JPH05203797A - Radioactive waste disposal site - Google Patents

Radioactive waste disposal site

Info

Publication number
JPH05203797A
JPH05203797A JP3278292A JP3278292A JPH05203797A JP H05203797 A JPH05203797 A JP H05203797A JP 3278292 A JP3278292 A JP 3278292A JP 3278292 A JP3278292 A JP 3278292A JP H05203797 A JPH05203797 A JP H05203797A
Authority
JP
Japan
Prior art keywords
flow
radioactive waste
holes
sea
coastal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3278292A
Other languages
Japanese (ja)
Inventor
Minoru Ito
稔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP3278292A priority Critical patent/JPH05203797A/en
Publication of JPH05203797A publication Critical patent/JPH05203797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To obtain a radioactive waste disposal site which enables suppression of groundwater flow in geological formations adjacent to the site and thereby enables prevention of radioactive contamination by the grandwater flow, in burial disposal case of radioactive wastes into a geological formation under a coastal sea bed. CONSTITUTION:Into a geological formation between storage tunnels 9 for radioactive wastes which are formed in a geological formation under a coastal sea bed, and a sea side zone 3, a plurality of boring holes 10a are drilled and formed vertically in a manner that the holes cross through saline groundwater flow under natural condition, and then sea water introducing pipes 11 are connected to an upper side wall of each of the boring holes 10a. By supplying enough sea water which is introduced to the boring holes 10a, to a flow path of the saline ground water flow under natural flowing condition from the boring holes 10a, flow of the saline ground water flow can be suppressed to the extent to be almost ignored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般的にいって放射性
廃棄物処分場に関し、更に詳しくいえば、地下水流動制
御手法を用いて、従来は処分地域でなかった沿岸海底下
へも安全に放射性廃棄物を処分できるようにした新規な
放射性廃棄物処分場に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a radioactive waste disposal site, and more specifically, by using a groundwater flow control method, it is possible to safely reach below the coastal seabed, which was not a disposal area in the past. The present invention relates to a new radioactive waste disposal site capable of disposing of radioactive waste.

【0002】[0002]

【従来の技術】従来、原子力発電所から出る低レベル放
射性廃棄物の処分場には、陸上に隔離場所を設ける形の
処分場と、深海底の二通りがある。
2. Description of the Related Art Conventionally, there are two types of disposal sites for low-level radioactive waste from nuclear power plants, namely, a disposal site where an isolated place is provided on land and a deep sea floor.

【0003】[0003]

【発明が解決しようとする課題】わが国の国土は四方を
海で囲まれ山がちであり、残された平地の土地利用率は
極めて高い、降水量が多いため地下水により地中に埋め
た放射性廃棄物から放射能汚染が拡がることも考えられ
るなど、放射性廃棄物を陸上で処分するには不利な条件
を有している。その上、今後、放射性廃棄物の処分量が
増加することを考えると、このような国土における放射
性廃棄物の処分場所としておのずと海底が期待される。
しかし、深海底への投棄には、処分場所が限定され少な
く、しかも廃棄物の輸送距離が長く輸送費および輸送中
の事故の危険度が高いという問題がある。
[Problems to be Solved by the Invention] The national land of Japan is surrounded by sea on all sides and tends to be mountainous, and the land use rate of the remaining flat land is extremely high. Due to the large amount of precipitation, radioactive waste buried underground by groundwater There is a disadvantageous condition to dispose of radioactive waste on land, such as the possibility that radioactive contamination spreads from things. Moreover, considering that the amount of radioactive waste to be disposed of will increase in the future, it is naturally expected that the seabed will be the disposal site for such radioactive waste in the country.
However, the dumping to the deep sea bottom has problems that the disposal place is limited, the transportation distance of the waste is long, the transportation cost and the risk of accident during transportation are high.

【0004】そこで、深海底に比べて処分場所が多く、
廃棄物の輸送距離が短いゆえに、輸送費が安価で輸送中
の事故の危険度の低い、沿岸海底下の地盤中に埋蔵処分
することも考えられるが、沿岸海底下では、淡水である
陸水と塩水である海水の地下水が、それぞれ陸側、海側
に存在するゆえに、塩分濃度の違いによる密度流が地下
水に生じている。この密度流による地下水流動によっ
て、沿岸海底下に放射性廃棄物を処分した場合には、処
分場付近で放射能汚染された地下水が汚染地域を拡大
し、周辺の生態系や地域住民にまで影響を及ぼす危険性
をはらんでいる。
Therefore, compared to the deep sea floor, there are more disposal sites,
Due to the short transportation distance of waste, it may be buried in the ground beneath the coastal seabed where transportation costs are low and the risk of accidents during transportation is low. Since the groundwater of seawater, which is salt water, and the groundwater of saltwater exist on the land side and the sea side, respectively, a density flow due to the difference in salinity occurs in groundwater. When radioactive waste is disposed under the coastal seabed due to the groundwater flow due to this density current, the radioactively contaminated groundwater near the disposal site expands the contaminated area, affecting the surrounding ecosystem and local residents. There is a risk of it.

【0005】本発明は、上記事情に鑑み、沿岸海底下の
地層中に放射性廃棄物を埋蔵処分した場合でも、地下水
流動による放射能汚染を防止することが出来る放射性廃
棄物処分場を提供することを目的としている。
In view of the above circumstances, the present invention provides a radioactive waste disposal site capable of preventing radioactive contamination due to groundwater flow even when radioactive waste is buried in the stratum below the coastal seabed. It is an object.

【課題を解決するための手段】本発明は、沿岸海底下
(2a)の地盤中に放射性廃棄物(16)の貯蔵空間
(9)を形成し、前記貯蔵空間(9)と臨海地(3)間
の地盤中に、鉛直方向に海水の流通性を有する孔(10
a)を複数個、塩水地下水流(2d)に交差する形で穿
設形成し、前記各々の孔(10a)に形状保持材(10
b、10c)を設け、該各々の孔(10a)の上部に海
水導入手段(11)を設けて構成される。なお、( )
内の番号等は、図面における対応する要素を示す、便宜
的なものであり、従って、本記述は図面上の記載に限定
拘束されるものではない。以下の
According to the present invention, a storage space (9) for radioactive waste (16) is formed in the ground below the coastal seabed (2a), and the storage space (9) and the coastal area (3) are formed. Between the two), the hole (10
a), a plurality of a) are formed so as to intersect with the saline groundwater flow (2d), and the shape retaining material (10) is formed in each of the holes (10a).
b, 10c), and seawater introducing means (11) is provided above the respective holes (10a). Note that ()
The numbers in the drawings indicate the corresponding elements in the drawings for convenience, and the present description is not limited to the description in the drawings. below

【作用】の欄についても同様である。The same applies to the column of [Operation].

【0006】[0006]

【作用】上記した構成により、本発明は、各々の孔(1
0a)に導入された海水(2b)が、孔(10a)の側
壁や底部から貯蔵空間(9)と臨海地(3)間の地盤中
に漏出するように作用する。
With the above-mentioned structure, the present invention has the advantages that each hole (1
The seawater (2b) introduced into 0a) acts so as to leak from the side wall and bottom of the hole (10a) into the ground between the storage space (9) and the waterfront (3).

【0007】[0007]

【実施例】以下、図面に基づき、本発明の実施例を説明
する。図1は、本発明の放射性廃棄物処分場を表わす斜
視図である。図2は、本発明の放射性廃棄物処分場を表
わす正面図である。図3は、図2において、ボーリング
孔列をIII−III線に沿う面で切断した断面図であり、ボ
ーリング孔を間隔を開けて並べた場合である。図4は、
図2において、ボーリング孔列をIII−III線に沿う面で
切断した断面図であり、ボーリング孔を隣接して並べた
場合である。図5は、図1の貯蔵用トンネルを上から見
た図である。図6は、図5をVI−VI線に沿う面で切断し
た断面図である。図7は、自然状態の沿岸の地中での地
下水流動を表わす図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a radioactive waste disposal site of the present invention. FIG. 2 is a front view showing the radioactive waste disposal site of the present invention. FIG. 3 is a cross-sectional view taken along the line III-III of the boring hole row in FIG. 2, showing a case where the boring holes are arranged at intervals. Figure 4
FIG. 3 is a cross-sectional view of the row of boring holes taken along a line along line III-III, showing a case where the boring holes are arranged adjacent to each other. FIG. 5 is a view from above of the storage tunnel of FIG. FIG. 6 is a cross-sectional view of FIG. 5 taken along the line VI-VI. FIG. 7: is a figure showing the groundwater flow in the ground of the coast of a natural state.

【0008】本発明における沿岸地域1での放射性廃棄
物処分場40は、図1に示すように沿岸地域1の陸上部
である臨海地3に、貯蔵施設入口14を有しており、貯
蔵施設入口14からは鉛直方向に複数の立坑12aが穿
設形成されている。立坑12aにはエレベータ14a等
の運搬手段が備えられており、立坑12aは臨海地3の
地中3aで水平坑12bに接続している。水平坑12b
は沿岸海底下2aの地層中へ穿設形成されており、水平
坑12bの末端付近の両側壁から、作業用トンネル13
a、13aが水平面内で水平坑12bと共に十字形を形
作るように穿設形成されており、水平坑12bの末端の
両側壁にも、作業用トンネル13b、13bが水平面内
で水平坑12bと共にT字形を形作るように穿設形成さ
れている。各作業用トンネル13a、13bの末端に
は、水平坑12bに平行に穿設形成された作業用トンネ
ル13cが両トンネル13a、13bを連通させる形で
接続しており、作業用トンネル13aが接続した位置か
ら末端までの水平坑12bの両側壁からは、複数の貯蔵
用トンネル9が作業用トンネル13a、13bに平行な
方向に穿設形成され、作業用トンネル13cに接続して
いる。貯蔵用トンネル9の底面9aには、図5および図
6に示すように、円筒形の穴であるピット9bが設けら
れており、ピット9bは貯蔵用トンネル9の奥行き方向
に等間隔に多数配置されている。
As shown in FIG. 1, the radioactive waste disposal site 40 in the coastal area 1 according to the present invention has a storage facility entrance 14 in a coastal area 3 which is a land part of the coastal area 1, A plurality of vertical shafts 12a are formed in the inlet 14 in the vertical direction. The vertical shaft 12a is provided with a transportation means such as an elevator 14a, and the vertical shaft 12a is connected to the horizontal shaft 12b at the ground 3a of the seaside land 3. Horizontal shaft 12b
Is formed in the stratum below the coastal seabed 2a, and the working tunnel 13 is
a and 13a are formed in a horizontal plane so as to form a cross shape with the horizontal shaft 12b, and the working tunnels 13b and 13b are also formed in the horizontal plane together with the horizontal shaft 12b on both side walls at the end of the horizontal shaft 12b. It is formed so as to form a letter shape. At the end of each of the working tunnels 13a and 13b, a working tunnel 13c formed in parallel with the horizontal shaft 12b is connected so as to connect both tunnels 13a and 13b, and the working tunnel 13a is connected. A plurality of storage tunnels 9 are formed in a direction parallel to the work tunnels 13a and 13b from both side walls of the horizontal shaft 12b from the position to the end, and are connected to the work tunnel 13c. As shown in FIGS. 5 and 6, pits 9b, which are cylindrical holes, are provided on the bottom surface 9a of the storage tunnel 9, and many pits 9b are arranged at equal intervals in the depth direction of the storage tunnel 9. Has been done.

【0009】本発明の放射性廃棄物処分場40は前述の
ように沿岸地域1に設けられるが、自然状態での沿岸地
域1の地盤中1aには、図7に示すように、沿岸海域2
側に塩水地下水流2dが存在し、臨海地3側に淡水地下
水流3bが存在する。この塩水地下水流2dと淡水地下
水流3bは互いに接近する方向に流れており、沿岸海域
2と臨海地3の境界付近の地中で接し、淡塩境界面21
を形成している。この図7に示す自然状態での塩水地下
水流2dに交差する形で、貯蔵用トンネル9と臨海地3
間の地盤中には、図1および図2に示すように、ボーリ
ング孔列10が設けられており、ボーリング孔列10
は、鉛直方向に掘削され円筒形を形づくる複数のボーリ
ング孔10aで形成されている。各々のボーリング孔1
0aは隣合ったボーリング孔10aとの間に一定の間隔
L1を取って一列に並んでいる。各々のボーリング孔1
0aの内壁は、地中深くの堅い岩盤層6においては、素
掘りのままであり、地表付近の柔らかい土砂で形成され
た土砂層7においては、側面に複数の孔を有する鋼管1
0bが嵌通している。ボーリング孔10a中には図3に
示すように砕石10cが充填されており、ボーリング孔
10aの地表面の開口部は蓋10dで閉じられている。
ボーリング孔10aの上部側壁には海水導入管11の注
入口11aが接続しており、海水導入管11は沿岸海底
下2aの地層中を通り、沿岸海域2の海中に導入口11
bを突出している。また、導入口11bは、注入口11
aより高所に設けられている。
The radioactive waste disposal site 40 of the present invention is provided in the coastal area 1 as described above, but in the ground 1a of the coastal area 1 in a natural state, as shown in FIG.
There is a saltwater groundwater flow 2d on the side, and a freshwater groundwater flow 3b on the seaside 3 side. The saltwater groundwater flow 2d and the freshwater groundwater flow 3b flow in the directions approaching each other, and contact the ground near the boundary between the coastal sea area 2 and the seaside area 3, and the fresh salt boundary surface 21
Is formed. The storage tunnel 9 and the waterfront 3 are formed so as to intersect with the saltwater groundwater flow 2d in the natural state shown in FIG.
As shown in FIGS. 1 and 2, a boring hole row 10 is provided in the ground between the boring hole rows 10.
Are formed by a plurality of boring holes 10a that are vertically excavated to form a cylindrical shape. Each boring hole 1
0a are arranged in a line with a constant space L1 between adjacent boring holes 10a. Each boring hole 1
The inner wall of 0a remains uncut in the hard rock layer 6 deep in the ground, and in the earth and sand layer 7 formed of soft earth and sand near the surface of the earth, the steel pipe 1 having a plurality of holes on the side surface 1
0b is inserted. As shown in FIG. 3, the boring hole 10a is filled with crushed stones 10c, and the opening on the ground surface of the boring hole 10a is closed by a lid 10d.
An inlet 11a of a seawater introducing pipe 11 is connected to the upper side wall of the boring hole 10a, and the seawater introducing pipe 11 passes through the stratum below the coastal seabed 2a and into the sea in the coastal sea area 2.
protruding b. The inlet 11b is the inlet 11
It is located higher than a.

【0010】放射性廃棄物処分場40は以上のような構
成を有するので、放射性廃棄物16を貯蔵施設入口14
から立坑12a、水平坑12bを通じて、沿岸海底下2
aの地盤中に設けられた貯蔵用トンネル9に搬入するこ
とが出来る。尚、立坑12a内の運搬は、エレベータ1
4a等の運搬手段により、貯蔵用トンネル9に搬入され
た放射性廃棄物16は、ピット9bに埋蔵することによ
って、整然と貯蔵用トンネル9内に貯蔵することが出来
る。作業用トンネル13a、13b、13cは任意の貯
蔵用トンネル9から別の貯蔵用トンネル9への人や物の
移動を容易にする。また、沿岸海域2の海中に突出して
いる各々の海水導入管11の導入口11bからは海水2
bが、海水導入管11を通って、注入口11aから各々
のボーリング孔10a内に流れ込み、ボーリング孔10
a内には常時海水2bが、沿岸海域2の潮位LVを維持
した形で満たされている。なお、ボーリング孔10a
は、海水2bが注入されても鋼管10bおよび砕石10
cによって形状が保持される。ボーリング孔10aに注
入された海水2bはボーリング孔10aの側壁や底部か
ら貯蔵用トンネル9と臨海地3の間の地盤中に漏出し、
漏出した海水2bは塩分濃度の違いにより淡水地下水流
3bが存在する陸側へ流れようとする。一方、ボーリン
グ孔列10の図2中右方、即ち貯蔵用トンネル9とボー
リング孔列10間の塩水の地下水2cも、海水2bと同
様に塩分濃度の違いにより陸側へ流れようとするが、塩
水の地下水2cは沿岸海底下2aの地盤中を流れてくる
ため、海中から直接ボーリング孔列10に導入される海
水2bに比べてはるかに塩水を供給しがたい。このた
め、塩分濃度差により生じる塩水の流れは、ボーリング
孔10aからの海水により陸側に十分に供給される形と
なり、塩水の地下水2cの流れは無視できる程小さくな
る。よって、万一、貯蔵トンネル9付近の塩水の地下水
2cが放射能汚染された場合にも、塩水の地下水2cの
流れが無視できる程小さくなっているので、汚染区域は
拡大しない。なお、ボーリング孔列10から漏出した海
水2bが陸側へ流れると同時に陸側の地中からは淡水地
下水流3bが海側へ流れ、淡水地下水流3bと漏出した
海水2bは、ボーリング孔列10の図中左方、即ち陸側
において接し、新しい淡塩境界面20を形成する。新し
い淡塩境界面20は、漏出された海水2bの流れに淡水
地下水流3bが乗り上げるような形で図中右上がりの直
線状に形成され、海水2bおよび淡水地下水流3bは新
しい淡塩境界面20に沿って図中右斜め上向きに流れ地
上もしくは海底に流出する。ところで、上述の実施例に
おいて、ボーリング孔列10は隣合ったボーリング孔1
0aとの間に一定の間隔を取って一列に並べた場合につ
いて述べたが、図4に示すように隣合ったボーリング孔
10aを隣接させて一列に並べた場合や、一列でなく複
数列並べた場合にも上述の実施例と同様の効果が得られ
る。また、ボーリング孔列10の設置場所は、貯蔵用ト
ンネル9と臨海地3間の地盤中である限り、必ずしも臨
海地3の地中3aである必要はなく、沿岸海底下2aの
地盤中でもよい。この場合にはボーリング孔10aの上
面を開口させたままにしておくことによって、ボーリン
グ孔10a中に自ずと海水が流入するので、海水導入管
11を必要としない。ボーリング孔10aの形状保持手
段にしても、必ずしも砕石10cを充填する方法を取る
必要は無く、ボーリング孔10a全体に亙って、側面に
多数の孔を有する鋼管を嵌通するなどの形状保持手段を
講じてもよい。また、貯蔵用トンネル9も必ずしもトン
ネルである必要は無く、貯蔵に必要な空間が確保できれ
ばよい。貯蔵施設入口14も必ずしも臨海地3にある必
要は無く、沿岸の浮き島等にあってもよい。貯蔵施設入
口14と貯蔵空間を連絡するトンネルも必ずしも上記実
施例中の立坑12aと水平坑12bの組合せである必要
はなく、周辺の地形等を考慮して斜坑のみ、立坑のみ、
立坑と斜坑の組合せ、斜坑と水平坑の組合せ等のいずれ
かを施工してもよいことは勿論である。なお、放射性廃
棄物16は、ガラス固化した上にステンレス製の容器1
7に封入され、ステンレス製の容器19を更に鋳鉄製の
容器19中に閉じ込めた形で貯蔵施設入口14から搬入
され、図6に示すようにそのままピット中にトンネルの
掘削で発生した削りかすである発生ズリ18(もしく
は、ベントナイト)によって埋められ、所定のピット9
b全てに放射性廃棄物16を埋めた後、貯蔵用トンネル
15、作業用トンネル13a、13b、13c、立坑1
2a、水平坑12bも、発生ズリ18(もしくは、ベン
トナイト)で埋められる。
Since the radioactive waste disposal site 40 has the above structure, the radioactive waste 16 is stored in the storage facility entrance 14
Through the vertical shaft 12a and horizontal shaft 12b, below the coastal seabed 2
It can be carried into the storage tunnel 9 provided in the ground of a. In addition, transportation in the vertical shaft 12a is performed by the elevator 1
The radioactive waste 16 carried into the storage tunnel 9 by a transporting means such as 4a can be stored in the storage tunnel 9 in an orderly manner by burying it in the pit 9b. The work tunnels 13a, 13b, 13c facilitate the transfer of people and goods from any storage tunnel 9 to another storage tunnel 9. In addition, from the inlet 11b of each seawater introduction pipe 11 protruding into the sea of the coastal sea area 2, the seawater 2
b flows into each boring hole 10a from the inlet 11a through the seawater introducing pipe 11,
Seawater 2b is constantly filled in a while maintaining the tide level LV of the coastal sea area 2. The boring hole 10a
Is the steel pipe 10b and the crushed stone 10 even if seawater 2b is injected.
The shape is retained by c. The seawater 2b injected into the boring hole 10a leaks from the side wall and bottom of the boring hole 10a into the ground between the storage tunnel 9 and the waterfront 3,
The leaked seawater 2b tries to flow to the land side where the freshwater groundwater flow 3b exists due to the difference in salinity. On the other hand, the groundwater 2c on the right side of the borehole row 10 in FIG. 2, that is, between the storage tunnel 9 and the borehole row 10 also tends to flow to the land side due to the difference in salt concentration, like the seawater 2b. Since the saltwater groundwater 2c flows into the ground below the coastal seabed 2a, it is much more difficult to supply saltwater than the seawater 2b introduced directly into the boring hole array 10 from the sea. Therefore, the flow of salt water caused by the difference in salt concentration is sufficiently supplied to the land side by the sea water from the boring hole 10a, and the flow of the ground water 2c of salt water becomes negligibly small. Therefore, even if the saltwater groundwater 2c near the storage tunnel 9 is radioactively contaminated, the flow of the saltwater groundwater 2c is so small that it cannot be ignored, and the contaminated area does not expand. In addition, the seawater 2b leaked from the boring hole row 10 flows to the land side, and at the same time, the freshwater groundwater flow 3b flows to the sea side from the ground on the land side, and the freshwater groundwater stream 3b and the leaked seawater 2b are In the figure, the new fresh salt boundary surface 20 is formed in contact with the left side, that is, the land side. The new fresh-salt boundary surface 20 is formed in a straight line rising to the right in the figure such that the freshwater groundwater stream 3b rides on the leaked seawater 2b flow, and the seawater 2b and the freshwater groundwater stream 3b are the new fresh-salt boundary surface. Flows diagonally upward in the figure along 20 and flows out to the ground or the sea floor. By the way, in the above-mentioned embodiment, the boring hole row 10 is composed of the adjacent boring holes 1.
0a is arranged in a line at a constant interval. However, as shown in FIG. 4, adjacent boring holes 10a are arranged side by side in a row, or plural rows are arranged instead of one row. Also in this case, the same effect as that of the above-described embodiment can be obtained. The location of the row of boring holes 10 does not necessarily have to be the ground 3a of the waterfront 3 as long as it is in the ground between the storage tunnel 9 and the waterfront 3, and may be in the ground 2a below the coastal seabed. In this case, since the seawater naturally flows into the boring hole 10a by keeping the upper surface of the boring hole 10a open, the seawater introducing pipe 11 is not necessary. Even if the shape retaining means of the boring hole 10a is used, it is not always necessary to fill the crushed stone 10c, and the shape retaining means such as inserting a steel pipe having a large number of holes on the side surface over the entire bore hole 10a. May be taken. Further, the storage tunnel 9 does not necessarily have to be a tunnel as long as the space required for storage can be secured. The storage facility entrance 14 does not necessarily have to be at the waterfront 3, but may be at a floating island on the coast. The tunnel that connects the storage facility entrance 14 and the storage space does not necessarily have to be a combination of the vertical shaft 12a and the horizontal shaft 12b in the above embodiment, and only the inclined shaft and the vertical shaft are taken into consideration in consideration of the surrounding topography.
Of course, either a combination of a vertical shaft and an inclined shaft or a combination of an inclined shaft and a horizontal shaft may be constructed. The radioactive waste 16 is glass-solidified and is made of stainless steel container 1
7, the stainless steel container 19 was further enclosed in the cast iron container 19 and was carried in from the storage facility entrance 14, and as shown in FIG. Predetermined pit 9 filled with a certain crack 18 (or bentonite)
After burying radioactive waste 16 in all b, storage tunnel 15, working tunnels 13a, 13b, 13c, shaft 1
2a and the horizontal shaft 12b are also filled with the generated crack 18 (or bentonite).

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば、
沿岸海底下2aの地盤中に放射性廃棄物16の貯蔵用ト
ンネル9等の貯蔵空間を形成し、前記貯蔵空間と臨海地
3間の地盤中に、鉛直方向に海水の流通性を有するボー
リング孔10a等の孔を複数個、塩水地下水流2dに交
差する形で穿設形成し、前記各々の孔に鋼管10b、砕
石10c等の形状保持材を設け、該各々の孔の上部に海
水導入管11等の海水導入手段を設けて構成したので、
沿岸海底下の地層中に放射性廃棄物を埋蔵処分した場合
でも、孔10aから臨海地3側に海水を、淡塩境界面を
新たに形成する形で供給することができるので、孔より
海側の地盤中の塩水の地下水の流れを殆ど無視し得る程
度に抑制することが出来、地下水流動による放射能汚染
を効果的に防止することが出来る。
As described above, according to the present invention,
A storage space such as a storage tunnel 9 for storing radioactive waste 16 is formed in the ground below the coastal seabed 2a, and in the ground between the storage space and the seaside 3, a boring hole 10a having vertical seawater flowability. A plurality of holes, etc., are formed so as to intersect with the saltwater groundwater flow 2d, shape-retaining materials such as steel pipes 10b, crushed stones 10c, etc. are provided in each of the holes, and a seawater introducing pipe 11 is provided above each hole. Since it was configured by providing seawater introduction means such as
Even when radioactive waste is buried in the stratum below the coastal seabed, seawater can be supplied from the hole 10a to the seaside 3 side in the form of newly forming a fresh salt boundary surface. The flow of saline groundwater in the ground can be suppressed to a level that can be almost ignored, and radioactive contamination due to groundwater flow can be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射性廃棄物処分場を表わす斜視図で
ある。
FIG. 1 is a perspective view showing a radioactive waste disposal site of the present invention.

【図2】本発明の放射性廃棄物処分場を表わす正面図で
ある。
FIG. 2 is a front view showing a radioactive waste disposal site of the present invention.

【図3】図2において、ボーリング孔列をIII−III線に
沿う面で切断した断面図であり、ボーリング孔を間隔を
開けて並べた場合である。
FIG. 3 is a cross-sectional view of the row of boring holes taken along the line III-III in FIG. 2, showing a case where the boring holes are arranged at intervals.

【図4】図2において、ボーリング孔列をIII−III線に
沿う面で切断した断面図であり、ボーリング孔を隣接し
て並べた場合である。
FIG. 4 is a cross-sectional view taken along the line III-III of the boring hole row in FIG. 2, showing a case where the boring holes are arranged adjacent to each other.

【図5】図1の貯蔵用トンネルを上から見た図である。5 is a top view of the storage tunnel of FIG. 1. FIG.

【図6】図5をVI−VI線に沿う面で切断した断面図であ
る。
FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.

【図7】自然状態の沿岸の地中での地下水流動を表わす
図である。
FIG. 7 is a diagram showing groundwater flow in a coastal ground in a natural state.

【符号の説明】[Explanation of symbols]

2a……沿岸海底下 2d……塩水地下水流 3……臨海地 9……貯蔵空間(貯蔵トンネル) 10a……孔(ボーリング孔) 10b……形状保持材(鋼管) 10c……形状保持材(砕石) 11……海水導入手段(海水導入管) 16……放射性廃棄物 2a ... Under the coastal seabed 2d ... Saltwater groundwater flow 3 ... Seaside 9 ... Storage space (storage tunnel) 10a ... Hole (boring hole) 10b ... Shape retaining material (steel pipe) 10c ... Shape retaining material ( Crushed stone) 11 …… Seawater introduction means (seawater introduction pipe) 16 …… Radioactive waste

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】沿岸海底下の地盤中に放射性廃棄物の貯蔵
空間を形成し、 貯蔵空間と臨海地間の地盤中に、鉛直方向に海水の流通
性を有する孔を複数個、塩水地下水流に交差する形で穿
設形成し、 前記各々の孔に形状保持材を設け、 該各々の孔の上部に海水導入手段を設けて構成した放射
性廃棄物処分場。
1. A storage space for radioactive waste is formed in the ground below the coastal seabed, and a plurality of holes having seawater flowability in the vertical direction are formed in the ground between the storage space and the seaside area. A radioactive waste disposal site constructed by piercing and forming a shape-retaining material in each of the holes, and seawater introducing means above each of the holes.
JP3278292A 1992-01-23 1992-01-23 Radioactive waste disposal site Pending JPH05203797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278292A JPH05203797A (en) 1992-01-23 1992-01-23 Radioactive waste disposal site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278292A JPH05203797A (en) 1992-01-23 1992-01-23 Radioactive waste disposal site

Publications (1)

Publication Number Publication Date
JPH05203797A true JPH05203797A (en) 1993-08-10

Family

ID=12368425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278292A Pending JPH05203797A (en) 1992-01-23 1992-01-23 Radioactive waste disposal site

Country Status (1)

Country Link
JP (1) JPH05203797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073572A (en) * 2006-09-19 2008-04-03 Kajima Corp Underground storage facilitie of waste geological disposal field, and recovery method of waste
JP2008082123A (en) * 2006-09-29 2008-04-10 Shimizu Corp Vertical shaft for waste underground burying disposal facility, and vertical shaft construction method of waste underground burying disposal facility
JP2008279346A (en) * 2007-05-09 2008-11-20 Kajima Corp Geological disposal facilities and its construction method
JP6180060B1 (en) * 2016-11-10 2017-08-16 有限会社モリ Waste disposal methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073572A (en) * 2006-09-19 2008-04-03 Kajima Corp Underground storage facilitie of waste geological disposal field, and recovery method of waste
JP2008082123A (en) * 2006-09-29 2008-04-10 Shimizu Corp Vertical shaft for waste underground burying disposal facility, and vertical shaft construction method of waste underground burying disposal facility
JP2008279346A (en) * 2007-05-09 2008-11-20 Kajima Corp Geological disposal facilities and its construction method
JP6180060B1 (en) * 2016-11-10 2017-08-16 有限会社モリ Waste disposal methods

Similar Documents

Publication Publication Date Title
US4171921A (en) Method for preventing the contamination of subsoil water from products deposited on the ground or in underground cavities
US4580925A (en) Pervious surround method of waste disposal
Beck Karst geohazards: engineering and environmental problems in karst terrane
Buttrick et al. Hazard and risk assessment for sinkhole formation on dolomite land in South Africa
Bishop et al. Seabed disposal—where to look
Cooper et al. Subsidence caused by gypsum dissolution at Ripon, North Yorkshire
Meggyes et al. Removal of organic and inorganic pollutants from groundwater using permeable reactive barriers
JP2004522012A (en) Artificial island and support for artificial island and method of constructing artificial island
JP4822996B2 (en) Underground storage facility of waste geological disposal site and waste recovery method
Cartwright et al. Evaluating sanitary landfill sites in Illinois
JPH05203797A (en) Radioactive waste disposal site
Bergstrom Disposal of wastes: scientific and administrative considerations
Lei et al. Atlas of Karst collapses
Beck et al. Geotechnical and environmental applications of karst geology and hydrology
Milanovic Prevention and remediation in karst engineering
Neal et al. Evaporite karst in the western part of the Holbrook Basin, Arizona
Pettinga Mud volcano eruption within the emergent accretionary Hikurangi margin, southern Hawke's Bay, New Zealand
Dong et al. Sinkholes and their impacts on karst hydrogeology in a peatland complex of Northern Ontario, Canada
Lei et al. Karst collapses and their formations
Johnson et al. Saltwater intrusion in the coastal aquifers of Los Angeles County, California
Ostakh et al. Geochemical barriers for the arrangement of the oil and gas fields infrastructure and the protection of the adjacent territories
CA1188525A (en) Pervious surround method of waste disposal
GB2128800A (en) Disposal of radioactive and/or toxic waste
Redman Geophysics and the solvents-in-groundwater program
RU2143758C1 (en) Radioactive and toxic waste storage device