diffracted light intensity along the time axis. Here, the mark element is made into a polygon, and the mark that is involved in the traveling direction of the diffracted light is used.
The arrangement pitch b of the mark elements is always kept constant, and the mark elements in which the mark element groups having different sizes from a1, a2, and a3 are integrated are arranged in a straight line.
When this mark is irradiated with laser light, similar to the first embodiment, even if the process conditions such as the step of the mark and the resist coating film thickness change within the wafer or between individual wafers. , Out of the three types of mark element groups of sizes a1, a2, and a3, diffracted light is generated from at least one type of mark element group, and the undetectable condition that has been a problem in the past is solved. You can

【0016】図3は、本発明の第3の実施例を示したも
のである。これは、本発明の第2の実施例のアライメン
トマ−クの多角形化を極限まで広げたものであり、菱形
状のマ−ク要素の形状を有する。回折光の進行方向に関
与するマ−ク要素の配列ピッチbは常に一定に保ちなが
ら、例えば、サイズが0からbまで連続的に変化する無
限に小さいマ−ク要素群から構成されると考えられるた
め、第1の実施例と同様、マ−クの段差やレジスト塗布
膜厚のようなプロセス条件がウエハ内、あるいは個々の
ウエハ間で変化しても、少なくともなんらかのサイズを
有するマ−ク要素群からは回折光が発生するため、従来
問題となっていた検出不能条件の解消を図ることができ
る。
FIG. 3 shows a third embodiment of the present invention. This is a polygonalization of the alignment mark of the second embodiment of the present invention to the maximum extent, and has the shape of a diamond-shaped mark element. It is considered that the arrangement pitch b of the mark elements involved in the traveling direction of the diffracted light is always kept constant and is composed of an infinitely small mark element group whose size continuously changes from 0 to b. Therefore, as in the first embodiment, even if the process conditions such as the step of the mark and the resist coating film thickness change within the wafer or between the individual wafers, the mark element has at least some size. Since diffracted light is generated from the group, it is possible to solve the undetectable condition, which has been a problem in the past.

【0017】本発明の実施例で示したマ−クは基本的考
え方を示す代表例であり、同様の効果を有するマ−クを
本発明に包含する。例えば、マ−ク段差が凹凸異なるも
の、反射または透過率の変化により回折光を発生させる
測定対象、あるいは、アライメントマ−クを複数本、X
方向に並置させたもの等が考えられる。
The marks shown in the embodiments of the present invention are representative examples showing the basic concept, and the present invention includes marks having similar effects. For example, a mark having different unevenness, a measurement target that generates diffracted light due to a change in reflectance or transmittance, or a plurality of alignment marks, X
Those arranged side by side in the direction may be considered.

【0018】また、本発明は、半導体露光装置を例にそ
の原理、実施例を説明したが、同様の効果を有するもの
であれば、測定対象がウエハ以外の物であっても差し支
えない。
Although the present invention has been described with respect to the principle and embodiment of the semiconductor exposure apparatus as an example, the object to be measured may be something other than the wafer as long as it has the same effect.

【0019】[0019]

【発明の効果】以上、本発明によれば、アライメントマ
−クのマ−ク段差やレジスト塗布膜厚といったプロセス
条件の変化に対しても、常に、安定した強度のアライメ
ント用回折光が発生するために、従来、位置決め量の検
出不能による露光装置の停止、あるいは作業者によるア
シストを解消することができ、露光装置の自動化あるい
は無人運転化に効果がある。また、その結果として、半
導体等の生産性や製造歩留まりの向上にも寄与できる。
As described above, according to the present invention, the diffracted light for alignment having a stable intensity is always generated even when the process conditions such as the mark step of the alignment mark and the resist coating thickness are changed. Therefore, conventionally, it is possible to stop the exposure apparatus due to the inability to detect the positioning amount or to cancel the assistance by the operator, which is effective in automating or unmanned operation of the exposure apparatus. Further, as a result, it can contribute to the improvement of the productivity of semiconductors and the manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例であるアライメントマ−
クの形状を示す上面図である。
FIG. 1 is an alignment marker according to a first embodiment of the present invention.
It is a top view which shows the shape of a circle.

【図2】本発明の第2の実施例であるアライメントマ−
クの形状を示す上面図である。
FIG. 2 is an alignment marker according to a second embodiment of the present invention.
It is a top view which shows the shape of a circle.

【図3】本発明の第3の実施例であるアライメントマ−
クの形状を示す上面図である。
FIG. 3 is an alignment marker according to a third embodiment of the present invention.
It is a top view which shows the shape of a circle.

【図4】アライメント光学系の光路を示す図である。FIG. 4 is a diagram showing an optical path of an alignment optical system.

【図5】回折光検出の原理を示す図である。FIG. 5 is a diagram showing the principle of diffracted light detection.

【図6】回折光検出波形の検出例を示す図である。FIG. 6 is a diagram showing a detection example of a diffracted light detection waveform.

【図7】実際のアライメントマ−クの断面形状を示す図
である。
FIG. 7 is a view showing a sectional shape of an actual alignment mark.

【符号の説明】[Explanation of symbols]

1…レチクル、2…ウエハ、3…縮小レンズ、12…ア
ライメントマ−ク、20…マ−ク要素、21…マ−ク要
素群。
1 ... Reticle, 2 ... Wafer, 3 ... Reduction lens, 12 ... Alignment mark, 20 ... Mark element, 21 ... Mark element group.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】凹または凸の段差を有するマ−ク要素を複
数個、等ピッチかつ一直線上に配置した回折光検出用ア
ライメントマ−クにおいて、ピッチは一定のまま、マ−
ク要素のサイズを変化させ、凹または凸の段差の占める
割合の異なる複数種類のマ−ク要素群を含むことを特徴
とするアライメントマ−ク。
1. An alignment mark for detecting diffracted light in which a plurality of mark elements having concave or convex steps are arranged in a straight line at equal pitches and the mark is kept constant.
An alignment mark comprising a plurality of types of mark element groups in which concave or convex steps occupy different ratios by changing the size of the mark elements.
JP1473692A 1992-01-30 1992-01-30 Alignment mark Pending JPH05205995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1473692A JPH05205995A (en) 1992-01-30 1992-01-30 Alignment mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1473692A JPH05205995A (en) 1992-01-30 1992-01-30 Alignment mark

Publications (1)

Publication Number Publication Date
JPH05205995A true JPH05205995A (en) 1993-08-13

Family

ID=11869412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1473692A Pending JPH05205995A (en) 1992-01-30 1992-01-30 Alignment mark

Country Status (1)

Country Link
JP (1) JPH05205995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500469B1 (en) * 2001-01-12 2005-07-12 삼성전자주식회사 alignment mark, alignment system using ter same and alignment method thereof
CN101957514A (en) * 2010-08-30 2011-01-26 华映视讯(吴江)有限公司 Panel combination alignment system and to method for position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500469B1 (en) * 2001-01-12 2005-07-12 삼성전자주식회사 alignment mark, alignment system using ter same and alignment method thereof
CN101957514A (en) * 2010-08-30 2011-01-26 华映视讯(吴江)有限公司 Panel combination alignment system and to method for position

Similar Documents

Publication Publication Date Title
KR100378475B1 (en) Projection exposure apparatus
JP2773147B2 (en) Exposure apparatus positioning apparatus and method
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
EP1413928B1 (en) Apparatus and method for scanning exposure
EP0793073B1 (en) Surface position detecting method and scanning exposure method using the same
US5721605A (en) Alignment device and method with focus detection system
US7692128B2 (en) Focus control method for an optical apparatus which inspects a photo-mask or the like
US7668343B2 (en) Surface position measuring method and apparatus
US4952970A (en) Autofocusing system for a projecting exposure apparatus
US7095904B2 (en) Method and apparatus for determining best focus using dark-field imaging
JPH05205995A (en) Alignment mark
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
JPH10254123A (en) Reticle formed with test patterns
JP2705778B2 (en) Projection exposure equipment
JP2001185474A (en) Alignment method, alignment device, substrate, mask, and exposure device
JP3235782B2 (en) Position detecting method, semiconductor substrate and exposure mask
JPH043413A (en) Alignment device
JP2702496B2 (en) Method for manufacturing semiconductor integrated circuit device
JP7260959B2 (en) Lithographic apparatus, illumination apparatus and method of manufacturing an article
JPH06302499A (en) Position detecting device and manufacture of semiconductor element using same
JPH1116822A (en) Method and apparatus for exposure
JP2550979B2 (en) Alignment method
JP4258035B2 (en) Exposure apparatus and device manufacturing method
JP2897085B2 (en) Horizontal position detecting apparatus and exposure apparatus having the same
JPH05206008A (en) Method of alignment and aligner