JPH05203639A - Method and apparatus for separating blood into component - Google Patents

Method and apparatus for separating blood into component

Info

Publication number
JPH05203639A
JPH05203639A JP4263134A JP26313492A JPH05203639A JP H05203639 A JPH05203639 A JP H05203639A JP 4263134 A JP4263134 A JP 4263134A JP 26313492 A JP26313492 A JP 26313492A JP H05203639 A JPH05203639 A JP H05203639A
Authority
JP
Japan
Prior art keywords
blood
separation
fraction
interface
platelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4263134A
Other languages
Japanese (ja)
Other versions
JP2618793B2 (en
Inventor
Wolfgang Biesel
ヴォルフガング・ビーゼル
Johannes Geibel
ヨハンネス・ギーベル
Henning Brass
ヘニンク・ブラース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fresenius SE and Co KGaA
Original Assignee
Fresenius SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius SE and Co KGaA filed Critical Fresenius SE and Co KGaA
Publication of JPH05203639A publication Critical patent/JPH05203639A/en
Application granted granted Critical
Publication of JP2618793B2 publication Critical patent/JP2618793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0427Platelets; Thrombocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0429Red blood cells; Erythrocytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/929Hemoultrafiltrate volume measurement or control processes

Abstract

PURPOSE: To extremely reduce the mixing with a leucocyte by alternating the interface between fractions between at least two positions to move the same during the first separation process due to centrifugal separation. CONSTITUTION: A blood centrifugal separator has a separation chamber 1 for the first separation step and whole blood VB is roughly separated into two phases herein. The first fraction contains blood cells, especially, blood corpuscles and white corpuscles. The second fraction is composed of blood plasma PRP especially rich in platelets. A phase detector 3 catches the interface between both fractions. In the second separation step, the blood plasma fraction PRP is supplied to a sampling chamber 4 through a pump 5 and separated in order to obtain a platelet concentrate TK. A program adjusting device 6 adjusts the pump 5 so that the interface between both fractions is alternately moved between at least two positions during a separation process in the separation chamber 1. By the alteration of this interface, blood plasma PRP rich in platelets is transported to the second separation step and the mixing with white corpuscles is almost perfectly excluded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密度遠心分離により血液
を成分に分離するための方法及び装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for separating blood into components by density centrifugation.

【0002】[0002]

【従来の技術】従来の方法においては最初の分離ステッ
プにおいて監視された界面により血液が少なくとも粗く
2相に分離され、これらの相の中で最初の分画は主に血
液細胞、又2番目の分画は主として血小板に富む血漿か
らなり、そして2番目の分離ステップにおいて分画の一
つが血液成分の濃縮物を得るために更に分離される。
2. Description of the Prior Art In the prior art, the interface monitored in the first separation step causes the blood to be at least roughly separated into two phases, of which the first fraction is mainly blood cells, and secondly the second. The fractions consist mainly of platelet-rich plasma, and in a second separation step one of the fractions is further separated to obtain a concentrate of blood components.

【0003】従来技術による密度遠心分離によって血液
をその成分に分離するための装置は、最初の分離ステッ
プの分離室を有し、その分離室には血液ポンプを経て分
離すべき血液が入口側より供給され、その分離室におい
て血液は少なくとも粗く2相に分離され、その中で最初
の分画は主として血液細胞、2番目の分画は主として血
小板に富む血漿からなり、さらに双方の分画間の界面を
捕らえるための設備を有し、該装置は2番目の分離ステ
ップの採取室を有し、採取室には血漿ポンプを経て血小
板に富む血漿分画を供給し、かつ採取室で該分画は血液
成分の濃縮物を得るために更に分離され、そしてさらに
該遠心分離装置は血漿ポンプの速度調整を含む装置を操
業するためのプログラム制御部を有する。好ましくは2
番目の分離ステップにおいて血小板に富む血漿分画は血
小板濃縮物を得るために更に分離される。
An apparatus for separating blood into its components by density centrifugation according to the prior art has a separation chamber of the first separation step, in which the blood to be separated via a blood pump is introduced from the inlet side. In the separation chamber, blood is at least roughly separated into two phases, in which the first fraction consists mainly of blood cells, the second fraction mainly consists of platelet-rich plasma, and between both fractions. The apparatus has a facility for capturing an interface, the apparatus has a collection chamber for the second separation step, the collection chamber is supplied with a platelet-rich plasma fraction via a plasma pump, and the fraction is collected in the collection chamber. Is further separated to obtain a concentrate of blood components, and further the centrifuge device has a program control for operating the device including speed adjustment of the plasma pump. Preferably 2
In the second separation step the platelet rich plasma fraction is further separated to obtain a platelet concentrate.

【0004】この種の装置は例えば申請者Fresen
ius AS 104、Baxter CS 3000
会社又はCobe Spectra会社の細胞分離器に
よって既知となっている。
An apparatus of this kind is, for example, the applicant Fresen.
ius AS 104, Baxter CS 3000
Known by the cell separators of the company or the Cobe Spectra company.

【0005】[0005]

【発明が解決しようとする課題】特定の病気の患者の治
療のために、該患者に供給される特定の血液成分が必要
とされる。例えば血小板欠乏症の患者の治療のために血
小板濃縮物が必要となる。
For the treatment of patients with specific diseases, specific blood components supplied to the patient are required. For example, platelet concentrates are needed for the treatment of patients with platelet deficiency.

【0006】これに対して体外回路に接続した供血者の
血液は血液遠心分離器で密度遠心にかけられ、その成分
に分離される。該血液分離に際して血液は第1のステッ
プにおいて2種類の相に粗く分離され、即ち最初は主と
して赤血球からなる暗赤色の細胞濃縮分画と、主として
血小板に富む血漿からなる明るくて黄色の分画に分離さ
れる。
On the other hand, the blood of the donor connected to the extracorporeal circuit is subjected to density centrifugation in a blood centrifuge and separated into its components. During the blood separation, the blood is roughly separated into two phases in the first step, namely a dark red cell-enriched fraction mainly consisting of red blood cells and a bright yellow fraction mainly composed of platelet-rich plasma. To be separated.

【0007】双方の相の限界の位置は探知装置によって
監視され例えば血漿ポンプによって調整される。その
際、細胞の量が細胞に富む血漿の量を越える場合には高
位の界面と称し、反対の場合には低位の界面と称する。
The position of the limit of both phases is monitored by a locator and adjusted, for example by a plasma pump. In that case, when the amount of cells exceeds the amount of plasma rich in cells, it is called a high-level interface, and when it is the opposite, it is called a low-level interface.

【0008】血小板濃縮物を得るための既知の操作法に
おいて、慣用の機種では、この際界面の位置は所望の位
置に達成後分離期間中一定に保持される。
In the known procedure for obtaining platelet concentrates, in the customary model, the position of the interface is then kept constant at the desired position during the post-separation separation period.

【0009】血小板濃縮物を得ようとするならば、血小
板に富む血漿は2番目のステップで血小板の少ない血漿
と所望の血小板濃縮物に分離される。血小板濃縮物は患
者の治療に役立ち、該血液の残りの成分は再度合一され
供血者に供給される。
If a platelet concentrate is to be obtained, the platelet-rich plasma is separated in a second step into platelet-poor plasma and the desired platelet concentrate. The platelet concentrate serves to treat the patient and the remaining components of the blood are recombined and provided to the donor.

【0010】約3乃至4×1011細胞からなる標準血小
板濃縮物は、できるだけ僅少の分離期間で、できるだけ
高い収量で、かつできるだけ僅少の白血球による混入で
得られるべきである。というのは、白血球は非自己の生
体、此処では患者の体に防御機構を誘発する。これは以
後に提供された薬剤の有効性を著しく制限する可能性の
ある患者の免疫化に導く。
A standard platelet concentrate consisting of about 3 to 4 × 10 11 cells should be obtained with the least possible separation period, the highest yield and the least possible leukocyte contamination. For leukocytes trigger a defense mechanism in a non-self body, here the patient's body. This leads to the immunization of patients, who can significantly limit the effectiveness of subsequently provided drugs.

【0011】白血球のサブフラクションのリンパ球は、
防御機構の誘発に決定的であるが、僅かな大きさの相違
しかないために血小板は既知の操作による遠心分離によ
っては、確実には相互に分離できない。
The lymphocytes of the white blood cell subfraction are
Although decisive for the induction of defense mechanisms, platelets cannot be reliably separated from one another by centrifugation by known procedures, due to only small differences in size.

【0012】従って当面の技術により免疫化を確実に避
けるためには、患者に供給する前に血小板濃縮物から白
血球を分離するために更に濾過する。他の血液成分にお
いても同様な処置が実施されている。
Therefore, to ensure that immunization is avoided by current techniques, further filtration is performed to separate the leukocytes from the platelet concentrate before delivery to the patient. Similar treatments are performed on other blood components.

【0013】従って既知の操作においては更に別の分離
装置で別の処理のステップが必要であり、そうすること
により、出費や費用が又無菌性の維持に関しても高額と
なっていることが欠点である。
The known operation therefore has the disadvantage that it requires additional processing steps in a further separating device, which results in high expenditures and costs and in terms of maintaining sterility. is there.

【0014】血液成分で特に混入が極めて少なく従って
濾過する必要性のもはやない血小板濃縮物をすぐに得る
ことができるように、最初に記載した方法並びに装置を
開発する課題が本発明の基礎になっている。
The problem underlying the invention is to develop a method and device as initially described, so that platelet concentrates can be readily obtained which are particularly low in blood constituents and therefore no longer required to be filtered. ing.

【0015】[0015]

【課題を解決するための手段】本発明の方法により本課
題は、最初の分離ステップの分離過程の間において双方
の分画間の界面を少なくとも二つの位置の間を交替して
移動させることによって解決された。
According to the method of the present invention, the object is to move the interface between both fractions alternately between at least two positions during the separation process of the first separation step. Resolved

【0016】本発明の装置においては、プログラム調整
6は血漿ポンプ5に対する調整区分を示し、分離室1に
おいて分離経過の間に双方の分画間の界面が少なくとも
二つの位置の間を交替して移動するように調整区分が形
成されていることによって解決に成功している。
In the device according to the invention, the program adjustment 6 represents an adjustment section for the plasma pump 5, in which the interface between both fractions in the separation chamber 1 alternates between at least two positions during the course of the separation. The solution is successful because the adjustment section is formed to move.

【0017】最初の分離ステップにおける界面の交替に
よって、血小板濃縮物の獲得の場合には血小板に富む血
漿による血小板のみを狙って2番目の分離ステップに輸
送しかくして白血球の混入を殆ど完全に排除することが
可能である。
Due to the alternation of the interfaces in the first separation step, in the case of the acquisition of platelet concentrates, only the platelets due to the platelet-rich plasma are transported to the second separation step, thus almost completely eliminating the leukocyte contamination. It is possible.

【0018】最初に挙げた種類の血球細胞分離器におい
て、作業種は先に与えられた一定の分離限界を備えるこ
とが知られており、この作業種においては続いて再度最
初の作業種に逆もどりするために、血漿ポンプは血液ポ
ンプに対して短時間高速度に運転されている。
In the first type of blood cell separator, the working species is known to have a certain separation limit given above, in which case the working species is subsequently reversed again to the first working species. Therefore, the plasma pump is operated at a high speed for a short time with respect to the blood pump.

【0019】この“あふれ”型の作業種においては、血
小板に富む血漿分画(PRP分画)は溢れて赤血球細胞
を越えてしまう。この時間の間に血液細胞分離器の血漿
ポンプは高速度で運転されて、例えば細胞密度の上昇を
認知した際又は予め与えられた採取すべき分画量の移送
後に停止する。従ってこのあふれ型操作法において、界
面は、先に与えられた一定値で引き続き再度調整される
ためにくずれる。
In this "overflow" type of working species, the platelet-rich plasma fraction (PRP fraction) overflows and exceeds red blood cells. During this time, the plasma pump of the blood cell separator is operated at a high speed and stops, for example, when it perceives an increase in cell density or after the transfer of a given fractional volume to be collected. Thus, in this overflow mode of operation, the interface collapses due to the subsequent readjustment of the previously given constant value.

【0020】これに反して本発明による“交替する分離
限界”の操作法においては、分離限界は周期的に二つの
一定の位置の間を変動する。分離限界が変化する間だけ
血漿の流速が変動する。
On the contrary, in the method of operation of the "alternate separation limit" according to the invention, the separation limit fluctuates periodically between two constant positions. The flow rate of plasma changes only while the separation limit changes.

【0021】双方の一定の分離限界の位置においてPR
P分画は第2のステップに輸送され、血液細胞は血液細
胞分離器の分離室より第2の排出口を経て押し出され血
液供給者に戻される。該操作は他の細胞種の細胞混合物
の獲得に際しても同様に他の生物学的溶液の分離によっ
て適用される。
PR at the positions of both fixed separation limits
The P fraction is transported to the second step and blood cells are extruded from the separation chamber of the blood cell separator via the second outlet and returned to the blood supplier. The procedure also applies to the acquisition of cell mixtures of other cell types by separation of other biological solutions.

【0022】[0022]

【実施例】本発明を以下に図示と実施例によって詳細に
説明する。
The present invention will be described in detail below with reference to the drawings and examples.

【0023】実施例として血小板濃縮物の取得を記載す
る。密度遠心分離により血液をそれの成分に分離するた
めの操作及び装置は公知である。これらは例えば、米国
特許第3 655 123号、4 056 224号、
4 108 353号から公知である。このような分離
装置(血液遠心分離器)における界面の監視のための設
備は、例えば、欧州特許第116 716号(EP−P
atent−schrift 116 716)から公
知である。従って図示により発明の了解は充分である。
The acquisition of platelet concentrates is described as an example. The operations and devices for separating blood into its components by density centrifugation are known. These are, for example, US Pat. No. 3,655,123, 4,056,224,
It is known from 4 108 353. Equipment for monitoring the interface in such a separation device (blood centrifuge) is disclosed, for example, in EP 116716 (EP-P).
known from dent-schrift 116 716). Therefore, the understanding of the invention is sufficient based on the drawings.

【0024】図1には、分離期間tに依存して低位の分
離限界1における血液遠心分離の相の分布が図式として
示されている。分離の経過につれて分離された血液成分
の層が形成される。赤血球2の上に相をなして血小板に
富む血漿4からなる層の下層となり、比較的広い血小板
層6は白血球層8の上に形成される。血小板と白血球間
の界面の仮構の理想状態が図示されている。
FIG. 1 shows diagrammatically the distribution of the phases of blood centrifugation at the lower separation limit 1 depending on the separation period t. A layer of separated blood components is formed over the course of the separation. A relatively wide platelet layer 6 is formed on the white blood cell layer 8 on top of the red blood cell 2 to form a lower layer of a layer of plasma 4 rich in platelets. A hypothetical ideal state of the interface between platelets and white blood cells is shown.

【0025】比較的広い血小板層が白血球層に対する柵
を形成できるということが実際に示されている。赤血球
は供血者10に再度供給され、又血小板に富む血漿4の
みが2番目の分離ステップに移送される。このステップ
で血小板は濃縮され(位置12)血小板の少ない血漿1
4は赤血球2と混合後最初のステップから供血者10に
返送される。
It has been shown in practice that a relatively wide platelet layer can form a barrier to the white blood cell layer. The red blood cells are supplied again to the donor 10, and only the platelet-rich plasma 4 is transferred to the second separation step. In this step, the platelets are concentrated (position 12) and the plasma is low in platelets 1
4 is returned to the donor 10 from the first step after mixing with the red blood cells 2.

【0026】図2は、高位の界面における分離された成
分の分布を図示する。関連記号は図1と同様に選択され
ている。界面1は分離限界とも呼ばれるが、既知の手段
で、例えば血漿ポンプによる血漿分画を種々に抽出する
ことによって移動され調整される。
FIG. 2 illustrates the distribution of separated components at higher interfaces. The relevant symbols are selected as in FIG. The interface 1, also called the separation limit, is moved and adjusted by known means, for example by various extractions of the plasma fraction by a plasma pump.

【0027】低位の界面(図1)における分離とは対照
に血小板6の層は白色血球細胞8(白血球)の層に対し
て比較的小さい柵を形成する。血漿層における比較的高
い流動速度のために血液細胞の沈降は困難である。特に
これらの理由から血小板に富む血漿4の白血液細胞8に
よる混入は必然的に比較的容易に起こることになる。
In contrast to the separation at the lower interface (FIG. 1), the layer of platelets 6 forms a relatively small barrier to the layer of white blood cells 8 (white blood cells). Sedimentation of blood cells is difficult due to the relatively high flow rate in the plasma layer. Particularly for these reasons, the contamination of the blood plasma 4 rich in platelets with the white blood cells 8 inevitably occurs relatively easily.

【0028】分離期間を通じて細胞の濃縮物の組成は最
初の分離ステップ内で変化する。表1は中間の分離限界
の位置における処理血液量に依存した血液分画のパーセ
ント区分を示すが、その際血液分画に対して使用された
省略記号は以下の意味を有する。 PRP=血小板に富む血漿; PLT=血小板; WBC=白血球; RBC=赤血球。
The composition of the cell concentrate throughout the separation period changes within the first separation step. Table 1 shows the percentage division of the blood fraction depending on the treated blood volume at the position of the intermediate separation limit, the abbreviations used for the blood fraction having the following meanings. PRP = platelet rich plasma; PLT = platelets; WBC = white blood cells; RBC = red blood cells.

【0029】[0029]

【表1】 [Table 1]

【0030】分離限界の位置が一定の際には表1によれ
ば血液容量の増大と共に、主として血小板及び白血球か
らなる中間層が分離室において蓄積する。血漿は界面の
調整のために取り除かれ又赤血球は血液遠心分離器の分
離室から押し出される。
According to Table 1, when the position of the separation limit is constant, the blood volume increases and the intermediate layer mainly composed of platelets and white blood cells accumulates in the separation chamber. Plasma is removed for conditioning the interface and red blood cells are forced out of the separation chamber of the blood centrifuge.

【0031】経験によれば第2ステップにおける血小板
の収量損失は、第1の分離ステップにおける一定の低位
の分離限界位と関連している。一方ここでは白血球の転
入は断たれそれによって血小板濃縮物における低次の白
血球混入が保証される。
Experience has shown that the loss of platelet yield in the second step is associated with a certain lower separation limit in the first separation step. On the other hand, here, the migration of leukocytes is interrupted, which ensures a low leukocyte contamination in the platelet concentrate.

【0032】最初の分離ステップにおいて分離限界位が
一定で高位の場合には、第2のステップにおける血小板
の数は上昇する。しかし、白血球の数又それによる血小
板濃縮物における混入も又上昇する。著しく高位の界面
に際しては混入は次表に示すように、飛躍的に増加し、
次表には不変及び交替する分離限界の位置における血小
板アフェレーシスの効率及び白血球混入(WBC)が示
されている。
When the separation limit is constant and high in the first separation step, the number of platelets in the second step increases. However, the white blood cell count and thus the contamination in the platelet concentrate is also increased. When the interface is extremely high, the contamination increases dramatically as shown in the following table.
The following table shows the efficiency of platelet apheresis and leukocyte contamination (WBC) at the positions of the invariant and alternating separation limits.

【0033】[0033]

【表2】 [Table 2]

【0034】血漿層における高い流速により血小板の堆
積は不可能であり、渦巻きが起こり白血球層との混合が
高度となる結果、白血球は血小板とともに第2のステッ
プに移送される。血小板に関する分離効率は最高値に達
するが、混入は極端な場合には百倍も高くなる。ここで
は所望の細胞種の収量と供給の間の比率を%で表して分
離の効率と称する。或る細胞種の提供は該細胞種の提供
された血液量における平均濃度を求めることによって定
量され、その収量は該細胞種の得られた濃縮物の量にお
ける濃度を求めることによって決められる。
The high flow rate in the plasma layer precludes the deposition of platelets and the swirling that results in a high degree of mixing with the white blood cell layer results in the transfer of white blood cells with the platelets to the second step. Separation efficiencies for platelets reach a maximum, but contamination is 100 times higher in extreme cases. The ratio between the yield and the supply of the desired cell type is expressed here in% and is referred to as the separation efficiency. The donation of a cell type is quantified by determining the average concentration of the cell type in the donated blood volume, and the yield is determined by determining the concentration of the resulting concentrate in the cell type.

【0035】本発明による操作法では、第1の分離ステ
ップにおける分離経過期間中に少なくとも二つの位置の
間で分離限界位置を交替し変換することによって採取時
間と移送時間を作る。採取時の間に低位分離限界から高
位限界まで調整される結果、中間相に血小板が堆積する
ことになる。血小板の主要部分は血小板に富む血漿と連
続して第2のステップに移送される。分離された細胞は
分離ステップから押し出される。
In the operating method according to the invention, the sampling time and the transfer time are produced by alternating and converting the separation limit position between at least two positions during the separation duration in the first separation step. Adjusting from the lower separation limit to the higher limit during collection results in the deposition of platelets in the interphase. The major part of the platelets is transferred to the second step in succession with the platelet-rich plasma. Separated cells are extruded from the separation step.

【0036】転送時間においては界面は著しく上昇する
結果、第1ステップで採取された血小板は共に溢れる。
血小板層の一定の残余含有量は室に残存し、白血球の侵
入が阻止される。
At the transfer time, the interface rises significantly so that the platelets collected in the first step overflow together.
A certain residual content of the platelet layer remains in the chamber, preventing leukocyte invasion.

【0037】分離の効率性は一定の血小板量の操作によ
って幾分は減少するが、白血球の混入は臨界免疫の限界
以下に抑えられ、更なる精製ステップが避けられる。
Although the efficiency of the separation is somewhat reduced by the manipulation of a constant platelet volume, leukocyte contamination is kept below the critical immunity limit and further purification steps are avoided.

【0038】図4は横軸上の分離期間に対して縦軸上に
血小板濃度をプロットした略図であり、発明による交替
する界面を示す。図3は対応する略図を示すが、従来の
技術水準に従って第1の分離ステップにおいて界面が一
定の位置を有する略図を示す。双方の略図を比較してみ
ると転移層の範囲における血小板の増加が明瞭に認めら
れる(図4)。
FIG. 4 is a schematic plot of platelet concentration on the ordinate versus separation period on the abscissa, showing alternating interfaces according to the invention. FIG. 3 shows the corresponding diagram, but according to the state of the art, the interface has a constant position in the first separation step. A comparison of the two schematic diagrams clearly shows an increase in platelets in the range of the metastatic layer (Fig. 4).

【0039】最初の低位の分離限界、並びに分離限界の
位置の変化及びそれによって変化した部屋における流れ
の状況の変化によって白血球は細胞の排出口を経て部屋
から除かれる。
Leukocytes are removed from the chamber via the cell outlet by the initial lower separation limit, and by the change in the position of the separation limit and the resulting change in flow conditions in the chamber.

【0040】このようにして高位の分離限界の時間の間
には血小板に富む血漿の混入及びこれによりこれから続
いて得られた血小板濃縮物の混入の危険は存在しない。
しかし、該相において第2のステップに移送された血小
板の含有量は、図4に示されたように必然的に高められ
る。
In this way, there is no risk of contamination of the platelet-rich plasma and thus of the subsequently obtained platelet concentrate during the high separation threshold times.
However, the content of platelets transferred to the second step in the phase is necessarily increased, as shown in FIG.

【0041】図4において、転移相と名付けられた高位
の分離限界の時間は図4において採取相と名付けられた
低位分離限界の時に対して比較的に短い。というのは、
この時間の間にとりわけ白血球の集合が既に新しく開始
しているからである。
In FIG. 4, the time of the higher separation limit, designated the transition phase, is relatively short compared to the time of the lower separation limit, designated the collection phase in FIG. I mean,
This is because, among other things, leukocyte aggregation has already started anew during this time.

【0042】好都合な相の長さ及び分離限界位置の検討
は経験的に実施することができるので、分離装置のそれ
ぞれの分離プログラムに前もって与えられる。
The study of convenient phase lengths and separation limit positions can be carried out empirically and is thus given in advance to the respective separation program of the separation device.

【0043】図5には血液遠心分離器が図示され、これ
によって発明による操作が有利に実施される。よりよく
全貌を知るために該遠心分離器の本質的部分のみが示さ
れている。
A blood centrifuge is shown in FIG. 5 with which the operation according to the invention is advantageously carried out. Only a substantial part of the centrifuge is shown for a better overview.

【0044】血液細胞分離器とも名付けられる血液遠心
分離器は、最初の分離ステップ、すなわち血液ポンプ2
を経て入り口から分離すべき血液、所謂全血VBを輸送
できる分離室1を有する。
The blood centrifuge, also named blood cell separator, has a first separation step, namely blood pump 2
It has a separation chamber 1 capable of transporting the blood to be separated from the entrance via so-called whole blood VB.

【0045】この分離室1において全血は粗く2相に分
離される。最初の分画は血液細胞、特に赤血球RBCか
らなる。2番目の分画は特に血小板に富む血漿PRPか
らなる。他の個々の分画に対する詳細及びそれらの分離
期間に依存する変更は表1及び表2との関連で図1及び
図2から了解される。
In this separation chamber 1, whole blood is roughly separated into two phases. The first fraction consists of blood cells, in particular red blood cell RBCs. The second fraction consists of plasma PRP, which is especially rich in platelets. Details for the other individual fractions and their dependent changes on the separation period are understood from FIGS. 1 and 2 in connection with Tables 1 and 2.

【0046】両方の分画間の界面を捕らえるための設備
3、所謂相探知器は分離室1に付属している。
A facility 3 for capturing the interface between both fractions, a so-called phase detector, is attached to the separation chamber 1.

【0047】血液遠心分離器は更に2番目の分離ステッ
プ、採取室4を有し、これに対して血漿ポンプ5を経て
血小板に富む血漿分画PRPが供給される。該採取室に
おいてPRP分画は血小板濃縮物TKを得るために更に
分離される。
The blood centrifuge further has a second separation step, the collection chamber 4, to which the platelet-rich plasma fraction PRP is fed via the plasma pump 5. In the collection chamber the PRP fraction is further separated to obtain platelet concentrate TK.

【0048】遠心分離器は更にプログラム調整器6を所
有し、通常のようにマイクロプロセッサーによって作ら
れている。該調整器はすべての必要なセンサーと血液遠
心器の作動器と接続しており全体の運行状態を調整して
いる。相探知器3とプログラム調整器6の間の接続とこ
の調整器から血漿ポンプ5までの接続は、界面の位置が
ずれ又はずれそうになると直ちに血漿ポンプの流速が変
更するようになっている。
The centrifuge also owns the program regulator 6 and is conventionally made by a microprocessor. The regulator is connected to all the necessary sensors and actuators of the blood centrifuge to regulate the overall operating conditions. The connection between the phase detector 3 and the program adjuster 6 and the connection from this adjuster to the plasma pump 5 is such that the flow rate of the plasma pump changes as soon as the interface position shifts or is about to shift.

【0049】分離室における双方の分画間の界面の調整
は、血漿及び血液ポンプの流速間の状況の有利な条件に
よって行われる。
The adjustment of the interface between both fractions in the separation chamber is carried out by the advantageous conditions of the situation between the plasma and blood pump flow rates.

【0050】基低状態の血液遠心分離器が下位分離限界
にあれば、血液及び血漿ポンプは先に与えられた最初の
比(例えば50/20)で進行する。界面を高位に進行
すべき場合には、該比率を血漿進行速度のために変更し
なければならない。プログラム調整器はこの際所要の調
整を引き受ける。このために血漿ポンプは通常高速度で
運転される。予め決められた分離限界の上限に到達する
と、ポンプは直ちに元の比率(例えば50/20)で進
行する。
If the basal blood centrifuge is at the lower separation limit, the blood and plasma pumps will proceed at the initial ratio given above (eg 50/20). If the interface is to be advanced higher, the ratio must be modified for plasma rate of progression. The program coordinator then takes over the required coordination. For this reason, plasma pumps are usually operated at high speeds. Upon reaching the upper limit of the predetermined separation limit, the pump will proceed at its original ratio (eg 50/20) immediately.

【0051】運行を低下する際には調整は反比例して実
施される。血漿ポンプは低次のポンプ速度に調整され、
従って下の分離限界に到達するまで少な目に汲み上げ
る。
Adjustments are made in inverse proportion when reducing travel. Plasma pumps are adjusted to lower pump speeds,
Therefore, pump up a little until the lower separation limit is reached.

【0052】本発明によればプログラム調整器は血漿ポ
ンプ5に対する調整区分を示すが、この調整区分は分離
室1において双方の分画間の界面が分離経過の間で少な
くとも二つの位置の間を交替して移動するように作られ
ている。この際、調整区分は、低位から高位の限界まで
を調整するための最初の時間部分、及び著しく高位の限
界を調整するための2番目の部分を有している。この
際、採取部分である最初の時間区分は転送区分である2
番目の時間区分より長い。
According to the invention, the program regulator presents an adjustment section for the plasma pump 5, which in the separation chamber 1 is the interface between both fractions between at least two positions during the separation process. It is designed to move in alternation. The adjustment section then has a first part for adjusting the low to the upper limit and a second part for adjusting the significantly higher limit. At this time, the first time segment that is the sampling part is the transfer segment 2
Longer than the second time segment.

【0053】又、血液遠心分離操作の調整もそれぞれ個
々の供血者の蓄積された血小板の量に合わせて可能であ
り、それによって供血者の血液における個々の相違、例
えば血小板の大きさ、血小板の濃度等が考慮される。
The adjustment of the blood centrifugation operation is also possible in accordance with the amount of accumulated platelets of each individual donor, whereby individual differences in the blood of the donor, such as platelet size and platelets, can be obtained. Concentration etc. are considered.

【図面の簡単な説明】[Brief description of drawings]

【図1】低位界面における血液遠心分離器中の相の分布
の図示である。
1 is an illustration of the distribution of phases in a blood centrifuge at the lower interface.

【図2】図1に相当するが高位界面における図示であ
る。
2 is a diagram corresponding to FIG. 1, but at a higher interface.

【図3】従来技術による一定の界面の位置において、横
軸上の分離期間に対して縦軸上に血小板濃度をプロット
した図面である。
FIG. 3 is a diagram in which the platelet concentration is plotted on the vertical axis against the separation period on the horizontal axis at a constant interface position according to the conventional technique.

【図4】図3に相当するが本発明による交替する界面を
有する図面である。
FIG. 4 is a drawing corresponding to FIG. 3 but with alternating interfaces according to the present invention.

【図5】血液細胞分離器(血液遠心分離器)のブロック
図である。
FIG. 5 is a block diagram of a blood cell separator (blood centrifuge).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ヘニンク・ブラース ドイツ連邦共和国、6650 ホンブルク、オ ストリンク 75 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Heninck Blass, Germany 6650 Homburg, Ostlink 75

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1の分離ステップにおいて血液が少な
くとも粗く二つの相に分離され、これらの相の中で第1
の分画は主として血液細胞から又第2の分画は主として
血小板に富む血漿からなり、又2番目の分離ステップに
おいて分画の一つが血液成分濃縮物を得るために更に分
離される血液を密度遠心分離によってそれの成分に分離
する操作において、第1の分離ステップにおいて分離経
過間に双方の分画間の界面が少なくとも二つの位置の間
を交替して移動することを特徴とする血液成分の密度遠
心による分離法。
1. In a first separation step blood is at least roughly separated into two phases, the first of these phases
Fraction of blood is mainly composed of blood cells, the second fraction is mainly composed of platelet-rich plasma, and one of the fractions in the second separation step densifies the blood which is further separated to obtain a blood component concentrate. In the operation of separating into its constituents by centrifugation, in the first separating step the interface between both fractions is moved between at least two positions in an alternating manner during the separation process. Separation method by density centrifugation.
【請求項2】 第1の時間区分に対して低位から高位の
界面が調整され、2番目の時間区分に対して著しく高位
の界面が調整されることを特徴とする請求項1に記載の
操作法。
2. Operation according to claim 1, characterized in that the lower to higher interfaces are adjusted for the first time segment and the significantly higher interfaces are adjusted for the second time segment. Law.
【請求項3】 最初の採取区分が2番目の転送区分より
も長いことを特徴とする請求項2に記載の操作法。
3. The operating method according to claim 2, wherein the first sampling section is longer than the second transfer section.
【請求項4】 時間区分及び/又は界面位置の検討が経
験的に実施されることを特徴とする請求項3に記載の操
作法。
4. The operating method according to claim 3, wherein the examination of the time segment and / or the interface position is performed empirically.
【請求項5】 時間区分及び/又は界面部分の決定が蓄
積された得られるべき血液成分の量に依存して自動的に
行われることを特徴とする請求項3に記載の操作法。
5. Method according to claim 3, characterized in that the determination of the time segment and / or the interface part is carried out automatically depending on the amount of the blood component to be obtained which has been accumulated.
【請求項6】 分離の継続のために少なくとも二つの採
取時間区分及び少なくとも転送区分が連続して予め備え
られていることを特徴とする請求項3、4又は5に記載
の操作法。
6. Operating method according to claim 3, 4 or 5, characterized in that at least two sampling time sections and at least transfer sections are pre-equipped in succession for the continuation of the separation.
【請求項7】 密度遠心分離によって血液をそれの成分
に分離し、請求項1から請求項6までの一つに記載の方
法を実施するための装置であって、該遠心分離装置は第
1の分離ステップの分離室(1)を有し、これに対して
血液ポンプ(2)を経て分離すべき血液が供給され、該
室において血液は少なくとも二つの相に粗く分離され、
それらの相の中で最初の分画は主として血液細胞からな
り又第2番目の分画は主として血小板に富む血漿からな
り、又該遠心分離装置は2番目の分離ステップの採取室
(4)を有し、これに対して血漿ポンプ(5)を経て血
小板に富む血漿分画が供給され、又この採取室で該分画
は血液成分の濃縮物を得るために更に分離され、更に血
漿ポンプ(5)のポンプ速度の調整を含む該装置の操業
のためのプログラム調整器を有する遠心分離装置におい
て、プログラム調整器(6)が血漿ポンプ(5)のため
の調整部分を有し、分離室(1)において分離過程の間
に界面が双方の分画の間で少なくとも二つの位置の間を
交替して移動するように作られていることを特徴とする
分離装置。
7. A device for separating blood into its constituents by density centrifugation and carrying out the method according to one of claims 1 to 6, wherein the centrifuge device is a first device. A separation chamber (1) for the separation step of which blood to be separated is supplied via a blood pump (2) in which the blood is roughly separated into at least two phases,
Of those phases, the first fraction consists mainly of blood cells and the second fraction mainly consists of platelet-rich plasma, and the centrifuge comprises a collection chamber (4) for the second separation step. To which a platelet-rich plasma fraction is supplied via a plasma pump (5), and in this collection chamber the fraction is further separated to obtain a concentrate of blood components, 5) In a centrifuge with a program regulator for the operation of the device, including regulation of the pump speed, the program regulator (6) has a regulating part for the plasma pump (5), Separation device according to 1), characterized in that during the separation process the interfaces are made to move in an alternating manner between at least two positions between both fractions.
【請求項8】 調整区分が低位から高位までの界面を調
整するための最初の時間区分及び特に高位の界面を調整
するための2番目の時間区分を有することを特徴とする
請求項7に記載の装置。
8. The adjusting section according to claim 7, characterized in that the adjusting section has a first time section for adjusting the low to high interface and a second time section for adjusting the particularly high interface. Equipment.
【請求項9】 最初の採取区分が2番目の転送部分より
も長いことを特徴とする請求項8に記載の装置。
9. The apparatus of claim 8, wherein the first sampling section is longer than the second transfer section.
JP4263134A 1991-09-06 1992-09-04 Method and apparatus for separating blood components Expired - Lifetime JP2618793B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4129516.1 1991-09-06
DE4129516A DE4129516C2 (en) 1991-09-06 1991-09-06 Method and device for separating blood into its components

Publications (2)

Publication Number Publication Date
JPH05203639A true JPH05203639A (en) 1993-08-10
JP2618793B2 JP2618793B2 (en) 1997-06-11

Family

ID=6439916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263134A Expired - Lifetime JP2618793B2 (en) 1991-09-06 1992-09-04 Method and apparatus for separating blood components

Country Status (5)

Country Link
US (1) US5281342A (en)
EP (1) EP0530688B1 (en)
JP (1) JP2618793B2 (en)
DE (2) DE4129516C2 (en)
ES (1) ES2079758T3 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690835A (en) 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5437598A (en) * 1994-01-21 1995-08-01 Cobe Laboratories, Inc. Automation of plasma sequestration
US5545339A (en) * 1994-02-25 1996-08-13 Pall Corporation Method for processing biological fluid and treating separated component
US5585007A (en) 1994-12-07 1996-12-17 Plasmaseal Corporation Plasma concentrate and tissue sealant methods and apparatuses for making concentrated plasma and/or tissue sealant
US5704889A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Spillover collection of sparse components such as mononuclear cells in a centrifuge apparatus
US5704888A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Intermittent collection of mononuclear cells in a centrifuge apparatus
ATE234622T1 (en) * 1995-12-04 2003-04-15 Puget Sound Blood Ct PREPARATIONS CONTAINING NON-IMMUNOGENIC PLATES AND RED BLOOD CELLS
US5964724A (en) * 1996-01-31 1999-10-12 Medtronic Electromedics, Inc. Apparatus and method for blood separation
DE19728089A1 (en) * 1997-07-02 1999-01-07 Fresenius Ag Cell suspension separation
US6524231B1 (en) * 1999-09-03 2003-02-25 Baxter International Inc. Blood separation chamber with constricted interior channel and recessed passage
US7686779B1 (en) 1999-10-01 2010-03-30 Caridian BCT, Inc Extracorporeal blood processing methods and apparatus
US7651474B2 (en) 1999-10-01 2010-01-26 Caridianbct, Inc. Method and apparatus for leukoreduction of red blood cells
ATE537907T1 (en) * 2000-11-02 2012-01-15 Caridianbct Inc DEVICES, SYSTEMS AND METHODS FOR FLUID SEPARATION
US6890291B2 (en) * 2001-06-25 2005-05-10 Mission Medical, Inc. Integrated automatic blood collection and processing unit
ATE522237T1 (en) * 2001-12-10 2011-09-15 Caridianbct Inc METHOD FOR REDUCING THE CONTENT OF LEUKOCYTES IN A RED BLOOD CELL COMPONENT
US7479123B2 (en) 2002-03-04 2009-01-20 Therakos, Inc. Method for collecting a desired blood component and performing a photopheresis treatment
US7211037B2 (en) * 2002-03-04 2007-05-01 Therakos, Inc. Apparatus for the continuous separation of biological fluids into components and method of using same
WO2003089926A2 (en) * 2002-04-19 2003-10-30 Mission Medical, Inc. Integrated automatic blood processing unit
US7374678B2 (en) * 2002-05-24 2008-05-20 Biomet Biologics, Inc. Apparatus and method for separating and concentrating fluids containing multiple components
US7992725B2 (en) 2002-05-03 2011-08-09 Biomet Biologics, Llc Buoy suspension fractionation system
US20030205538A1 (en) 2002-05-03 2003-11-06 Randel Dorian Methods and apparatus for isolating platelets from blood
US7832566B2 (en) 2002-05-24 2010-11-16 Biomet Biologics, Llc Method and apparatus for separating and concentrating a component from a multi-component material including macroparticles
DE10392686T5 (en) * 2002-05-24 2005-07-07 Biomet Mfg. Corp., Warsaw Apparatus and method for separating and concentrating liquids containing multiple components
US7845499B2 (en) 2002-05-24 2010-12-07 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US20060278588A1 (en) 2002-05-24 2006-12-14 Woodell-May Jennifer E Apparatus and method for separating and concentrating fluids containing multiple components
US7297272B2 (en) * 2002-10-24 2007-11-20 Fenwal, Inc. Separation apparatus and method
US20050049539A1 (en) * 2003-09-03 2005-03-03 O'hara Gerald P. Control system for driving fluids through an extracorporeal blood circuit
US7087177B2 (en) * 2004-04-16 2006-08-08 Baxter International Inc. Methods for determining flow rates of biological fluids
US7476209B2 (en) * 2004-12-21 2009-01-13 Therakos, Inc. Method and apparatus for collecting a blood component and performing a photopheresis treatment
US7866485B2 (en) 2005-02-07 2011-01-11 Hanuman, Llc Apparatus and method for preparing platelet rich plasma and concentrates thereof
EP1848474B1 (en) 2005-02-07 2013-06-12 Hanuman LLC Platelet rich plasma concentrate apparatus and method
WO2006086199A1 (en) * 2005-02-07 2006-08-17 Hanuman Llc Platelet rich plasma concentrate apparatus and method
WO2007041716A1 (en) * 2005-10-05 2007-04-12 Gambro Bct, Inc. Method and apparatus for leukoreduction of red blood cells
US8567609B2 (en) 2006-05-25 2013-10-29 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US8430813B2 (en) * 2006-05-26 2013-04-30 Depuy Spine, Inc. Illuminated surgical access system including a surgical access device and integrated light emitter
US8328024B2 (en) 2007-04-12 2012-12-11 Hanuman, Llc Buoy suspension fractionation system
EP2146794B1 (en) 2007-04-12 2016-10-19 Biomet Biologics, LLC Buoy suspension fractionation system
US8075468B2 (en) * 2008-02-27 2011-12-13 Fenwal, Inc. Systems and methods for mid-processing calculation of blood composition
EP2620139B1 (en) 2008-02-27 2016-07-20 Biomet Biologics, LLC Interleukin-1 receptor antagonist rich solutions
US8685258B2 (en) * 2008-02-27 2014-04-01 Fenwal, Inc. Systems and methods for conveying multiple blood components to a recipient
US8337711B2 (en) * 2008-02-29 2012-12-25 Biomet Biologics, Llc System and process for separating a material
US8012077B2 (en) * 2008-05-23 2011-09-06 Biomet Biologics, Llc Blood separating device
US8187475B2 (en) 2009-03-06 2012-05-29 Biomet Biologics, Llc Method and apparatus for producing autologous thrombin
US8313954B2 (en) * 2009-04-03 2012-11-20 Biomet Biologics, Llc All-in-one means of separating blood components
US9011800B2 (en) * 2009-07-16 2015-04-21 Biomet Biologics, Llc Method and apparatus for separating biological materials
US8591391B2 (en) 2010-04-12 2013-11-26 Biomet Biologics, Llc Method and apparatus for separating a material
WO2012064754A2 (en) 2010-11-08 2012-05-18 New York Blood Center, Inc. Component preparation system
US9642956B2 (en) 2012-08-27 2017-05-09 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US10143725B2 (en) 2013-03-15 2018-12-04 Biomet Biologics, Llc Treatment of pain using protein solutions
US10208095B2 (en) 2013-03-15 2019-02-19 Biomet Manufacturing, Llc Methods for making cytokine compositions from tissues using non-centrifugal methods
US20140271589A1 (en) 2013-03-15 2014-09-18 Biomet Biologics, Llc Treatment of collagen defects using protein solutions
US9950035B2 (en) 2013-03-15 2018-04-24 Biomet Biologics, Llc Methods and non-immunogenic compositions for treating inflammatory disorders
US9895418B2 (en) 2013-03-15 2018-02-20 Biomet Biologics, Llc Treatment of peripheral vascular disease using protein solutions
US9713810B2 (en) 2015-03-30 2017-07-25 Biomet Biologics, Llc Cell washing plunger using centrifugal force
US9757721B2 (en) 2015-05-11 2017-09-12 Biomet Biologics, Llc Cell washing plunger using centrifugal force

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468092A (en) * 1977-10-18 1979-05-31 Baxter Travenol Lab Method of and device for treating blood
JPS5749461A (en) * 1980-09-10 1982-03-23 Asahi Chemical Ind Blood treating vessel, device and method for separating platelet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151844A (en) * 1977-11-11 1979-05-01 Baxter Travenol Laboratories, Inc. Method and apparatus for separating whole blood into its components and for automatically collecting one component
US4344560A (en) * 1979-11-02 1982-08-17 Asahi Kasei Kogyo Kabushiki Kaisha Container, apparatus and method for separating platelets
US4464167A (en) * 1981-09-03 1984-08-07 Haemonetics Corporation Pheresis apparatus
DE3410286C2 (en) * 1984-03-21 1986-01-23 Fresenius AG, 6380 Bad Homburg Method for separating blood and device for carrying out the method
US5104526A (en) * 1987-01-30 1992-04-14 Baxter International Inc. Centrifugation system having an interface detection system
US4806252A (en) * 1987-01-30 1989-02-21 Baxter International Inc. Plasma collection set and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468092A (en) * 1977-10-18 1979-05-31 Baxter Travenol Lab Method of and device for treating blood
JPS5749461A (en) * 1980-09-10 1982-03-23 Asahi Chemical Ind Blood treating vessel, device and method for separating platelet

Also Published As

Publication number Publication date
DE4129516A1 (en) 1993-03-18
DE4129516C2 (en) 2000-03-09
EP0530688A1 (en) 1993-03-10
JP2618793B2 (en) 1997-06-11
ES2079758T3 (en) 1996-01-16
US5281342A (en) 1994-01-25
EP0530688B1 (en) 1995-11-29
DE59204481D1 (en) 1996-01-11

Similar Documents

Publication Publication Date Title
JPH05203639A (en) Method and apparatus for separating blood into component
EP0820349B1 (en) Centrifugal system for spillover collection of sparse components such as mononuclear cells
DE69836586T2 (en) SYSTEMS AND METHOD FOR OBTAINING MONONUCLEAR CELLS BY RECIRCULATING REDUCED ROD BLOOD BODIES
JP2558246B2 (en) Blood separation method and device
EP0817680B1 (en) Centrifuged system for intermittent collection of mononuclear cells
DE69634860T2 (en) Apparatus and method for particle separation
US5549834A (en) Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5804079A (en) Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US4464167A (en) Pheresis apparatus
US6814862B2 (en) Method and apparatus for processing intra or postoperative blood loss for autotransfusion
EP0527973B1 (en) Systems and methods for processing cellular rich suspensions
US6007725A (en) Systems and methods for on line collection of cellular blood components that assure donor comfort
US7824355B2 (en) Methods and devices for processing blood
EP1082176A1 (en) Centrifugal separation apparatus and method for separating fluid components
JP4528863B2 (en) Apheresis equipment
CA2143830C (en) Systems and methods for reducing leukocytes in cellular products
JPH08502440A (en) System and method for collecting blood components
Zingsem et al. PBSC-collection in patients using the FRESENIUS-AS 104 leucollect-protocol.
CA2215984C (en) Spillover collection of sparse components such as mononuclear cells
AU691110C (en) Centrifugal system for spillover collection of sparse components such as mononuclear cells
Orlina et al. Peripheral blood stem cell collection with reduced platelet loss to the patient/donor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16