JPH05203608A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH05203608A
JPH05203608A JP4011346A JP1134692A JPH05203608A JP H05203608 A JPH05203608 A JP H05203608A JP 4011346 A JP4011346 A JP 4011346A JP 1134692 A JP1134692 A JP 1134692A JP H05203608 A JPH05203608 A JP H05203608A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
conductive layer
pole
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4011346A
Other languages
Japanese (ja)
Other versions
JP2616331B2 (en
Inventor
Yoshihisa Kishimoto
芳久 岸本
Tetsuo Takano
哲雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4011346A priority Critical patent/JP2616331B2/en
Publication of JPH05203608A publication Critical patent/JPH05203608A/en
Application granted granted Critical
Publication of JP2616331B2 publication Critical patent/JP2616331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure sample of a trace quantity without diluting or agitating it by providing an electrode system comprising a measuring pole at which enzyme having a conductive layer including organic charge-transfer complex crystals is immobilized, and a counter pole provided close to it. CONSTITUTION:A biosensor comprises at least a measuring pole 3 and a counter pole 2 provided close to it, and the measuring pole 3 is an electrode including organic charge-transfer complex, or organic charge-transfer complex and electron mediator, having immobilized enzyme. A compensation pole 4 at which enzyme is not immobilized may be provided additionally for achieving high precision measuring without having effects of adsorption of protein, etc., in sample or other auxiliary reaction. In case an electrode system is provided in the same support body, the compensation pole 4 can be manufactured simultaneously and similarly to manufacture of the measuring pole 3 except for immobilizing enzyme. For example, the compensation pole 4 can be manufactured simultaneously in a process of forming organic CT complex on conductive substrate and a process of applying water-unsoluble high polymer for the measuring pole 3 directly, thereby the processes can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバイオセンサ、特に、血
液、尿等の体液成分中に含まれる微量の生体基質の濃度
を測定する酵素センサ、およびその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor, and more particularly to an enzyme sensor for measuring the concentration of a trace amount of a biological substrate contained in body fluid components such as blood and urine, and a method for using the enzyme sensor.

【0002】[0002]

【従来の技術】酵素の優れた基質特異性を利用した分析
法が、臨床分析化学、食品製造、環境化学等の分野で注
目されている。とりわけ、臨床分析化学の分野では、従
来からグルコース、尿素、尿酸等を選択的に検出しうる
酵素電極が知られている。これら酵素電極は、一般に
は、電極と酵素固定膜とから構成され、酵素反応による
物質変化を電極により電気信号の変化量として読み取る
ことにより、その酵素が特異的に作用する基質の濃度を
測定するものである。例えば、グルコースセンサでは、
下記式のように酵素反応により生成または消費される過
酸化水素、酸素等の電極活性な物質を電極でモニターす
ることにより、生体基質濃度を測定する。
2. Description of the Related Art Analytical methods utilizing the excellent substrate specificity of enzymes have attracted attention in the fields of clinical analytical chemistry, food manufacturing, environmental chemistry and the like. In particular, in the field of clinical analytical chemistry, enzyme electrodes capable of selectively detecting glucose, urea, uric acid and the like have been conventionally known. These enzyme electrodes are generally composed of an electrode and an enzyme-immobilized membrane, and the substance change due to the enzyme reaction is read by the electrode as a change amount of an electric signal to measure the concentration of a substrate on which the enzyme specifically acts. It is a thing. For example, in a glucose sensor,
The biological substrate concentration is measured by monitoring the electrode active substances such as hydrogen peroxide and oxygen produced or consumed by the enzymatic reaction with the electrode as shown in the following formula.

【0003】[0003]

【化1】 [Chemical 1]

【0004】ところが、このような原理に基づく酵素電
極は、次のような問題点がある。
However, the enzyme electrode based on such a principle has the following problems.

【0005】上記式で明らかなように、基質が反応す
るためには、化学量論的な酸素を必要とするが、実際の
測定において、例えばグルコースセンサで糖尿病患者の
血中グルコース濃度を測定する場合、体液中の溶存酸素
量では不足である。そのため、試料血液を希釈したり、
何らかの方法で酸素を補給するといった手段が講じられ
ている。
As is clear from the above equation, the reaction of the substrate requires stoichiometric oxygen, but in actual measurement, for example, a glucose sensor measures the blood glucose concentration in a diabetic patient. In this case, the amount of dissolved oxygen in body fluid is insufficient. Therefore, dilute the sample blood,
Measures such as supplementing oxygen in some way are taken.

【0006】過酸化水素を電気的にモニターする場
合、試料溶液中に過酸化水素と同様の電位で酸化される
物質、例えばアスコルビン酸のような還元性物質が存在
すると、測定電流にこれら妨害物質の酸化電流が上乗せ
され、測定誤差を生じる。そこで、これら誤差を取り除
くため、酵素を固定していない電極を補償極として補正
したり、酸素、過酸化水素分子と、測定基質は透過させ
るが、アスコルビン酸の如く電極活性な緩衝物質を透過
させないといった選択透過膜を装着する必要があった。
In the case of electrically monitoring hydrogen peroxide, when a substance that is oxidized at the same potential as hydrogen peroxide, such as a reducing substance such as ascorbic acid, is present in the sample solution, these interfering substances are present in the measurement current. Oxidation current is added, resulting in a measurement error. Therefore, in order to eliminate these errors, the electrode on which the enzyme is not fixed is corrected as a compensation electrode, and oxygen, hydrogen peroxide molecules and the measurement substrate are permeated, but an electrode active buffer substance such as ascorbic acid is not permeated. It was necessary to attach a permselective membrane such as.

【0007】このように、酵素反応に伴い生成あるいは
消費される物質の濃度を測定する原理に基づくセンサー
は、溶存酸素の影響および妨害物質の影響といった問題
を有している。また、酵素固定膜を酸素、過酸化水素電
極に装着するという形態を必要とするため、微小化にも
限界がある。
As described above, the sensor based on the principle of measuring the concentration of the substance produced or consumed by the enzymatic reaction has problems such as the influence of dissolved oxygen and the influence of interfering substances. Further, there is a limit to miniaturization because it requires a form in which an enzyme-immobilized membrane is attached to oxygen and hydrogen peroxide electrodes.

【0008】一方、これらの問題点を解決するため、導
電性高分子を利用した酵素電極、電子メディエーターを
利用した酵素電極が提案されている。前者は、ポリピロ
ール、ポリアニリン等の導電性高分子の電解重合時に、
酵素をモノマー溶液中に共存させ、重合時に重合膜中に
酵素を捕捉するか、あるいはあらかじめ重合した導電性
高分子膜上に公知方法により酵素固定膜を設けることに
より、導電性の酵素固定膜を得るものである。また、電
子メディエーターを利用した酵素電極は、カーボンペー
スト等の中にフェロセン類、ベンゾキノン、フェリシア
ン化イオン、N−メチルフェナジニウム等の電子メディ
エーターを封じ込め、カーボンペースト電極表面に酵素
を固定化し、適当な高分子膜で被覆したものである。し
かし、導電性高分子を利用して、酵素反応に伴う電子移
動を直接検知する酵素電極は、溶存酸素の影響を受けな
いという利点はあるが、応答性が低く、応答時間が長い
等の問題がある。さらに、電解重合時に重合膜中に酵素
を捕捉するという手法を取る場合は、固定化される酵素
量を制御することは難しく、また酵素電極として利用す
る際、酵素の脱離による経時的な基質応答性の低下は避
けることができない。また、従来の電子メディエーター
を利用した酵素電極でも電導度が低く応答性、応答時間
の点で不十分である他、電子メディエーターをカーボン
ペースト中に分散させた形態をとるため、電子メディエ
ーターの溶出、脱離に伴う経時的な応答性の低下という
問題を有する。
On the other hand, in order to solve these problems, an enzyme electrode using a conductive polymer and an enzyme electrode using an electron mediator have been proposed. In the former case, during electropolymerization of conductive polymers such as polypyrrole and polyaniline,
The enzyme is allowed to coexist in the monomer solution, and the enzyme is trapped in the polymerized film at the time of polymerization, or the enzyme-immobilized film is provided on the pre-polymerized conductive polymer film by a known method to form a conductive enzyme-immobilized film. I will get it. Further, an enzyme electrode using an electron mediator, ferrocene, benzoquinone, ferricyanide ion, N-methylphenazinium and other electron mediators are contained in the carbon paste, and the enzyme is immobilized on the surface of the carbon paste electrode. It is coated with a suitable polymer film. However, an enzyme electrode that directly detects electron transfer associated with an enzymatic reaction using a conductive polymer has the advantage that it is not affected by dissolved oxygen, but it has low responsiveness and long response time. There is. Furthermore, when the method of trapping the enzyme in the polymerized membrane during the electropolymerization is adopted, it is difficult to control the amount of the immobilized enzyme, and when it is used as an enzyme electrode, it is a substrate over time due to the elimination of the enzyme. A decrease in responsiveness is unavoidable. Further, the conductivity is low even in the enzyme electrode using the conventional electron mediator, and the response is insufficient, and in addition, the response time is insufficient, and since the electron mediator has a form dispersed in the carbon paste, the elution of the electron mediator, There is a problem that the responsiveness decreases with time due to desorption.

【0009】ところで、このような酵素電極を用いて実
際に生体試料中の特定成分を定量する場合、高精度に測
定することはもちろん、試料液の希釈、攪拌等の操作を
必要とせず、簡易にかつ迅速に測定できることが望まし
い。また、血液等の試料の場合、使用できる試料の量に
制約があることが多く、微量試料での測定が望まれる。
従来の酵素電極においては、簡易かつ迅速に、また微量
の試料でも正確な測定を長期にわたり行えるものはなか
った。
By the way, in the case of actually quantifying a specific component in a biological sample using such an enzyme electrode, it is not only necessary to measure with high accuracy, but also operation such as dilution and agitation of the sample solution is not required, which is simple. It is desirable to be able to measure quickly and quickly. Further, in the case of a sample such as blood, there are often restrictions on the amount of sample that can be used, and measurement with a small amount of sample is desired.
No conventional enzyme electrode has been able to perform simple and quick and accurate measurement for a long time even with a small amount of sample.

【0010】そこで、本発明者は、これら従来の酵素電
極の欠点を解決するものとして、先に、導電性基体表面
に、有機電荷移動錯体結晶を含有する導電層を設けた酵
素電極を提案した(特願平2−24484 号) 。この酵素電
極は、酵素反応に伴う電子移動を直接検知する方式をと
ることにより、溶存酸素の影響を受けず、また妨害物質
の影響も少ないという利点に加え、経時安定性に優れ、
長期にわたり高精度な応答を与えることができるという
利点を有する。また、本発明者はこの酵素電極において
さらに改善を重ね、酵素反応に伴う電子移動を効率的に
行うことができ、より応答性が向上した酵素電極も提案
した (特願平3−7908号、特願平3−86884 号) 。しか
し、試料液の希釈、攪拌等の操作を必要とせず、微量試
料での測定に適した酵素電極についてはさらに改善が望
まれる。
Therefore, as a solution to these drawbacks of the conventional enzyme electrodes, the present inventors have previously proposed an enzyme electrode having a conductive layer containing an organic charge transfer complex crystal on the surface of a conductive substrate. (Japanese Patent Application No. 2-24484). This enzyme electrode adopts a method of directly detecting the electron transfer accompanying the enzyme reaction, and thus has the advantage that it is not affected by dissolved oxygen and is less affected by interfering substances, and that it has excellent stability over time,
It has an advantage that a highly accurate response can be given over a long period of time. Further, the present inventor has made further improvements in this enzyme electrode, and has proposed an enzyme electrode capable of efficiently performing electron transfer accompanying an enzymatic reaction and having improved responsiveness (Japanese Patent Application No. 3-7908, Japanese Patent Application No. 3-86884). However, there is no need for operations such as dilution and stirring of the sample liquid, and further improvement is desired for enzyme electrodes suitable for measurement with a small amount of sample.

【0011】[0011]

【発明が解決しようとする課題】本発明は、有機電荷移
動錯体を用いた酵素電極を含む測定系において、微量の
試料でも希釈、攪拌せずそのまま測定することが可能な
バイオセンサを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a biosensor capable of measuring a small amount of sample as it is without diluting or stirring in a measuring system including an enzyme electrode using an organic charge transfer complex. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明者らは、有機電荷
移動錯体を電極材料として利用して作製した酵素固定化
電極を微小化し、その近傍に対極を配置することによ
り、試料をそのまま測定しうるので試料が微量でもよい
ことを見出し、本発明を完成させた。さらに本発明者ら
は、導電性基体上に有機電荷移動錯体からなる導電層を
形成し、この導電層に接して酵素および電子メディエー
ターを水不溶性高分子を用いてあるいは用いずに固定化
あるいは被覆した電極を測定極とすれば、さらに好まし
いことも見出した。
The inventors of the present invention directly measure a sample by miniaturizing an enzyme-immobilized electrode prepared by using an organic charge transfer complex as an electrode material and disposing a counter electrode in the vicinity thereof. As a result, they have found that a small amount of sample may be used, and have completed the present invention. Furthermore, the present inventors formed a conductive layer composed of an organic charge transfer complex on a conductive substrate, and contacted with this conductive layer to immobilize or coat the enzyme and the electron mediator with or without a water-insoluble polymer. It was also found that it is more preferable to use the above electrode as the measurement electrode.

【0013】本発明は、有機電荷移動錯体結晶を含む導
電層を有する酵素が固定化された測定極と、その近傍に
設けた対極からなる電極系を有するバイオセンサ、を要
旨とする。また、本発明はこのバイオセンサにおいて、
酵素が固定化されていない補償極を設けたバイオセンサ
にも関する。本発明バイオセンサの好適態様としては、
測定極として、導電性基体と、この基体表面に設けた有
機電荷移動錯体結晶からなる導電層を有し、水不溶性高
分子を用いてあるいは用いずに酵素および電子メディエ
ーターが固定化された電極を用いるのが好ましく、この
場合の、補償極としては、導電性基体と、この基体表面
に設けた有機電荷移動錯体結晶からなる導電層を有し、
水不溶性高分子を用いてあるいは用いずに電子メディエ
ーターが固定化された電極を用いるのが好ましい。本発
明酵素電極は酸化還元酵素を用いる場合に特に適してい
る。さらに、本発明は、上記のバイオセンサにパルス電
位を印加して酵素反応による応答電流を測定することに
より特定物質を分析する方法にも関する。
The gist of the present invention is a biosensor having an electrode system having a measuring electrode on which an enzyme having a conductive layer containing an organic charge transfer complex crystal is immobilized and a counter electrode provided in the vicinity of the measuring electrode. Further, the present invention provides the biosensor,
It also relates to a biosensor provided with a compensating electrode in which an enzyme is not immobilized. As a preferred embodiment of the biosensor of the present invention,
As a measuring electrode, an electrode having a conductive substrate and a conductive layer made of an organic charge transfer complex crystal provided on the surface of the substrate and having an enzyme and an electron mediator immobilized with or without a water-insoluble polymer was used. It is preferable to use, and in this case, the compensation electrode has a conductive substrate and a conductive layer made of an organic charge transfer complex crystal provided on the surface of the substrate,
It is preferable to use an electrode on which an electron mediator is immobilized, with or without a water-insoluble polymer. The enzyme electrode of the present invention is particularly suitable when an oxidoreductase is used. Furthermore, the present invention also relates to a method for analyzing a specific substance by applying a pulse potential to the above biosensor and measuring a response current due to an enzymatic reaction.

【0014】[0014]

【作用】本発明のバイオセンサは、少なくとも測定極と
その近傍に設けた対極からなり、測定極は有機電荷移動
錯体、あるいは有機電荷移動錯体と電子メディエーター
を含有し、酵素を固定化した電極である。さらに、本発
明のバイオセンサでは酵素が固定化されていない補償極
を設けて、試料中のタンパク質等の吸着、副反応の影響
を受けずにより高精度での測定を可能とすることもでき
る。
The biosensor of the present invention comprises at least a measurement electrode and a counter electrode provided in the vicinity thereof, and the measurement electrode is an electrode containing an organic charge transfer complex, or an organic charge transfer complex and an electron mediator, on which an enzyme is immobilized. is there. Further, in the biosensor of the present invention, it is possible to provide a compensating electrode in which an enzyme is not immobilized and to perform highly accurate measurement without being affected by adsorption of proteins and the like in samples and side reactions.

【0015】この酵素固定化電極は、導電性基体上に有
機電荷移動錯体結晶を含有する導電層を形成させ、酵
素、あるいは酵素と電子メディエーターの両者を固定化
したものである。有機電荷移動錯体結晶は導電性基体上
の絶縁性高分子フィルム内に成長させたものであっても
よいが、導電性基体上に直接形成させたものが好まし
い。
This enzyme-immobilized electrode is one in which a conductive layer containing an organic charge transfer complex crystal is formed on a conductive substrate to immobilize an enzyme or both an enzyme and an electron mediator. The organic charge transfer complex crystal may be grown in an insulating polymer film on a conductive substrate, but is preferably formed directly on the conductive substrate.

【0016】有機電荷移動錯体結晶を絶縁性高分子フィ
ルム内に成長させて導電層を形成するには、例えば、導
電性基体上に、電子供与体層を設け、その上にポリエチ
レンビニルブチラール、ポリエステル、ポリアミド、ポ
リエステルアミド等の絶縁性高分子の被膜を設け、これ
を有機電子受容体を含有する溶液と接触させる方法があ
る。この導電層に酵素、あるいは酵素と電子メディエー
ターを固定化して酵素電極を得る。
To grow an organic charge transfer complex crystal in an insulating polymer film to form a conductive layer, for example, an electron donor layer is provided on a conductive substrate, and polyethylene vinyl butyral or polyester is provided thereon. There is a method in which a coating film of an insulating polymer such as polyamide, polyesteramide or the like is provided and is brought into contact with a solution containing an organic electron acceptor. An enzyme or an enzyme and an electron mediator are immobilized on this conductive layer to obtain an enzyme electrode.

【0017】導電性基体の表面に直接形成させた有機電
荷移動錯体結晶からなる導電層は以下に示す方法等によ
り、厚さ方向に結晶を成長させて容易に得ることがで
き、厚さ方向に良好な導電性を有するものである。導電
性基体としては、銅、銀、白金、金等の金属やカーボン
電極の他、これらの導電性材料からなる導電層を蒸着等
の手段により表面に設けた基体、あるいはこれらの導電
性材料の粉末を含有するペーストから作成した基体等が
使用できる。
The conductive layer composed of the organic charge transfer complex crystal formed directly on the surface of the conductive substrate can be easily obtained by growing the crystal in the thickness direction by the following method or the like. It has good conductivity. Examples of the conductive substrate include metals such as copper, silver, platinum and gold and carbon electrodes, a substrate provided with a conductive layer made of these conductive materials on the surface by means such as vapor deposition, or the like. A substrate or the like prepared from a paste containing powder can be used.

【0018】ここで、有機電荷移動錯体 (以下、有機CT
錯体と称する) とは、有機電子受容体と電子供与体とか
ら、両者の間の電荷移動反応に伴い形成される化合物で
ある。
Here, an organic charge transfer complex (hereinafter referred to as organic CT
The term “complex” is a compound formed from an organic electron acceptor and an electron donor by a charge transfer reaction between them.

【0019】この有機CT錯体の形成に用いる有機電子受
容体としては、特に制限されないが、シアノメチレン官
能基を有する化合物が好ましく、中でもジシアノメチレ
ン官能基と、キノンあるいはナフトキノン骨格とを有す
る化合物が好適である。このうちでも特に、7,7',8,8'-
テトラシアノキノジメタン(TCNQ)はCT錯体形成能が強
く、得られる有機CT錯体の電気伝導度が高いため応答時
間、応答性で有利である。また工業的にも比較的入手が
容易であることから好適である。
The organic electron acceptor used for forming the organic CT complex is not particularly limited, but a compound having a cyanomethylene functional group is preferable, and a compound having a dicyanomethylene functional group and a quinone or naphthoquinone skeleton is preferable. Is. Among them, 7,7 ', 8,8'-
Tetracyanoquinodimethane (TCNQ) has a strong CT complex-forming ability, and the obtained organic CT complex has a high electric conductivity, which is advantageous in response time and responsiveness. Further, it is preferable because it is relatively easy to obtain industrially.

【0020】有機CT錯体の形成に用いる電子供与体とし
ては、使用する有機電子受容体と、導電性を有するCT錯
体を形成しうるものであれば、特に制限されるものでは
なく、有機、無機のいずれでもさしつかえない。具体的
には、無機材料としては銅、銀、コバルト、ニッケル、
鉄、マンガンなど、また有機材料としては、テトラチア
フルバレン、テトラセレノフルバレン等のテトラセン
類、及びその誘導体、あるいは 2,2'-ビスピリジニウ
ム、N-メチルフェナジニウム等、公知の電子供与体を使
用することができる。
The electron donor used for forming the organic CT complex is not particularly limited as long as it can form a CT complex having conductivity with the organic electron acceptor used, and it may be organic or inorganic. You can use either of these. Specifically, inorganic materials include copper, silver, cobalt, nickel,
Iron, manganese and the like, and as organic materials, tetracene and its derivatives such as tetrathiafulvalene and tetraselenofulvalene, or a known electron donor such as 2,2′-bispyridinium and N-methylphenazinium. Can be used.

【0021】有機CT錯体結晶を成長させるには、液相お
よび気相中での公知の方法を使用できる。液相中で有機
CT錯体結晶を成長させる方法には例えば以下の方法があ
る。まず、基体表面に電子供与体層を設けたものか、あ
るいは電子供与体としても機能する銅板等の基体の一部
ないしは全部を、有機電子受容体を含有する溶液と接触
させる。これにより、溶液中の有機電子受容体は、基体
の表面を構成する電子供与体との間でCT錯体化反応を起
こし、錯体が成長する。
To grow organic CT complex crystals, known methods in liquid phase and gas phase can be used. Organic in liquid phase
For example, the following method is available as a method for growing a CT complex crystal. First, part or all of the substrate such as the one provided with an electron donor layer on the surface of the substrate or the copper plate which also functions as an electron donor is brought into contact with a solution containing an organic electron acceptor. As a result, the organic electron acceptor in the solution causes a CT complexation reaction with the electron donor constituting the surface of the substrate, and the complex grows.

【0022】有機電子受容体含有溶液の調製に使用する
溶媒としては、極性のある非プロトン溶剤、例えばアセ
トニトリル、ジオキサン、N,N-ジメチルホルムアミド、
ジメチルスルホキシド、ヘキサメチルホスホルアミド、
メチルエチルケトン等が好適である。この溶液における
有機電子受容体の濃度は、溶剤100 重量部に対して通常
0.01重量部〜飽和濃度、好ましくは0.1 重量部〜飽和濃
度が適当である。
As the solvent used for preparing the organic electron acceptor-containing solution, a polar aprotic solvent such as acetonitrile, dioxane, N, N-dimethylformamide,
Dimethyl sulfoxide, hexamethylphosphoramide,
Methyl ethyl ketone and the like are preferable. The concentration of organic electron acceptor in this solution is usually 100 parts by weight of solvent.
0.01 parts by weight to saturation concentration, preferably 0.1 parts by weight to saturation concentration are suitable.

【0023】有機CT錯体の形成は、通常、10〜30℃の温
度で行うが、用いる有機電子受容体と基体表面の電子供
与体の組み合わせによっては、CT錯体化反応が急激に進
み、緻密で均一な目的層が得にくい場合がある。そのよ
うな場合は、必要に応じて溶液、基体、雰囲気温度を下
げたり、溶液の濃度を低くすればよい。また逆に、錯体
化反応が遅く、有機CT錯体結晶が必要な厚みに成長する
のに長時間を要する場合は、必要に応じて、加熱するこ
とができる。
The formation of the organic CT complex is usually carried out at a temperature of 10 to 30 ° C., but depending on the combination of the organic electron acceptor used and the electron donor on the surface of the substrate, the CT complexation reaction proceeds rapidly, resulting in a dense structure. It may be difficult to obtain a uniform target layer. In such a case, the temperature of the solution, the substrate, the atmosphere may be lowered or the concentration of the solution may be lowered, if necessary. On the contrary, when the complexing reaction is slow and it takes a long time to grow the organic CT complex crystal to the required thickness, heating can be performed as necessary.

【0024】有機電子受容体含有溶液の接触時間は、用
いる有機電子受容体と電子供与体との組み合わせや目的
とする導電層の厚みに大きく依存するが、一般に10秒か
ら1時間程度である。気相成長法としては一般に真空蒸
着法を用いることができる。まず、基体表面に電子供与
体層を設けたものか、あるいは電子供与体としても機能
する銅板等を、減圧下(1×10-3〜1×10-7torr) に設
置し、錯体結晶を成長させたい部分を適当な温度 (100
〜300 ℃) に加熱保持する。次に、電子受容体を徐々に
加熱し、気化させる。これにより、基体表面に到達した
電子受容体分子と、基体表面の電子供与体との錯体化反
応により錯体が成長する。この際、導電層の厚みは基体
温度、電子受容体の気化速度等により容易に制御するこ
とができる。
The contact time of the organic electron acceptor-containing solution largely depends on the combination of the organic electron acceptor and the electron donor used and the thickness of the target conductive layer, but it is generally about 10 seconds to 1 hour. Generally, a vacuum vapor deposition method can be used as the vapor phase growth method. First, a substrate provided with an electron donor layer, or a copper plate that also functions as an electron donor is placed under reduced pressure (1 × 10 −3 to 1 × 10 −7 torr) to form a complex crystal. The part you want to grow is at an appropriate temperature (100
Hold at ~ 300 ° C). Next, the electron acceptor is gradually heated and vaporized. As a result, the complex grows by the complexing reaction between the electron acceptor molecule reaching the surface of the substrate and the electron donor on the surface of the substrate. At this time, the thickness of the conductive layer can be easily controlled by the substrate temperature, the vaporization rate of the electron acceptor and the like.

【0025】このような液相法あるいは気相法により作
成した有機CT錯体は、一般に微細な針状結晶となり、基
板面に対して垂直方向に成長する。この有機CT錯体から
なる導電層の厚みは特に制限されるものではないが、通
常0.01〜50μmの範囲であり、好ましくは0.1 〜10μm
である。
The organic CT complex prepared by the liquid phase method or the vapor phase method generally becomes fine needle crystals and grows in the direction perpendicular to the substrate surface. The thickness of the conductive layer composed of the organic CT complex is not particularly limited, but is usually in the range of 0.01 to 50 μm, preferably 0.1 to 10 μm.
Is.

【0026】上述の如く、導電層はその厚み方向に成長
した微細な針状結晶からなり、そのため導電層の表面は
微細な凹凸を有する構造となる。従って、後述の酵素や
電子メディエーターの固定化の際には、酵素や電子メデ
ィエーターをこの微細な凹部に捕捉することができ、そ
れらの固定化が容易となる。また、微細な針状結晶であ
るため電極部の実際の表面積を広くとることができ、そ
の結果、酵素および電子メディエーターの固定化量を増
大させ、酵素電極の出力として得られる電流密度を大き
くすることが可能となる。
As described above, the conductive layer is composed of fine needle-like crystals grown in the thickness direction thereof, so that the surface of the conductive layer has a structure having fine irregularities. Therefore, when immobilizing an enzyme or an electron mediator, which will be described later, the enzyme or the electron mediator can be captured in the fine recesses, and the immobilization thereof becomes easy. In addition, since it is a fine needle-like crystal, the actual surface area of the electrode part can be made large, and as a result, the amount of enzyme and electron mediator immobilized is increased, and the current density obtained as the output of the enzyme electrode is increased. It becomes possible.

【0027】この導電層の厚みが上記範囲以下で薄すぎ
る場合、充分な表面積を得ることができず、その結果出
力電流値が小さくなる。また、逆に上記範囲を超えて厚
すぎる場合は、導電層自体の抵抗値が大きくなる。従っ
て、酵素電極として使用する場合、電圧印加の際、電極
表面での電圧降下を起こすことになる。また、この有機
CT錯体自体、力学的な強度は大きくないため、厚すぎる
と構造的な欠陥を生じやすくなる。
If the thickness of the conductive layer is too thin within the above range, a sufficient surface area cannot be obtained, and as a result, the output current value becomes small. On the other hand, when the thickness is more than the above range, the resistance value of the conductive layer itself becomes large. Therefore, when used as an enzyme electrode, a voltage drop occurs on the electrode surface when a voltage is applied. Also this organic
Since the CT complex itself does not have high mechanical strength, if it is too thick, structural defects are likely to occur.

【0028】上述のようにして導電性基体上に直接有機
CT錯体結晶を成長させて導電層を形成する。この導電層
は必要に応じ、洗浄、乾燥する。この導電性基体と導電
層からなる電極に、水不溶性高分子を用いて、酵素およ
び電子メディエーターを導電層に接するように固定化も
しくは被覆する。あるいは、使い捨て等、再利用性が要
求されない場合には、この水不溶性高分子を使用するこ
となく酵素および電子メディエーターを固定化してもよ
い。
Direct organic deposition on the conductive substrate as described above.
A CT complex crystal is grown to form a conductive layer. This conductive layer is washed and dried as needed. An enzyme composed of a water-insoluble polymer is immobilized or coated on the electrode composed of the conductive substrate and the conductive layer so that the enzyme and the electron mediator are in contact with the conductive layer. Alternatively, the enzyme and the electron mediator may be immobilized without using the water-insoluble polymer when the reusability is not required such as disposable.

【0029】酵素は、対象とする物質や目的とする化学
反応に応じ、酵素の基質特異性及び反応特異性を考慮し
て適宜選択することができる。使用しうる酵素は、特に
制限されないが、例えばグルコースオキシダーゼ、アル
コールデヒドロゲナーゼ、ペルオキシダーゼ、カタラー
ゼ、乳酸デヒドロゲナーゼ、ガラクトースオキシダー
ゼ、ペニシリナーゼ等が挙げられる。また、酸化還元酵
素と補酵素との組み合わせも可能である。
The enzyme can be appropriately selected according to the target substance and the target chemical reaction in consideration of the substrate specificity and reaction specificity of the enzyme. The enzyme that can be used is not particularly limited, and examples thereof include glucose oxidase, alcohol dehydrogenase, peroxidase, catalase, lactate dehydrogenase, galactose oxidase, penicillinase and the like. A combination of oxidoreductase and coenzyme is also possible.

【0030】使用する電子メディエーターは、酵素反応
に伴う電子移動を効率よく行うことができる、すなわ
ち、酵素から有機CT錯体への電子移動をスムーズに行わ
せるものであればよい。例えば、酸化酵素により基質を
酸化する反応の場合は、還元型となった酵素から容易に
電子を受取り、電子メディエーター自身は還元型とな
り、かつ導電層表面での電極反応により電子を電極へ供
与し、酸化型に戻る性質を有するものである。このよう
な電子メディエーターとしては、フェロセン、1,1'- ジ
メチルフェロセン、フェロセンカルボン酸、フェロセン
カルボキシアルデヒド等のフェロセン誘導体、ハイドロ
キノン、クロラニル、ブロマニル等のキノン類、フェリ
シアンイオン、オクタシアノタングステン酸イオン、オ
クタシアノモリブデン酸イオン等の金属錯体イオン等が
好適である。有機CT錯体からなる導電層に、水不溶性高
分子を用いて、酵素、電子メディエーターを固定化ある
いは被覆する方法としては次のような方法が可能であ
る。
The electron mediator to be used may be one that can efficiently carry out electron transfer accompanying the enzymatic reaction, that is, that can smoothly carry out electron transfer from the enzyme to the organic CT complex. For example, in the case of a reaction in which a substrate is oxidized by an oxidase, an electron is easily accepted from the reduced enzyme, the electron mediator itself is reduced, and the electron is donated to the electrode by an electrode reaction on the surface of the conductive layer. , Which has the property of returning to the oxidized form. Such electron mediators include ferrocene, 1,1′-dimethylferrocene, ferrocenecarboxylic acid, ferrocene derivatives such as ferrocenecarboxaldehyde, hydroquinone, chloranil, quinones such as bromanil, ferricyanide, octacyanotungstate ion, A metal complex ion such as an octacyanomolybdate ion is suitable. As a method of immobilizing or coating an enzyme or an electron mediator on a conductive layer made of an organic CT complex by using a water-insoluble polymer, the following method is possible.

【0031】(1) 前記導電層上に酵素および電子メディ
エーターを含む溶液を滴下、乾燥させ、ついで水不溶性
高分子溶液を塗布、乾燥させることにより、導電性基体
上に導電層、酵素および電子メディエーターからなる中
間層および水不溶性高分子被覆層からなる3層を設け
る。 (2) 前記導電層上に酵素および電子メディエーターを含
む水不溶性高分子溶液を塗布、乾燥させることにより、
導電性基体上に導電層、酵素および電子メディエーター
を含む水不溶性高分子被覆層からなる2層を設ける。 (3) 前記導電層上に酵素を含む溶液を滴下、乾燥させ、
ついで電子メディエーター、あるいは電子メディエータ
ーと酵素を含有する水不溶性高分子溶液を塗布、乾燥さ
せることにより、導電性基体上に導電層、酵素からなる
中間層、および電子メディエーターあるいは電子メディ
エーターと酵素を含む水不溶性高分子被覆層からなる3
層を設ける。 (4) 前記導電層上に電子メディエーターを含む溶液を滴
下、乾燥させ、ついで酵素あるいは酵素と電子メディエ
ーターとを含有する水不溶性高分子溶液を塗布、乾燥さ
せることにより、導電性基体上に導電層、電子メディエ
ーターからなる中間層、および酵素あるいは酵素と電子
メディエーターとを含む水不溶性高分子被覆層からなる
3層を設ける。
(1) A solution containing an enzyme and an electron mediator is dropped on the conductive layer, dried, and then a water-insoluble polymer solution is applied and dried to form a conductive layer, an enzyme and an electron mediator on the conductive substrate. 3 intermediate layers consisting of 1 and a water-insoluble polymer coating layer are provided. (2) By applying a water-insoluble polymer solution containing an enzyme and an electron mediator on the conductive layer, and drying,
Two layers of a conductive layer and a water-insoluble polymer coating layer containing an enzyme and an electron mediator are provided on a conductive substrate. (3) A solution containing an enzyme is dropped on the conductive layer and dried,
Then, an electron mediator, or a water-insoluble polymer solution containing the electron mediator and the enzyme is applied and dried to form a conductive layer on the conductive substrate, an intermediate layer composed of the enzyme, and a water containing the electron mediator or the electron mediator and the enzyme. Insoluble polymer coating layer 3
Provide layers. (4) A solution containing an electron mediator is dropped on the conductive layer, dried, and then a water-insoluble polymer solution containing an enzyme or an enzyme and an electron mediator is applied and dried to form a conductive layer on a conductive substrate. , An intermediate layer composed of an electron mediator and a water-insoluble polymer coating layer containing an enzyme or an enzyme and an electron mediator are provided.

【0032】このように酵素および電子メディエーター
の固定化あるいは被覆は、水不溶性高分子溶液中に予め
これらを溶解もしくは均一に分散させておいたものを導
電層に直接塗布、乾燥させてこの高分子中に包含させる
か、酵素や電子メディエーター含有溶液を導電層上に滴
下、乾燥させて得た層を水不溶性高分子被膜で被覆する
方法が簡便で好適であるが、これらに限定されることな
く、公知の共有結合法、イオン結合法、吸着法、包括
法、架橋法等を用いることも可能である。
As described above, for immobilizing or coating the enzyme and the electron mediator, a polymer prepared by dissolving or uniformly dispersing the enzyme and the electron mediator in a water-insoluble polymer solution is directly applied to the conductive layer and dried to form the polymer. The method of coating the layer obtained by including in the solution or dropping the solution containing the enzyme or the electron mediator on the conductive layer and drying it with a water-insoluble polymer coating is simple and suitable, but is not limited to these. It is also possible to use a known covalent bond method, ionic bond method, adsorption method, entrapment method, crosslinking method or the like.

【0033】水不溶性高分子としては、容易に均一に成
膜することができ、酵素、電子メディエーターを均一に
分散固定し、かつ酵素電極として使用する際、試料溶液
中で溶解、膨潤して酵素、電子メディエーターの溶出に
よる出力の低下を招くことのないものであれば限定され
ることなく使用できる。さらに、導電層中にピンホール
が生じていると酵素電極として使用する際、基体あるい
は電子供与体の試料溶液中への溶出の可能性があるが、
水不溶性高分子層はピンホール部を覆うことにより溶出
を防止する。
As the water-insoluble polymer, a uniform film can be easily formed, and an enzyme and an electron mediator are uniformly dispersed and fixed, and when it is used as an enzyme electrode, it dissolves and swells in a sample solution to form an enzyme. Any material can be used without limitation as long as it does not cause a decrease in output due to elution of the electron mediator. Furthermore, if pinholes are formed in the conductive layer, when used as an enzyme electrode, the substrate or electron donor may be eluted into the sample solution.
The water-insoluble polymer layer covers the pinhole portion to prevent elution.

【0034】このような水不溶性高分子には、ポリビニ
ルブチラール、ポリエステル、ポリアミド、ポリエステ
ルアミド等の熱可塑性ポリマーが例示でき、これらの1
種または2種以上を使用することができる。酵素、電子
メディエーターの固定方法に応じ、また基質の拡散性等
を考慮して適宜ポリマーを選択することができるが、例
えばポリマービニルブチラールは水不溶性でありながら
親水性、吸水性を有し、しかも非常にミクロなポアを有
するため好適である。
Examples of such water-insoluble polymers include thermoplastic polymers such as polyvinyl butyral, polyester, polyamide and polyester amide.
One kind or two or more kinds can be used. Depending on the method of immobilizing the enzyme and the electron mediator, and the polymer can be appropriately selected in consideration of the diffusibility of the substrate, for example, polymer vinyl butyral is water-insoluble but has hydrophilicity and water absorption, and It is suitable because it has very micropores.

【0035】酵素および/または電子メディエーターを
含有する水不溶性高分子で導電層を被覆するには、水不
溶性高分子を適当な有機溶剤で溶解させた溶液中に、酵
素および/または電子メディエーターを溶解もしくは均
一に分散させ、これを導電層に直接塗布、乾燥させるこ
とにより行うことができる。酵素、電子メディエーター
を分散させて使用する場合は、水不溶性高分子が析出し
ない範囲で、酵素、電子メディエーターの良溶媒である
水等を適宜添加すると酵素、電子メディエーターの分
散、溶解性を向上させて固定化を効率的に行える。得ら
れた酵素電極は、純水あるいは緩衝液等で洗浄して、完
全に固定化されていない酵素、電子メディエーターを取
り除いた後、使用に供することができる。また、この酵
素電極をさらに電子受容体溶液に浸漬する等の手段で有
機CT錯体を成長させておけば、膜全体の導電性を高め、
大きい応答電流が得られる点で有利である。
To coat the conductive layer with the water-insoluble polymer containing the enzyme and / or electron mediator, the enzyme and / or electron mediator is dissolved in a solution prepared by dissolving the water-insoluble polymer in a suitable organic solvent. Alternatively, it can be carried out by uniformly dispersing and directly coating and drying this on the conductive layer. When the enzyme and the electron mediator are used in a dispersed state, the dispersion of the enzyme and the electron mediator can be improved by appropriately adding water, which is a good solvent for the enzyme and the electron mediator, within a range in which the water-insoluble polymer does not precipitate. Can be fixed efficiently. The obtained enzyme electrode can be used after being washed with pure water or a buffer solution to remove the enzyme and the electron mediator which are not completely immobilized. In addition, if the organic CT complex is grown by means such as further immersing the enzyme electrode in an electron acceptor solution, the conductivity of the entire film is increased,
It is advantageous in that a large response current can be obtained.

【0036】酵素および/または電子メディエーターを
水不溶性高分子を用いて固定する場合、酵素から有機CT
錯体、酵素から電子メディエーター、あるいは電子メデ
ィエーターから有機CT錯体のへのスムーズな電子移動性
を確保して応答性をよくするには、固定膜は薄い方がよ
い。例えば10Å〜10μm好ましくは100 Å〜1μmであ
る。また必ずしも均一な膜である必要はなく、酵素と有
機CT錯体、酵素と電子メディエーター、あるいは電子メ
ディエーターと有機CT錯体が直接接触するようにすれば
よい。
When the enzyme and / or the electron mediator is immobilized using a water-insoluble polymer, the enzyme is removed from the organic CT.
In order to ensure smooth electron transfer from the complex or enzyme to the electron mediator, or from the electron mediator to the organic CT complex to improve the responsiveness, the fixing film should be thin. For example, it is 10Å-10 μm, preferably 100Å-1 μm. Further, it is not necessarily required that the film is uniform, and the enzyme and the organic CT complex, the enzyme and the electron mediator, or the electron mediator and the organic CT complex may be brought into direct contact with each other.

【0037】また、水不溶性高分子で、酵素および/ま
たは電子メディエーター含有導電層あるいは酵素および
/または電子メディエーターからなる中間層を被覆する
場合は、酵素と基質との接触、および残存しているピン
ホールの被覆を考慮して0.01〜10μm好ましくは0.1 〜
5μm程度の厚さとすることが望ましい。こうして得た
酵素電極は、導電性基体上に設けた導電層上に酵素と電
子メディエーターが接触するように固定させた構造であ
り、従来の過酸化水素電極、酸素電極等に比べ構造的に
簡単であり、小型化が可能である。また、有機CT錯体結
晶からなる導電層は、酵素との間で電子移動が容易であ
るのみならず、従来電子メディエーターとして使用され
ていたフェロセン類等と比較して、その結晶層の電気伝
導度は著しく大きい。これは、これら有機CT錯体が発達
した針状結晶を構するため、同じ含有量でも膜中の導電
パス数が多くなり、電子移動に有効に寄与するためと考
えられる。また、導電層表面に電子メディエーターが固
定化されているため、有機CT錯体と酵素が接触している
にもかかわらず構造的に電子移動が起こりにくい部分に
おいても、スムーズな電子移動性を確保し、応答性を向
上させることが可能となる。また、有機CT錯体結晶をポ
リマーを用いずに導電性基体上に直接成長させると、針
状結晶の微細な凹凸表面が得られるため、導電層に直接
接触する酵素や電子メディエーターの量を多くすること
ができ、酵素電極の応答性をより一層高めることができ
る。
When the water-insoluble polymer is used to coat the enzyme and / or electron mediator-containing conductive layer or the intermediate layer containing the enzyme and / or electron mediator, contact between the enzyme and the substrate and the remaining pin Taking into account the hole coverage, 0.01-10 μm, preferably 0.1-
It is desirable to set the thickness to about 5 μm. The enzyme electrode thus obtained has a structure in which an enzyme and an electron mediator are fixed on a conductive layer provided on a conductive substrate so that the enzyme and the electron mediator are in contact with each other, and is structurally simpler than conventional hydrogen peroxide electrodes, oxygen electrodes, etc. Therefore, the size can be reduced. In addition, the conductive layer made of an organic CT complex crystal not only facilitates electron transfer with an enzyme, but also has an electric conductivity higher than that of ferrocene, which has been conventionally used as an electron mediator. Is significantly larger. It is considered that this is because the needle-like crystals in which these organic CT complexes are developed constitute the needle-like crystals, so that even with the same content, the number of conductive paths in the film increases, which effectively contributes to electron transfer. In addition, since the electron mediator is immobilized on the surface of the conductive layer, smooth electron transfer is ensured even in the part where electron transfer is structurally difficult even though the organic CT complex is in contact with the enzyme. It is possible to improve the responsiveness. Further, when the organic CT complex crystal is directly grown on the conductive substrate without using a polymer, a fine uneven surface of needle-like crystal is obtained, so that the amount of enzyme or electron mediator that directly contacts the conductive layer is increased. Therefore, the responsiveness of the enzyme electrode can be further enhanced.

【0038】本発明のバイオセンサは測定極と対極、あ
るいはさらに補償極をまとめて1個のセンサとしたもの
であり微小化することができ、また、測定極と対極、あ
るいらさらに補償極を試料で覆えば測定できるので、微
量の試料でもセンサに直接滴下する等の方法で測定が容
易である。
The biosensor of the present invention comprises a measuring electrode and a counter electrode, or a compensating electrode combined into a single sensor, which can be miniaturized. Further, the measuring electrode and the counter electrode, or even a compensating electrode can be provided. Since it can be measured by covering it with a sample, it is easy to measure even a small amount of sample by directly dropping it on the sensor.

【0039】対極は、測定極あるいは補償極に一定電位
を印加した時、それらの電極での電流が支障なく流れる
ようにするため、電極自身の抵抗が小さく、なるべくそ
れ自身が測定試料中で分極せず、また対極での反応生成
物が測定極での反応を妨害したり、それ自身が反応する
ことのない特性を有するものを使用する。このような観
点から、白金、金、銀、銅等の金属や、カーボン電極の
他、これらの導電性材料からなる導電層を蒸着、スパッ
タ等の手段により基体表面に設けたり、あるいはこれら
の導電性材料の粉末を含有するペーストから作成するこ
とにより得たものが対極として使用できる。
The counter electrode has a low resistance of the electrode itself so that when a constant potential is applied to the measuring electrode or the compensating electrode, the current in these electrodes flows without hindrance. It is not used, and the reaction product at the counter electrode does not interfere with the reaction at the measurement electrode, and the reaction product itself does not react. From such a viewpoint, a metal such as platinum, gold, silver, and copper, a carbon electrode, or a conductive layer made of these conductive materials may be provided on the surface of the substrate by a method such as vapor deposition or sputtering, or the conductivity of these materials may be provided. What was obtained by making from the paste containing the powder of the conductive material can be used as a counter electrode.

【0040】対極と測定極は図1〜図5に示すような種
々の方法で設けることができる。例えば、図1に示すよ
うに同一支持体上に設ける同一平面型、図2および図3
に示すような多層円筒型、図4および図5に示すような
立体型等の変形例が考えられる。同一支持体上に設ける
場合は、例えばガラス板、樹脂板、樹脂フィルム等の非
導電性支持体上に、銅、銀、金、水銀等の金属層を蒸
着、スパッタ等により形成し、測定極における導電性基
体および対極とする。また、測定極において導電性基体
上に直接形成させる有機CT錯体を、同様にして対極上に
も成長させ、これを対極として使用してもよい。この場
合、測定極と対極とを同一支持体に配置した構造におい
ては、測定極の有機CT錯体を成長させる工程において同
時に対極を作製することができ、工程が簡便であるとい
う利点がある。
The counter electrode and the measuring electrode can be provided by various methods as shown in FIGS. For example, as shown in FIG. 1, the same plane type provided on the same support, FIG. 2 and FIG.
Modifications such as a multi-layered cylindrical type as shown in FIG. 4 and a three-dimensional type as shown in FIGS. 4 and 5 are possible. When they are provided on the same support, a metal layer of copper, silver, gold, mercury, etc. is formed by vapor deposition, sputtering, etc. on a non-conductive support such as a glass plate, resin plate, resin film, etc. In the conductive substrate and the counter electrode. Further, the organic CT complex formed directly on the conductive substrate at the measurement electrode may be similarly grown on the counter electrode and used as the counter electrode. In this case, in the structure in which the measurement electrode and the counter electrode are arranged on the same support, the counter electrode can be simultaneously prepared in the step of growing the organic CT complex of the measurement electrode, which is an advantage that the process is simple.

【0041】補償極は、電極自身の抵抗が測定極の抵抗
と同程度であり、試料液中のタンパク質、電解質、生体
成分等と特異的に反応せず、測定極における酵素反応以
外の電気化学的副反応や吸着による影響を同程度に受け
るものであれば、特に制限されるものではないが、その
形状は電流値の補償を行うという目的から、同一形状か
少なくとも同一面積であることが好ましい。補償極を設
けた場合の一例を図6に示す。電極系を同一支持体に設
ける場合、酵素を固定化する以外は測定極の作製と同時
にかつ同様に補償極を作製することができる。例えば、
測定極において導電性基体上に直接有機CT錯体を形成さ
せる工程、および水不溶性高分子を塗布する工程におい
て同時に補償極を作製することができ、工程が簡便にな
る。
The resistance of the compensating electrode itself is about the same as the resistance of the measuring electrode, does not react specifically with proteins, electrolytes, biological components, etc. in the sample liquid, and is used for electrochemical reactions other than enzyme reaction in the measuring electrode. The shape is preferably the same shape or at least the same area for the purpose of compensating for the current value, though it is not particularly limited as long as it is affected by the secondary side reaction and adsorption to the same extent. .. An example of the case where the compensation pole is provided is shown in FIG. When the electrode system is provided on the same support, the compensation electrode can be prepared at the same time as the preparation of the measurement electrode except that the enzyme is immobilized. For example,
In the step of forming the organic CT complex directly on the conductive substrate in the measuring electrode and the step of applying the water-insoluble polymer, the compensating electrode can be simultaneously prepared, which simplifies the process.

【0042】なお、本発明のバイオサンセを用いた測定
では、参照電極を使用せずに行うことが可能である。こ
のような場合、対極の面積は測定極の面積の2倍以上、
好ましくは10倍以上であることが望ましい。これは、測
定時に印加する電位差が主に測定極にかかるようにする
ことにより、高精度に定量するためである。
The measurement using the biosensor of the present invention can be performed without using the reference electrode. In such a case, the area of the counter electrode is more than twice the area of the measurement electrode,
It is preferably 10 times or more. This is because the potential difference applied at the time of measurement is mainly applied to the measurement electrode, so that the measurement can be performed with high accuracy.

【0043】本発明のバイオセンサに電位を印加して酵
素反応による応答電流を測定する際は、パルス電位を印
加するのが好ましい。定常状態電流の印加では、電極の
表面状態が目的以外の電気化学反応等により変化するの
で、測定誤差を生じやすくなる。パルス電位を印加すれ
ば、このような電極の劣化を極力低減でき、安定化時間
が短いことからも好適である。定常状態法とシングルパ
ルス法との比較を図8に示す。また、補償極を設けたバ
イオセンサを用いた測定では、測定極と対極、および補
償極と対極との間に連続して、あるいは同時に所定の電
位を印加し、それにより両電極間を流れる電流値を測定
し、両者の間の電流値の差を酵素反応による応答電流と
して定量することができる。
When a potential is applied to the biosensor of the present invention to measure a response current due to an enzymatic reaction, it is preferable to apply a pulse potential. When the steady-state current is applied, the surface state of the electrode changes due to an electrochemical reaction other than the purpose, so that a measurement error is likely to occur. It is preferable to apply a pulse potential because such deterioration of the electrode can be minimized and the stabilization time is short. A comparison between the steady state method and the single pulse method is shown in FIG. Further, in the measurement using a biosensor provided with a compensation electrode, a predetermined potential is continuously or simultaneously applied between the measurement electrode and the counter electrode, and between the compensation electrode and the counter electrode, whereby the current flowing between both electrodes is increased. The value can be measured, and the difference in current value between the two can be quantified as the response current due to the enzymatic reaction.

【0044】本発明のバイオセンサで測定しうる物質と
しては、グルコース等の糖分、乳酸、アルコール等の血
液や尿中の微量生体物質や、食品加工プロセスにおける
糖分、アルコール分等がある。従来のバイオセンサで
は、測定時、希釈、攪拌する必要があったが、本発明の
バイオセンサを用いれば、試料を希釈、攪拌することな
くそのまま測定でき、上記のような物質を選択的に高精
度で、しかも長期にわたって繰り返し分析することが可
能である。
Substances that can be measured by the biosensor of the present invention include sugars such as glucose, trace biological substances in blood and urine such as lactic acid and alcohol, sugars and alcohols in food processing processes. With conventional biosensors, it was necessary to dilute and stir at the time of measurement, but using the biosensor of the present invention, it is possible to measure the sample as it is without diluting and stirring, and it is possible to selectively enhance the above substances. It is possible to perform repeated analysis with high accuracy and over a long period of time.

【0045】[0045]

【実施例】【Example】

【0046】[0046]

【実施例1】ガラス板に銅を真空蒸着して、測定極部
(1mm×1mm)およびそれを取り囲む対極部(10mm2)を
得た。これらの電極部以外をエポキシ樹脂でモールドし
た。
Example 1 Copper was vacuum-deposited on a glass plate, and a measurement electrode portion was formed.
(1 mm × 1 mm) and a counter electrode portion (10 mm 2 ) surrounding it were obtained. Parts other than these electrode parts were molded with an epoxy resin.

【0047】7,7',8,8'-テトラシアノキノジメタン (試
薬、キシダ化学製、以下TCNQと略す) 1.0gをアセトニト
リル (試薬、スペクトル用)30ml 中に加えてTCNQの飽和
溶液を調製した。このTCNQ飽和溶液中に、上記電極系を
浸漬し、1分間放置した。浸漬から直ちに電極部の表面
上に濃紫色の微細な針状結晶が成長をはじめ、1分後に
は、測定極部および対極部に約2μmの有機CT錯体から
なる導電層が得られた。
1.0 g of 7,7 ′, 8,8′-tetracyanoquinodimethane (reagent, manufactured by Kishida Chemical Co., Ltd., abbreviated as TCNQ hereinafter) was added to 30 ml of acetonitrile (for reagents and spectra) to give a saturated solution of TCNQ. Prepared. The above electrode system was immersed in this TCNQ saturated solution and left for 1 minute. Immediately after the immersion, fine purple fine needle-shaped crystals began to grow on the surface of the electrode part, and after 1 minute, a conductive layer of an organic CT complex of about 2 μm was obtained at the measurement electrode part and the counter electrode part.

【0048】ポリビニルブチラール樹脂〔商品名: エス
レックB、BX−L 、積水化学工業(株)製〕を2.0 重量
%および1,1'- ジメチルフェロセン (試薬、東京化成
製) を2.0重量%含むアセトン溶液を調製し、この溶液
1mlにグルコースオキシダーゼ (Aspergillus niger
由来、Sigma 社製、Type VII) 4.0 mgを添加し、超音
波分散器により均一に分散させた溶液5μlを、上記測
定極部に滴下し、乾燥させた後、純水で洗浄し、測定極
上に酵素を固定化した。
2.0% by weight of polyvinyl butyral resin [trade name: S-REC B, BX-L, manufactured by Sekisui Chemical Co., Ltd.] and 2.0% by weight of 1,1′-dimethylferrocene (reagent, manufactured by Tokyo Kasei). Prepare an acetone solution containing 1 ml of glucose oxidase (Aspergillus niger
Origin, Sigma, Type VII) 4.0 mg was added, and 5 μl of a solution that was uniformly dispersed by an ultrasonic disperser was added dropwise to the above-mentioned measurement electrode portion, dried, and then washed with pure water to obtain the measurement electrode. The enzyme was immobilized on.

【0049】上記電極系上に、表1に示す各グルコース
の濃度の100mM リン酸緩衝液(pH 7.0)を20μl 滴下し、
測定極および対極の全面を試料液で覆った。対極に対し
て、0.35Vのパルス電位を測定極に印加して、電位印加
5秒後の電流値を測定することにより、表1に示す各グ
ルコース濃度に対する応答電流を測定した。その結果を
表1に示す。このように、測定濃度範囲で良い直線関係
が得られた。次に、上記で使用した各グルコース濃度の
緩衝液を窒素バブルを30分行った後、同様に測定した。
その結果を第1表に示す。この結果から、本酵素電極の
応答電流は、溶存酸素濃度の影響をほとんど受けていな
いことがわかる。
On the above electrode system, 20 μl of 100 mM phosphate buffer solution (pH 7.0) having each glucose concentration shown in Table 1 was dropped,
The entire surface of the measurement electrode and the counter electrode was covered with the sample solution. The response current for each glucose concentration shown in Table 1 was measured by applying a pulse potential of 0.35 V to the counter electrode against the counter electrode and measuring the current value 5 seconds after the potential was applied. The results are shown in Table 1. Thus, a good linear relationship was obtained in the measured concentration range. Next, the buffer solution of each glucose concentration used above was subjected to a nitrogen bubble for 30 minutes, and then similarly measured.
The results are shown in Table 1. From this result, it can be seen that the response current of the present enzyme electrode is hardly affected by the dissolved oxygen concentration.

【0050】さらに、上記で使用した緩衝液の代わりに
5mMアスコルビン酸を含む100mM リン酸緩衝液(pH 7.0)
を用い、同様に測定を行った。表1に示す結果から明ら
かなように、応答電流値変化はアスコルビン酸の影響を
ほとんど受けない。また、このセンサーをリン酸緩衝液
中30日放置後においても、初期の約80%の応答性を維持
しており、保存性に優れたものであった。
Further, 100 mM phosphate buffer (pH 7.0) containing 5 mM ascorbic acid instead of the buffer used above.
Was measured in the same manner. As is clear from the results shown in Table 1, the change in response current value is hardly affected by ascorbic acid. Further, even after the sensor was left in a phosphate buffer for 30 days, the responsiveness of about 80% of the initial value was maintained, and the storage stability was excellent.

【0051】[0051]

【実施例2】実施例1で用いた銅蒸着基板の代わりに同
形状の銀蒸着板を用い、実施例1と同様にTCNQ飽和溶液
に浸漬することにより厚み約1μmの有機CT錯体からな
る導電層を得た。フェロセンカルボン酸(試薬、Aldric
h 社製) の5mM水溶液1mlに、グルコースオキシダ
ーゼ5mgを溶解した水溶液20μlを上記銀電極の測定
極部のみに滴下し乾燥した。その後、水不溶性高分子と
して共重合ポリエステル樹脂PES-110L [東亜合成化学工
業 (株) 製、商品名] の塩化メチレン1重量%溶液を塗
布し、乾燥した後、純水で洗浄することにより酵素固定
化電極を得た。この電極を用い、実施例1と同様にして
測定した結果を表1に示す。
[Example 2] Instead of the copper vapor-deposited substrate used in Example 1, a silver vapor-deposited plate of the same shape was used and immersed in a TCNQ saturated solution in the same manner as in Example 1 to form a conductive layer composed of an organic CT complex having a thickness of about 1 µm. Layers were obtained. Ferrocenecarboxylic acid (reagent, Aldric
20 μl of an aqueous solution in which 5 mg of glucose oxidase was dissolved in 1 ml of a 5 mM aqueous solution (manufactured by Company H) was dropped only on the measurement electrode part of the silver electrode and dried. After that, a 1% by weight solution of copolymerized polyester resin PES-110L [trade name, manufactured by Toagosei Chemical Industry Co., Ltd.] in methylene chloride as a water-insoluble polymer was applied, dried, and washed with pure water to produce an enzyme. An immobilized electrode was obtained. Table 1 shows the results of measurement using this electrode in the same manner as in Example 1.

【0052】[0052]

【実施例3】実施例1で使用した、測定極部および対極
部を有する銅蒸着ガラス基板を真空蒸着装置内に設置し
た。約1×10-5mmHgの減圧下で銅板を約250 ℃に加熱し
たまま、TCNQを徐々に加熱し、30分で厚み約5μmの有
機CT錯体からなる導電層を得た。この有機CT錯体導電層
を有するガラス基板を、測定極部および対極部を除いて
エポキシ樹脂でモールドした。グルコースオキシダーゼ
10mg/ ml水溶液20μl を上記電極の測定極部に滴下、乾
燥した。その後、1,1'- ジメチルフェロセン2.0 重量
%、ポリビニルブチラール樹脂1.0 重量%のアセトン溶
液20μlを塗布、乾燥した後、純水で洗浄することによ
り、測定極部に酵素を固定化した。さらにTCNQアセトニ
トリル飽和溶液を20μl塗布し、自然乾燥させた。この
電極を用い、実施例1と同様にして測定した結果を表1
に示す。
Example 3 The copper-deposited glass substrate having the measurement electrode portion and the counter electrode portion used in Example 1 was placed in a vacuum vapor deposition apparatus. While the copper plate was heated to about 250 ° C. under a reduced pressure of about 1 × 10 -5 mmHg, TCNQ was gradually heated to obtain a conductive layer composed of an organic CT complex having a thickness of about 5 μm in 30 minutes. The glass substrate having the organic CT complex conductive layer was molded with an epoxy resin except for the measurement electrode part and the counter electrode part. Glucose oxidase
20 μl of a 10 mg / ml aqueous solution was dropped on the measurement electrode part of the above electrode and dried. Then, 20 μl of an acetone solution containing 2.0% by weight of 1,1′-dimethylferrocene and 1.0% by weight of polyvinyl butyral resin was applied, dried, and washed with pure water to immobilize the enzyme on the measurement electrode portion. Further, 20 μl of a saturated solution of TCNQ acetonitrile was applied and naturally dried. Table 1 shows the results of measurement using this electrode in the same manner as in Example 1.
Shown in.

【0053】[0053]

【実施例4】実施例1で得られた有機CT錯体からなる電
極系を有するガラス基板を用い、オクタシアノモリブデ
ン酸カリウム水溶液を塗布、乾燥した。ポリビニルブチ
ラール樹脂2.0 重量%のアセトン溶液を調製し、この溶
液1mlにグルコースオキシダーゼ4.0 mgを添加し、超
音波分散器により均一に分散させた溶液5μlを、上記
基板の測定極部に滴下し乾燥した後、純水で洗浄し、測
定極上に酵素を固定化した。この電極を用い、実施例1
と同様にして測定した結果を表1に示す。
Example 4 Using the glass substrate having the electrode system composed of the organic CT complex obtained in Example 1, an aqueous solution of potassium octacyanomolybdate was applied and dried. An acetone solution containing 2.0% by weight of polyvinyl butyral resin was prepared, 4.0 mg of glucose oxidase was added to 1 ml of this solution, and 5 μl of the solution uniformly dispersed by an ultrasonic disperser was dropped on the measurement electrode portion of the substrate and dried. Then, it was washed with pure water to immobilize the enzyme on the measurement electrode. Using this electrode, Example 1
The results measured in the same manner as in Table 1 are shown in Table 1.

【0054】[0054]

【参考例】実施例2で得られた電極系を用い、グルコー
ス濃度2.0 mMおよび5.0 mMの0.1M KCl 水溶液を用いて
同様に検量線を作製した後、未知試料としてヒト血清20
μlを電極系上に滴下し、応答電流を測定した。前もっ
て作製した検量線の結果から血清中のグルコース濃度を
求めた結果、4.8 mMであった。また、公知の酵素比色法
でグルコース濃度を測定した結果、4.8 mMであり良い一
致を示した。
[Reference Example] Using the electrode system obtained in Example 2, a calibration curve was similarly prepared using 0.1 M KCl aqueous solution having glucose concentrations of 2.0 mM and 5.0 mM, and then human serum was used as an unknown sample.
μl was dropped on the electrode system and the response current was measured. The glucose concentration in the serum was determined from the result of the calibration curve prepared in advance, and it was 4.8 mM. As a result of measuring the glucose concentration by a known enzyme colorimetric method, it was 4.8 mM, showing good agreement.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【実施例5】ガラス板に銅を真空蒸着して、図6に示す
ように測定極部 (1mm×1mm)、補償極部(1mm×1m
m)およびそれを取り囲む対極部(10mm2)を得た。これ
らの電極部以外をエポキシ樹脂でモールドした。
[Embodiment 5] Copper is vacuum-deposited on a glass plate, and as shown in FIG.
m) and the surrounding counter electrode part (10 mm 2 ) were obtained. Parts other than these electrode parts were molded with an epoxy resin.

【0057】7,7',8,8'-テトラシアノキノジメタン (試
薬、キシダ化学製、以下TCNQと略す) 1.0gをアセトニト
リル (試薬、スペクトル用)30ml 中に加えてTCNQの飽和
溶液を調製した。このTCNQ飽和溶液中に、上記電極系を
浸漬し、1分間放置した。浸漬から直ちに電極部の表面
上に濃紫色の微細な針状結晶が成長をはじめ、1分後に
は、測定極部、補償極部および対極部に約2μmの有機
CT錯体からなる導電層が得られた。
1.0 g of 7,7 ', 8,8'-tetracyanoquinodimethane (reagent, manufactured by Kishida Chemical Co., Ltd., abbreviated as TCNQ hereinafter) was added to 30 ml of acetonitrile (reagent, for spectra) to give a saturated solution of TCNQ. Prepared. The above electrode system was immersed in this TCNQ saturated solution and left for 1 minute. Immediately after immersion, fine purple needle-shaped crystals began to grow on the surface of the electrode part, and after 1 minute, about 2 μm of organic material was applied to the measurement pole, compensation pole and counter pole.
A conductive layer composed of CT complex was obtained.

【0058】ポリビニルブチラール樹脂〔商品名: エス
レックB、BX−L 、積水化学工業(株)製〕を2.0 重量
%および1,1'- ジメチルフェロセン (試薬、東京化成
製) を2.0重量%含むアセトン溶液を調製し、この溶液
1mlにグルコースオキシダーゼ (Aspergillus niger
由来、Sigma 社製、Type VII) 4.0 mgを添加し、超音
波分散器により均一に分散させた溶液5μlを、上記測
定極部に滴下し、乾燥させた後、純水で洗浄し、測定極
上に酵素を固定化した。次に、上記溶液において酵素を
含有しない溶液を同様にして調製し、同様にして上記補
償極部に滴下し乾燥させた。
2.0% by weight of polyvinyl butyral resin (trade name: S-REC B, BX-L, manufactured by Sekisui Chemical Co., Ltd.) and 2.0% by weight of 1,1'-dimethylferrocene (reagent, manufactured by Tokyo Kasei). Prepare an acetone solution containing 1 ml of glucose oxidase (Aspergillus niger
Origin, Sigma, Type VII) 4.0 mg was added, and 5 μl of a solution that was uniformly dispersed by an ultrasonic disperser was added dropwise to the above-mentioned measurement electrode portion, dried, and then washed with pure water to obtain the measurement electrode. The enzyme was immobilized on. Next, a solution containing no enzyme in the above solution was prepared in the same manner, and the solution was dropped on the compensating electrode portion in the same manner and dried.

【0059】上記電極系上に、表2に示す各グルコース
の濃度の100mM リン酸緩衝液(pH 7.0)を20μl 滴下し、
測定極、補償極および対極の全面を試料液で覆った。対
極に対して、0.35Vのパルス電位を測定極に印加して、
電位印加5秒後の電流値を測定した。続いて、対極に対
して同電位のパルス電位を補償極に印加して、同様に電
位印加5秒後の電流値を測定し、両者の測定電流値の差
を応答電流値とした。その結果を表2に示す。このよう
に、測定濃度範囲で良い直線関係が得られた。
On the above electrode system, 20 μl of 100 mM phosphate buffer solution (pH 7.0) having each glucose concentration shown in Table 2 was dropped,
The entire surface of the measurement electrode, the compensation electrode and the counter electrode was covered with the sample solution. Apply 0.35V pulse potential to the measurement electrode against the counter electrode,
The current value 5 seconds after the application of the potential was measured. Subsequently, a pulse potential having the same potential as that of the counter electrode was applied to the compensation electrode, and a current value 5 seconds after the potential was applied was measured in the same manner, and the difference between the measured current values of the two was taken as a response current value. The results are shown in Table 2. Thus, a good linear relationship was obtained in the measured concentration range.

【0060】次に、上記で使用した各グルコース濃度の
緩衝液を窒素バブルを30分行った後、同様に測定した。
その結果を第2表に示す。この結果から、本酵素電極の
応答電流は、溶存酸素濃度の影響をほとんど受けていな
いことがわかる。
Next, the buffer solution of each glucose concentration used above was subjected to a nitrogen bubble for 30 minutes and then measured in the same manner.
The results are shown in Table 2. From this result, it can be seen that the response current of the present enzyme electrode is hardly affected by the dissolved oxygen concentration.

【0061】さらに、上記で使用した緩衝液の代わりに
5mMアスコルビン酸を含む100mM リン酸緩衝液(pH 7.0)
を用い、同様に測定を行った。表2に示す結果から明ら
かなように、応答電流値変化はアスコルビン酸の影響を
ほとんど受けない。また、このセンサーを室温でデシケ
ーター中30日放置後においても、初期の約80%の応答性
を維持しており、保存性に優れたものであった。
Further, 100 mM phosphate buffer (pH 7.0) containing 5 mM ascorbic acid instead of the buffer used above.
Was measured in the same manner. As is clear from the results shown in Table 2, the response current value change is hardly affected by ascorbic acid. Further, even after the sensor was left at room temperature in a desiccator for 30 days, the responsiveness of about 80% of the initial value was maintained, and the storage stability was excellent.

【0062】[0062]

【実施例6】実施例5で用いた銅蒸着基板の代わりに同
形状の銀蒸着板を用い、実施例5と同様にTCNQ飽和溶液
に浸漬することにより厚み約1μmの有機CT錯体からな
る導電層を得た。フェロセンカルボン酸(試薬、Aldric
h 社製) の5mM水溶液1mlに、グルコースオキシダ
ーゼ5mgを溶解した水溶液20μlを上記銀電極の測定
極部のみに滴下し乾燥した。次に、上記溶液において酵
素を含有しない溶液を同様に調製し、上記補償極部のみ
に滴下し、乾燥した。
[Example 6] Instead of the copper vapor-deposited substrate used in Example 5, a silver vapor-deposited plate of the same shape was used, and by dipping it in a TCNQ saturated solution in the same manner as in Example 5, a conductive layer composed of an organic CT complex having a thickness of about 1 µm Layers were obtained. Ferrocenecarboxylic acid (reagent, Aldric
20 μl of an aqueous solution in which 5 mg of glucose oxidase was dissolved in 1 ml of a 5 mM aqueous solution (manufactured by Company H) was dropped only on the measurement electrode part of the silver electrode and dried. Next, a solution containing no enzyme in the above solution was prepared in the same manner, dropped only on the compensation electrode portion, and dried.

【0063】その後、水不溶性高分子として共重合ポリ
エステル樹脂PES-110L [東亜合成化学工業 (株) 製、商
品名] の塩化メチレン1重量%溶液を測定極部および補
償極部に塗布し、乾燥した後、純水で洗浄することによ
り酵素固定化電極および補償極を得た。この電極を用
い、実施例5と同様にして測定した結果を表2に示す。
Then, a 1% by weight solution of methylene chloride in a copolyester resin PES-110L [trade name, manufactured by Toagosei Kagaku Kogyo Co., Ltd.] as a water-insoluble polymer was applied to the measuring electrode part and the compensating electrode part and dried. After that, by washing with pure water, an enzyme-immobilized electrode and a compensation electrode were obtained. Table 2 shows the results of measurement using this electrode in the same manner as in Example 5.

【0064】[0064]

【実施例7】実施例5で使用した、測定極部、補償極部
および対極部を有する銅蒸着ガラス基板を真空蒸着装置
内に設置した。約1×10-5mmHgの減圧下で上記基板を約
200℃に加熱したまま、TCNQを徐々に加熱し、30分で厚
み約5μmの有機CT錯体からなる導電層を得た。この有
機CT錯体導電層を有するガラス基板を、測定極部および
対極部を除いてエポキシ樹脂でモールドした。グルコー
スオキシダーゼ10mg/ ml水溶液20μl を上記電極の測定
極部のみに滴下、乾燥した。その後、1,1'- ジメチルフ
ェロセン2.0 重量%、ポリビニルブチラール樹脂1.0 重
量%のアセトン溶液20μlを測定極部、補償極部に塗
布、乾燥した後、純水で洗浄した。さらにTCNQアセトニ
トリル飽和溶液を20μl塗布し、自然乾燥させた。この
電極を用い、実施例5と同様にして測定した結果を表2
に示す。
Example 7 The copper vapor-deposited glass substrate having the measurement electrode portion, the compensation electrode portion and the counter electrode portion used in Example 5 was placed in a vacuum vapor deposition apparatus. Approximately 1 × 10 -5 mmHg of the above substrate under reduced pressure
While heating at 200 ° C., TCNQ was gradually heated to obtain a conductive layer composed of an organic CT complex having a thickness of about 5 μm in 30 minutes. The glass substrate having the organic CT complex conductive layer was molded with an epoxy resin except for the measurement electrode part and the counter electrode part. 20 μl of 10 mg / ml glucose oxidase aqueous solution was dropped only on the measurement electrode part of the above electrode and dried. Then, 20 μl of an acetone solution containing 2.0% by weight of 1,1′-dimethylferrocene and 1.0% by weight of polyvinyl butyral resin was applied to the measurement electrode part and the compensation electrode part, dried, and then washed with pure water. Further, 20 μl of a saturated solution of TCNQ acetonitrile was applied and naturally dried. Table 2 shows the results of measurement using this electrode in the same manner as in Example 5.
Shown in.

【0065】[0065]

【実施例8】実施例5で得られた有機CT錯体からなる電
極系を有するガラス基板を用い、オクタシアノモリブデ
ン酸カリウム水溶液を全面に塗布、乾燥した。ポリビニ
ルブチラール樹脂2.0 重量%のアセトン溶液を調製し、
この溶液1mlにグルコースオキシダーゼ4.0 mgを添加
し、超音波分散器により均一に分散させた溶液5μl
を、上記基板の測定極部のみに滴下し乾燥した後、この
溶液において酵素を含有しない溶液を補償極部のみに滴
下し、乾燥し、全面を純水で洗浄した。この電極を用
い、実施例5と同様にして測定した結果を表2に示す。
Example 8 Using a glass substrate having an electrode system made of the organic CT complex obtained in Example 5, an aqueous solution of potassium octacyanomolybdate was applied to the entire surface and dried. Prepare an acetone solution of 2.0% by weight of polyvinyl butyral resin,
Glucose oxidase (4.0 mg) was added to 1 ml of this solution, and 5 μl of the solution was uniformly dispersed by an ultrasonic disperser.
Was dropped only on the measurement electrode portion of the substrate and dried, and then a solution containing no enzyme in this solution was dropped only on the compensation electrode portion and dried, and the whole surface was washed with pure water. Table 2 shows the results of measurement using this electrode in the same manner as in Example 5.

【0066】[0066]

【実施例9】実施例6で得られた電極系を用い、ヒト血
清にグルコースを添加することにより調製したグルコー
ス濃度4.0 mM、6.4 mM、8.2 mM、9.6 mMの各溶液を用い
て、実施例5に示す方法で順次測定した。その結果を図
7に示す。このように血清を用いた測定においても良好
な直線関係が得られた。
[Example 9] Using the electrode system obtained in Example 6, and using each solution having a glucose concentration of 4.0 mM, 6.4 mM, 8.2 mM, and 9.6 mM prepared by adding glucose to human serum, The measurement was performed sequentially by the method shown in 5. The result is shown in FIG. 7. Thus, a good linear relationship was obtained even in the measurement using serum.

【0067】[0067]

【表2】 [Table 2]

【0068】[0068]

【発明の効果】本発明のバイオセンサは、酵素反応に伴
う電子移動を直接検知する方式をとるので、溶存酸素の
多少に影響を受けず、また電気化学的妨害物質に影響さ
れることなく、かつ応答性および応答寿命に優れたバイ
オセンサである。しかも、測定極と対極とを近傍に配置
してあるので、微量の試料を希釈、攪拌する必要なく、
そのまま使用でき、簡単な操作で迅速かつ高精度に定量
することができる。また、さらに補償極を設けると、他
物質の副反応や吸着に影響されず、より高精度で定量し
うる。
Since the biosensor of the present invention directly detects the electron transfer accompanying the enzymatic reaction, it is not affected by the amount of dissolved oxygen and is not affected by the electrochemical interfering substance. It is also a biosensor with excellent responsiveness and response life. Moreover, since the measuring electrode and the counter electrode are arranged in the vicinity, it is not necessary to dilute and stir a small amount of sample,
It can be used as it is and can be quantified quickly and with high accuracy by simple operation. Further, if a compensation electrode is further provided, it can be quantified with higher accuracy without being affected by side reactions or adsorption of other substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明バイオセンサの一例を示す図である。FIG. 1 is a diagram showing an example of a biosensor of the present invention.

【図2】本発明バイオセンサの一例を示す図である。FIG. 2 is a diagram showing an example of the biosensor of the present invention.

【図3】本発明バイオセンサの一例を示す図である。FIG. 3 is a diagram showing an example of the biosensor of the present invention.

【図4】本発明バイオセンサの一例を示す図である。FIG. 4 is a diagram showing an example of the biosensor of the present invention.

【図5】本発明バイオセンサの一例を示す図である。FIG. 5 is a diagram showing an example of the biosensor of the present invention.

【図6】本発明バイオセンサの一例を示す図である。FIG. 6 is a diagram showing an example of the biosensor of the present invention.

【図7】実施例9で測定したグルコース濃度と応答電流
の関係を示す図である。
FIG. 7 is a diagram showing the relationship between glucose concentration and response current measured in Example 9.

【図8】定常状態法とシングルパルス法により測定した
比較図である。
FIG. 8 is a comparison diagram measured by the steady state method and the single pulse method.

【符号の説明】[Explanation of symbols]

1: 基板 2: 対極 3: 測定極 4: 補償極 5: 絶縁膜 6: リード部 7: 対極端子 8: 測定極端子 9: 補償極端子 1: Substrate 2: Counter electrode 3: Measurement electrode 4: Compensation electrode 5: Insulation film 6: Lead part 7: Counter electrode terminal 8: Measurement electrode terminal 9: Compensation electrode terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J G01N 27/46 336 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location 7235-2J G01N 27/46 336 B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機電荷移動錯体結晶を含む導電層を有
する酵素が固定化された測定極と、その近傍に設けた対
極とからなる電極系を有するバイオセンサ。
1. A biosensor having an electrode system including a measuring electrode having an enzyme having a conductive layer containing an organic charge transfer complex crystal and a counter electrode provided in the vicinity of the measuring electrode.
【請求項2】 測定極が、導電性基体と、この基体表面
に設けた有機電荷移動錯体結晶からなる導電層を有し、
水不溶性高分子を用いてあるいは用いずに酵素および電
子メディエーターが固定化された電極である請求項1記
載のバイオセンサ。
2. The measuring electrode has a conductive base and a conductive layer made of an organic charge transfer complex crystal provided on the surface of the base,
The biosensor according to claim 1, which is an electrode on which an enzyme and an electron mediator are immobilized with or without a water-insoluble polymer.
【請求項3】 酵素が固定化されていない補償極を設け
た請求項1記載のバイオセンサ。
3. The biosensor according to claim 1, further comprising a compensation electrode on which the enzyme is not immobilized.
【請求項4】 導電性基体と、この基体表面に設けた有
機電荷移動錯体結晶からなる導電層を有し、水不溶性高
分子を用いてあるいは用いずに電子メディエーターが固
定化された電極である補償極を設けた、請求項2記載の
バイオセンサ。
4. An electrode having a conductive substrate and a conductive layer made of an organic charge transfer complex crystal provided on the surface of the substrate, on which an electron mediator is immobilized with or without a water-insoluble polymer. The biosensor according to claim 2, further comprising a compensation pole.
【請求項5】 酵素が酸化還元酵素である請求項1ない
し4のいずれかの項記載のバイオセンサ。
5. The biosensor according to claim 1, wherein the enzyme is a redox enzyme.
【請求項6】 請求項1ないし5のいずれかの項記載の
バイオセンサにパルス電位を印加して酵素反応による応
答電流を測定することにより特定物質を分析する方法。
6. A method for analyzing a specific substance by applying a pulse potential to the biosensor according to claim 1 and measuring a response current due to an enzymatic reaction.
JP4011346A 1992-01-24 1992-01-24 Biosensor Expired - Lifetime JP2616331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011346A JP2616331B2 (en) 1992-01-24 1992-01-24 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011346A JP2616331B2 (en) 1992-01-24 1992-01-24 Biosensor

Publications (2)

Publication Number Publication Date
JPH05203608A true JPH05203608A (en) 1993-08-10
JP2616331B2 JP2616331B2 (en) 1997-06-04

Family

ID=11775480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011346A Expired - Lifetime JP2616331B2 (en) 1992-01-24 1992-01-24 Biosensor

Country Status (1)

Country Link
JP (1) JP2616331B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830551B1 (en) 1999-11-08 2004-12-14 Arkray, Inc. Body fluid measuring instrument and body fluid sampler thereof
US6858433B1 (en) * 2000-04-03 2005-02-22 Roche Diagnostics Operations, Inc. Biosensor electromagnetic noise cancellation
US7402381B2 (en) 2003-09-11 2008-07-22 Seiko Epson Corporation Method of immobilizing molecules onto a solid phase substrate and method of fabricating a biosensor using the method
JP4824247B2 (en) * 2000-05-10 2011-11-30 アスラブ・エス アー Detection component immobilization method
JP4910155B2 (en) * 2005-02-24 2012-04-04 国立大学法人東京海洋大学 Biosensor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214274B2 (en) 2001-06-11 2009-01-28 アークレイ株式会社 Puncture element integrated body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830551B1 (en) 1999-11-08 2004-12-14 Arkray, Inc. Body fluid measuring instrument and body fluid sampler thereof
US6858433B1 (en) * 2000-04-03 2005-02-22 Roche Diagnostics Operations, Inc. Biosensor electromagnetic noise cancellation
JP4824247B2 (en) * 2000-05-10 2011-11-30 アスラブ・エス アー Detection component immobilization method
US7402381B2 (en) 2003-09-11 2008-07-22 Seiko Epson Corporation Method of immobilizing molecules onto a solid phase substrate and method of fabricating a biosensor using the method
JP4910155B2 (en) * 2005-02-24 2012-04-04 国立大学法人東京海洋大学 Biosensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2616331B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US5356786A (en) Interferant eliminating biosensor
US5262305A (en) Interferant eliminating biosensors
Vidal et al. A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator
AU2002321531B2 (en) Methods for producing highly sensitive potentiometric sensors
Pantano et al. Enzyme‐modified microelectrodes for in vivo neurochemical measurements
Sprules et al. A reagentless, disposable biosensor for lactic acid based on a screen-printed carbon electrode containing Meldola's Blue and coated with lactate dehydrogenase, NAD+ and cellulose acetate
EP0251915A2 (en) Enzyme sensor
Serafín et al. Electrochemical biosensor for creatinine based on the immobilization of creatininase, creatinase and sarcosine oxidase onto a ferrocene/horseradish peroxidase/gold nanoparticles/multi-walled carbon nanotubes/Teflon composite electrode
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
AU2002321531A1 (en) Methods for producing highly sensitive potentiometric sensors
JPH0262952A (en) Biosensor and its production
US20050189240A1 (en) Method and chemical sensor for determining concentrations of hydrogen peroxide and its precusor in a solution
Zhang et al. Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator
US20030178998A1 (en) Enzyme electrode
Liu et al. Enzyme biosensors for point-of-care testing
Trojanowicz et al. Bilayer lipid membrane glucose biosensors with improved stability and sensitivity
Bartlett et al. Electrochemical immobilization of enzymes. Part VI. Microelectrodes for the detection of L-lactate based on flavocytochrome b 2 immobilized in a poly (phenol) film
JP2616331B2 (en) Biosensor
JP2636637B2 (en) Manufacturing method of enzyme electrode
Yamamoto et al. Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential
JPH06174679A (en) Biosensor
JPH06130024A (en) Enzyme electrode and biosenor using it
Shi et al. On‐line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system
JP3070818B2 (en) Biosensor and manufacturing method thereof
Liang et al. ZrO 2/DNA-derivated polyion hybrid complex membrane for the determination of hydrogen peroxide in milk

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970114