JPH05203543A - Apparatus for detecting interaction force in magnetic disk apparatus - Google Patents

Apparatus for detecting interaction force in magnetic disk apparatus

Info

Publication number
JPH05203543A
JPH05203543A JP1123692A JP1123692A JPH05203543A JP H05203543 A JPH05203543 A JP H05203543A JP 1123692 A JP1123692 A JP 1123692A JP 1123692 A JP1123692 A JP 1123692A JP H05203543 A JPH05203543 A JP H05203543A
Authority
JP
Japan
Prior art keywords
magnetic disk
ultrasonic
interaction force
head slider
floating head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123692A
Other languages
Japanese (ja)
Inventor
Kyosuke Yasuda
享祐 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1123692A priority Critical patent/JPH05203543A/en
Publication of JPH05203543A publication Critical patent/JPH05203543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To evaluate the interaction force, which acts between the surface of a magnetic disk and the surface of a floating head slider in a magnetic disk apparatus and the change in this interaction force and to achieve the compact configuration for a measuring part for evaluating the interaction force. CONSTITUTION:An ultrasonic oscillating piece 3 and an ultrasonic receiving pieces 4 are attached to a floating head slider 5 and a magnetic disk 6, respectively. The amount of the ultrasonic wave propagation between the floating head slider 5 and the magnetic disk 6 is measured. Interaction force is evaluated based on the amount of the ultrasonic wave propagation, and the time change of the interaction force is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置にお
ける磁気ディスク面と浮動ヘッドスライダ面との間に作
用する相互作用力を検出・評価する相互作用力検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interaction force detecting device for detecting and evaluating an interaction force acting between a magnetic disk surface and a floating head slider surface in a magnetic disk device.

【0002】[0002]

【従来の技術】磁気ディスク装置は、一般に、記録媒体
である回転可能な磁気ディスクと、この磁気ディスクの
表面に対向して設けられた浮動ヘッドスライダとから少
なくとも構成され、浮動ヘッドスライダには、磁気ディ
スクに情報を読み書きするための磁気ヘッドが備えられ
ている。磁気ディスク装置が休止状態にあるとき、すな
わち磁気ディスクが静止しているときには、磁気ディス
クと浮動ヘッドスライダとは相接している。そして、磁
気ディスク装置が動作状態に入ると、磁気ディスクが回
転を開始し、それによって生じる空気流の動圧効果によ
って浮動ヘッドスライダが磁気ディスクの表面から浮上
するようになっている。
2. Description of the Related Art Generally, a magnetic disk device is composed of at least a rotatable magnetic disk which is a recording medium and a floating head slider which is provided so as to face the surface of the magnetic disk. A magnetic head is provided for reading and writing information on the magnetic disk. When the magnetic disk device is in the rest state, that is, when the magnetic disk is stationary, the magnetic disk and the floating head slider are in contact with each other. Then, when the magnetic disk device enters the operating state, the magnetic disk starts rotating, and the floating head slider floats above the surface of the magnetic disk due to the dynamic pressure effect of the air flow generated thereby.

【0003】ここで、磁気ディスク面とは、磁気ディス
クの浮動ヘッドスライダに対向する面を指し、浮動ヘッ
ドスライダ面とは、浮動ヘッドスライダの磁気ディスク
に対向する面のことを指すものとする。また、浮動ヘッ
ドスライダ面と磁気ディスク面との間に働く相互作用力
とは、これら相接する面間に生じる吸着力、あるいはこ
れら各面が相対的に滑り方向に運動を開始する摩擦力す
なわち静止摩擦力を意味するものとする。
Here, the magnetic disk surface refers to the surface of the magnetic disk that faces the floating head slider, and the floating head slider surface refers to the surface of the floating head slider that faces the magnetic disk. The interaction force acting between the floating head slider surface and the magnetic disk surface is the attraction force generated between these contacting surfaces, or the frictional force at which these surfaces start relative movement in the sliding direction. It means static friction force.

【0004】浮動ヘッドスライダ面と磁気ディスク面と
は、磁気ディスク装置が休止している状態では相接して
静止しているため、磁気ディスク装置内の温度や湿度な
どの条件によっては両方の面の間に水分子が侵入し、両
面の微視的な接触点近傍に結露を生じたりする。その結
果、両面に働く相互作用力が変化する。そしてこの相互
作用力が特に大きくなった場合すなわち両面が強く吸着
した場合には、磁気ディスクの回転が不可能となる。し
たがって、温度や湿度の変化に即して両面の間に働く相
互作用力を把握することは、磁気ディスク装置の設計に
あたって非常に重要である。
Since the floating head slider surface and the magnetic disk surface are in contact with each other while the magnetic disk device is at rest and are stationary, depending on the conditions such as temperature and humidity in the magnetic disk device, both surfaces may be in contact with each other. Water molecules intrude between them, causing condensation in the vicinity of the microscopic contact points on both sides. As a result, the interaction force acting on both sides changes. When this interaction force becomes particularly large, that is, when both sides are strongly attracted, the magnetic disk cannot rotate. Therefore, it is very important in designing the magnetic disk device to understand the interaction force acting between the two surfaces in accordance with the change in temperature and humidity.

【0005】浮動ヘッドスライダ面と磁気ディスク面と
の間に働く相互作用力を測定する場合、例えば吸着力を
測定する場合には両面を引き離すに必要な力を、摩擦力
を測定するには両面がすべりを生じ始める力を測定しな
ければならない。そして、これらの相互作用力の変化の
測定は、数日間というように長期にわたって行なわれる
必要がある。また、これらの相互作用力の測定は、温度
や湿度の条件を明確にするために、恒温恒湿槽内で行な
われることが多い。
When the interaction force acting between the floating head slider surface and the magnetic disk surface is measured, for example, when the attraction force is measured, the force required to separate the two surfaces is measured, and when the friction force is measured, both surfaces are measured. The force at which the onset of slipping must be measured. The measurement of these changes in the interaction force needs to be performed over a long period of time, such as several days. Further, the measurement of these interaction forces is often carried out in a constant temperature and constant humidity chamber in order to clarify the conditions of temperature and humidity.

【0006】[0006]

【発明が解決しようとする課題】浮動ヘッドスライダ面
と磁気ディスク面との相互作用力を評価する従来の方法
では、相接した状態にある両面を実際に引き離しあるい
はすべらせることによって測定を行なっているため、す
なわち測定ごとに両面の相接状態を破壊するために、1
回測定を行なったならば次の測定のために再び両面の相
接状態を再現して新たに0から時間経過を待つ必要があ
り、より細かく変化を追跡しようとすればするほど、測
定に長大な時間が必要になるという問題点がある。
In the conventional method for evaluating the interaction force between the floating head slider surface and the magnetic disk surface, the measurement is performed by actually separating or sliding both surfaces in contact with each other. In order to destroy the contact state on both sides for each measurement, 1
If the measurement is performed once, it is necessary to reproduce the contact state on both sides again for the next measurement and wait for a new time from 0. The longer the change is tracked, the longer the measurement becomes. There is a problem that it takes a lot of time.

【0007】また、これらの相互作用力の測定は一般に
恒温恒湿槽内で行なわれることが多いので、測定部の小
型化を図る必要があるが、従来の測定装置では、浮動ヘ
ッドスライダと磁気ディスクとを精密に相対移動させる
ための微動機構や力測定機構、力センサの組み込みなど
が必要であり、測定部が大型化し、恒温恒湿槽内に格納
することが困難になるという問題点がある。
Further, since the measurement of these interaction forces is generally performed in a constant temperature and humidity chamber, it is necessary to reduce the size of the measuring section. It is necessary to incorporate a fine movement mechanism, a force measurement mechanism, a force sensor, etc. to move the disk relative to each other precisely, and the measurement section becomes large, making it difficult to store it in a constant temperature and humidity chamber. is there.

【0008】本発明の目的は、浮動ヘッドスライダ面と
磁気ディスク面との間に働く相互作用力と、この相互作
用力の変化を迅速に評価でき、かつ測定部を小型化でき
る相互作用力検出装置を提供することにある。
An object of the present invention is to detect an interaction force acting between a floating head slider surface and a magnetic disk surface and a change in the interaction force can be quickly evaluated and a measuring unit can be downsized. To provide a device.

【0009】[0009]

【課題を解決するための手段】第1の発明の相互作用力
検出装置は、磁気ディスクと浮動ヘッドスライダのいず
れか一方に取り付けられる超音波発振子と、前記磁気デ
ィスクと前記浮動ヘッドスライダのうち前記超音波発振
子が取り付けられていない方のものに取り付けられる超
音波受振子と、前記超音波発振子を駆動する超音波発振
器と、前記超音波受振子に入力する超音波量を測定する
超音波受信器とを有する。
An interaction force detecting device according to a first aspect of the present invention is an ultrasonic oscillator attached to either one of a magnetic disk and a floating head slider, and a magnetic disk and a floating head slider. An ultrasonic receiver that is attached to the one to which the ultrasonic oscillator is not attached, an ultrasonic oscillator that drives the ultrasonic oscillator, and an ultrasonic device that measures the amount of ultrasonic waves input to the ultrasonic receiver. And a sound wave receiver.

【0010】第2の発明の相互作用力検出装置は、磁気
ディスクに取り付けられる超音波受振子と、浮動ヘッド
スライダに取り付けられている磁気ヘッドの巻線部に超
音波電流を印加する超音波発振器と、前記超音波受振子
に入力する超音波量を測定する超音波受信器とを有す
る。
The interaction force detecting device of the second invention is an ultrasonic oscillator for applying an ultrasonic current to the ultrasonic wave receiver attached to the magnetic disk and the winding portion of the magnetic head attached to the floating head slider. And an ultrasonic receiver for measuring the amount of ultrasonic waves input to the ultrasonic receiver.

【0011】[0011]

【作用】磁気ディスクと浮動ヘッドスライダとの相接面
に水分子が侵入したり、結露が生じたりすると、磁気デ
ィスクと浮動ヘッドスライダとの間の超音波伝播量が変
化する。ここで、磁気ディスクと浮動ヘッドスライダの
どちらか一方で超音波を発生し、他方でこの超音波を受
信すれば、この超音波伝播量が測定でき、磁気ディスク
面と浮動ヘッドスライダ面との間への水分子侵入や結露
による相互作用力の変化を推定できる。この場合、両面
の相接状態を破壊しないで測定が行なわれるので、連続
的に相互作用力の変化を追跡することが可能となる。ま
た超音波発振子や超音波受振子は数cm四方以下の大き
さであるので、測定部の大幅な小型軽量化が可能とな
る。
When water molecules enter the contact surface between the magnetic disk and the floating head slider or dew condensation occurs, the amount of ultrasonic wave propagation between the magnetic disk and the floating head slider changes. Here, if ultrasonic waves are generated by either the magnetic disk or the floating head slider and the ultrasonic waves are received by the other, the amount of this ultrasonic wave propagation can be measured, and the amount of propagation between the magnetic disk surface and the floating head slider surface can be measured. It is possible to estimate changes in the interaction force due to water molecule intrusion and condensation. In this case, since the measurement is performed without breaking the contact state on both surfaces, it is possible to continuously track the change in the interaction force. Further, since the ultrasonic oscillator and the ultrasonic receiver have a size of several cm square or less, it is possible to significantly reduce the size and weight of the measuring unit.

【0012】超音波の発生方法としては、磁気ディスク
と浮動ヘッドスライダのいずれか一方に超音波発振子を
取り付ける方法がある。また、浮動ヘッドスライダには
磁気ヘッドが取り付けられているので、この磁気ヘッド
の巻線部に超音波電流を印加することによりいわゆる磁
気歪効果によって超音波振動が発生することを利用して
もよい。
As a method of generating ultrasonic waves, there is a method of mounting an ultrasonic oscillator on either the magnetic disk or the floating head slider. Further, since a magnetic head is attached to the floating head slider, it may be used that ultrasonic vibration is generated by a so-called magnetostriction effect by applying an ultrasonic current to the winding portion of this magnetic head. ..

【0013】[0013]

【実施例】次に、本発明の実施例について、図面を参照
して説明する。図1は、本発明の一実施例の、磁気ディ
スク装置における相互作用力検出装置の構成を示す模式
断面図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of an interaction force detection device in a magnetic disk device according to an embodiment of the present invention.

【0014】測定対象の磁気ディスク装置は、浮動ヘッ
ドスライダ5と磁気ディスク6を有している。磁気ディ
スク6の浮動ヘッドスライダ5に対向しない側の面に
は、超音波受振子3が取り付けられている。浮動ヘッド
スライダ5には、超音波発振子2が取り付けられ、この
超音波発振子2は超音波発振器1によって駆動されるよ
うになっている。一方、超音波受振子3は、この超音波
受振子3に入力する超音波量を測定する超音波受信器4
に接続されている。
The magnetic disk device to be measured has a floating head slider 5 and a magnetic disk 6. The ultrasonic receiver 3 is attached to the surface of the magnetic disk 6 that is not opposed to the floating head slider 5. The ultrasonic oscillator 2 is attached to the floating head slider 5, and the ultrasonic oscillator 2 is driven by the ultrasonic oscillator 1. On the other hand, the ultrasonic receiver 3 is an ultrasonic receiver 4 that measures the amount of ultrasonic waves input to the ultrasonic receiver 3.
It is connected to the.

【0015】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0016】まず、超音波発振器1によって超音波発振
子2を駆動する。すると、超音波発振子2からの超音波
は、浮動ヘッドスライダ5に伝わり、浮動ヘッドスライ
ダ5と磁気ディスク6との相接面を通って、磁気ディス
ク6に取り付けられた超音波受振子3にまで伝播する。
超音波受振子3で検出された超音波受信信号は、超音波
受信器4によって増幅され、その結果、浮動ヘッドスラ
イダ5と磁気ディスク6との間の超音波伝播量が求めら
れる。
First, the ultrasonic oscillator 2 is driven by the ultrasonic oscillator 1. Then, the ultrasonic wave from the ultrasonic oscillator 2 is transmitted to the floating head slider 5, passes through the contact surface between the floating head slider 5 and the magnetic disk 6, and then reaches the ultrasonic receiver 3 attached to the magnetic disk 6. Propagate to.
The ultrasonic wave reception signal detected by the ultrasonic wave receiver 3 is amplified by the ultrasonic wave receiver 4, and as a result, the amount of ultrasonic wave propagation between the floating head slider 5 and the magnetic disk 6 is obtained.

【0017】ここで、磁気ディスク面と浮動ヘッドスラ
イダ面の間の相互作用力と、この両方の面の間の超音波
伝播量との関係について、図2を用いて説明する。
Here, the relationship between the interaction force between the magnetic disk surface and the floating head slider surface and the amount of ultrasonic wave propagation between both surfaces will be described with reference to FIG.

【0018】一般に、磁気ヘッド面は浮動ヘッドスライ
ダ面に比べ、表面が粗くなっている。これは、両面の接
触部に水分が入り込み、両面が強く吸着し合うことを極
力防ぐためである。そのため、磁気ディスク6側の突起
の部分で、磁気ディスク6と浮動ヘッドスライダ5とが
接触していることになる。そして、浮動ヘッドスライダ
5と磁気ディスク6との間の超音波の伝播は、主として
この接触点の部分で行なわれることになる。なお、磁気
ディスク6の面粗さを大きくすると記録される信号の信
号対雑音比(S/N比)が低下するので、極端にこの面
粗さを大きくすることはできない。
Generally, the surface of the magnetic head is rougher than the surface of the floating head slider. This is to prevent moisture from entering the contact portions on both sides and strongly adhering to each other on both sides as much as possible. Therefore, the magnetic disk 6 and the floating head slider 5 are in contact with each other at the protrusion on the magnetic disk 6 side. Then, the propagation of ultrasonic waves between the floating head slider 5 and the magnetic disk 6 is mainly performed at this contact point. It should be noted that if the surface roughness of the magnetic disk 6 is increased, the signal-to-noise ratio (S / N ratio) of the signal to be recorded is lowered, and therefore the surface roughness cannot be extremely increased.

【0019】ここで、この両方の面の間に水分子が侵入
した場合について考えてみる。水分子が侵入すると、浮
動ヘッドスライダ5と磁気ディスク6との接触点近傍に
水分7が付着する。このように水分7が付着すると、磁
気ディスク面と浮動ヘッドスライダ面との相互作用力も
増加するが、浮動ヘッドスライダ5と磁気ディスク6と
の間の超音波の伝播がこの付着した水分7によっても行
なわれるようになる。結局、両方の面の相接面における
超音波の伝播する部分の断面積が実効的に増大したこと
になり、超音波伝播量が増加することになる。したがっ
て、超音波伝播量の時間変化を超音波受信器4で追跡す
ることにより、それら両方の面間の相互作用力の変化を
知ることができ、相互作用力の評価を行なうことが可能
となる。この場合、1回の測定ごとに浮動ヘッドスライ
ダ5と磁気ヘッド6とを引き離す必要がないので、両方
の面の相接状態を破壊することがなく、相互作用力の変
化を実時間で連続的に追跡することができる。
Now, let us consider the case where water molecules penetrate between both surfaces. When water molecules enter, water 7 adheres to the vicinity of the contact point between the floating head slider 5 and the magnetic disk 6. When the moisture 7 adheres in this way, the interaction force between the magnetic disk surface and the floating head slider surface also increases, but the propagation of ultrasonic waves between the floating head slider 5 and the magnetic disk 6 also depends on the adhered moisture 7. It will be done. Eventually, the cross-sectional area of the portion where the ultrasonic wave propagates on the contact surface of both surfaces effectively increases, and the amount of ultrasonic wave propagation increases. Therefore, by tracking the time change of the amount of ultrasonic wave propagation with the ultrasonic receiver 4, it is possible to know the change in the interaction force between the two surfaces, and it is possible to evaluate the interaction force. . In this case, since it is not necessary to separate the floating head slider 5 and the magnetic head 6 for each measurement, it is possible to continuously change the interaction force in real time without destroying the contact state of both surfaces. Can be tracked to.

【0020】次に、本発明の別の実施例について、図3
を説明する。上述の実施例では超音波発振子を用いて超
音波を発生させていたが、この実施例は、浮動ヘッドス
ライダ5に設けられている磁気ヘッド8を利用して超音
波を発生させようとするものである。
Next, another embodiment of the present invention will be described with reference to FIG.
Will be explained. Although ultrasonic waves are generated using the ultrasonic oscillator in the above-described embodiment, this embodiment attempts to generate ultrasonic waves using the magnetic head 8 provided in the floating head slider 5. It is a thing.

【0021】浮動ヘッドスライド5に備えられた磁気ヘ
ッド8は、一般に、磁心8aとこの磁心8aのまわりに
設けられた巻線部8bとからなっている。そこで巻線部
8bを超音波発振器1に接続し、磁気ディスク6に超音
波受振子3を取り付け、さらに、この超音波受振子3で
検出した信号を増幅し超音波量を測定する超音波受信器
4を設けるようにする。
The magnetic head 8 provided on the floating head slide 5 generally comprises a magnetic core 8a and a winding portion 8b provided around the magnetic core 8a. Therefore, the winding portion 8b is connected to the ultrasonic oscillator 1, the ultrasonic wave receiver 3 is attached to the magnetic disk 6, and the ultrasonic wave receiving unit 3 amplifies the signal detected by the ultrasonic wave receiver 3 to measure the amount of ultrasonic waves. A container 4 is provided.

【0022】超音波発振器1によって巻線部8bを超音
波電流で駆動すれば、磁気ヘッド8はこの超音波電流に
対応して磁化変化を生じ、磁心8aのいわゆる磁気歪効
果によって、超音波電流に対応する超音波振動が発生す
る。この超音波振動は上述の実施例と同様に、浮動ヘッ
ドスライダ5と磁気ディスク6との相接面を通って超音
波受振子3に伝播する。超音波受振子3に伝播した超音
波信号を超音波受信器4で増幅し、超音波伝播量を求め
ることにより、上述の実施例と同様に相互作用力の評
価、相互作用力の時間変化の追跡を行なうことが可能と
なる。
When the winding portion 8b is driven by an ultrasonic current by the ultrasonic oscillator 1, the magnetic head 8 changes its magnetization in response to the ultrasonic current, and the so-called magnetostriction effect of the magnetic core 8a causes the ultrasonic current to flow. The ultrasonic vibration corresponding to is generated. This ultrasonic vibration propagates to the ultrasonic receiver 3 through the contact surface between the floating head slider 5 and the magnetic disk 6, as in the above-described embodiment. The ultrasonic wave signal propagated to the ultrasonic wave receiver 3 is amplified by the ultrasonic wave receiver 4 and the amount of ultrasonic wave propagation is obtained, whereby the interaction force is evaluated and the time variation of the interaction force is calculated as in the above-described embodiment. Tracking is possible.

【0023】以上本発明の実施例について説明したが、
超音波発振子と超音波受振子とを両方用いる場合、浮動
ヘッドスライダ側に超音波受振子を配し、磁気ディスク
側に超音波発振子を配するようにしても、同様に測定で
きることは明らかである。
The embodiment of the present invention has been described above.
When both an ultrasonic oscillator and an ultrasonic receiver are used, it is clear that the same measurement can be performed by disposing the ultrasonic receiver on the floating head slider side and the ultrasonic oscillator on the magnetic disk side. Is.

【0024】[0024]

【発明の効果】以上説明したように本発明は、浮動ヘッ
ドスライダと磁気ディスクとの間の超音波伝播量を求め
ることにより、浮動ヘッドスライダ面と磁気ディスク面
との間の相互作用力を評価するので、この相互作用力を
非破壊で測定でき、従来のものに比べ、相互作用力の時
間変化を調べるときに大幅に測定時間の短縮を図ること
ができるという効果がある。また、超音波発振子や超音
波受振子は小型軽量であるので、小型の恒温恒湿槽で測
定が行なえるという効果がある。
As described above, the present invention evaluates the interaction force between the floating head slider surface and the magnetic disk surface by determining the amount of ultrasonic wave propagation between the floating head slider and the magnetic disk. As a result, the interaction force can be measured nondestructively, and the measurement time can be greatly shortened when examining the time change of the interaction force as compared with the conventional one. In addition, since the ultrasonic oscillator and the ultrasonic receiver are small and lightweight, there is an effect that the measurement can be performed in a small constant temperature and humidity chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の、磁気ディスク装置におけ
る相互作用力検出装置の構成を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of an interaction force detection device in a magnetic disk device according to an embodiment of the present invention.

【図2】浮動ヘッドスライダと磁気ディスクとの相接面
を拡大した図である。
FIG. 2 is an enlarged view of a contact surface between a floating head slider and a magnetic disk.

【図3】本発明の別の実施例の、磁気ディスク装置にお
ける相互作用力検出装置の構成を示す模式断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing the configuration of an interaction force detection device in a magnetic disk device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超音波発振器 2 超音波発振子 3 超音波受振子 4 超音波受信器 5 浮動ヘッドスライダ 6 磁気ディスク 7 水分 8 磁気ヘッド 8a 磁心 8b 巻線部 1 Ultrasonic Oscillator 2 Ultrasonic Oscillator 3 Ultrasonic Receiver 4 Ultrasonic Receiver 5 Floating Head Slider 6 Magnetic Disk 7 Moisture 8 Magnetic Head 8a Magnetic Core 8b Winding Part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気ディスクと浮動ヘッドスライダとを
少なくとも備えた磁気ディスク装置における磁気ディス
ク面と浮動ヘッドスライダ面との間の相互作用力を評価
する相互作用力検出装置において、 前記磁気ディスクと前記浮動ヘッドスライダのいずれか
一方に取り付けられる超音波発振子と、 前記磁気ディスクと前記浮動ヘッドスライダのうち前記
超音波発振子が取り付けられていない方のものに取り付
けられる超音波受振子と、 前記超音波発振子を駆動する超音波発振器と、 前記超音波受振子に入力する超音波量を測定する超音波
受信器とを有することを特徴とする磁気ディスク装置に
おける相互作用力検出装置。
1. An interaction force detecting device for evaluating an interaction force between a magnetic disk surface and a floating head slider surface in a magnetic disk device comprising at least a magnetic disk and a floating head slider, wherein: An ultrasonic oscillator attached to one of the floating head sliders; an ultrasonic receiver attached to one of the magnetic disk and the floating head slider to which the ultrasonic oscillator is not attached; An interaction force detecting device in a magnetic disk device, comprising: an ultrasonic oscillator that drives an ultrasonic oscillator; and an ultrasonic receiver that measures the amount of ultrasonic waves input to the ultrasonic receiver.
【請求項2】 磁気ディスクと浮動ヘッドスライダとを
少なくとも備えた磁気ディスク装置における磁気ディス
ク面と浮動ヘッドスライダ面との間の相互作用力を評価
する相互作用力検出装置において、 前記磁気ディスクに取り付けられる超音波受振子と、 前記浮動ヘッドスライダに取り付けられている磁気ヘッ
ドの巻線部に超音波電流を印加する超音波発振器と、 前記超音波受振子に入力する超音波量を測定する超音波
受信器とを有することを特徴とする磁気ディスク装置に
おける相互作用力検出装置。
2. An interaction force detecting device for evaluating an interaction force between a magnetic disk surface and a floating head slider surface in a magnetic disk device comprising at least a magnetic disk and a floating head slider, the device being attached to the magnetic disk. An ultrasonic receiver, an ultrasonic oscillator that applies an ultrasonic current to the winding portion of the magnetic head attached to the floating head slider, and an ultrasonic wave that measures the amount of ultrasonic waves input to the ultrasonic receiver. An interaction force detection device in a magnetic disk device, comprising: a receiver.
JP1123692A 1992-01-24 1992-01-24 Apparatus for detecting interaction force in magnetic disk apparatus Pending JPH05203543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123692A JPH05203543A (en) 1992-01-24 1992-01-24 Apparatus for detecting interaction force in magnetic disk apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123692A JPH05203543A (en) 1992-01-24 1992-01-24 Apparatus for detecting interaction force in magnetic disk apparatus

Publications (1)

Publication Number Publication Date
JPH05203543A true JPH05203543A (en) 1993-08-10

Family

ID=11772306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123692A Pending JPH05203543A (en) 1992-01-24 1992-01-24 Apparatus for detecting interaction force in magnetic disk apparatus

Country Status (1)

Country Link
JP (1) JPH05203543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668690A (en) * 1996-04-29 1997-09-16 Harrison; Joshua C. Method and apparatus for lifetime prediction of gas lubricated interfaces in data storage devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194775A (en) * 1988-01-29 1989-08-04 Fujitsu General Ltd Monitor display method for video printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194775A (en) * 1988-01-29 1989-08-04 Fujitsu General Ltd Monitor display method for video printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668690A (en) * 1996-04-29 1997-09-16 Harrison; Joshua C. Method and apparatus for lifetime prediction of gas lubricated interfaces in data storage devices

Similar Documents

Publication Publication Date Title
US4080836A (en) Method of measuring stress in a material
US7924020B2 (en) Free-state modal frequency response testing
Wu et al. Determination of elastic constants of a concrete specimen using transient elastic waves
US7215118B2 (en) Transducer for generating and measuring torsional waves, and apparatus and method for structural diagnosis using the same
KR20050102516A (en) Magnetostrictive transducer for generating and sensing elastic ultrasonic waves, and apparatus for structural diagnosis using it
Luukkala et al. Metal plate testing using airborne ultrasound
Dixon et al. Texture measurements of metal sheets using wideband electromagnetic acoustic transducers
US4812927A (en) Head-to-disk interference detector
CA2106232C (en) Crack orientation determination and detection using horizontally polarized shear waves
EP0964247A3 (en) Ultrasonic examination of coated parts
Ihara Ultrasonic sensing: fundamentals and its applications to nondestructive evaluation
JPH05203543A (en) Apparatus for detecting interaction force in magnetic disk apparatus
CA2151116C (en) Zig-zag electromagnetic acoustic transducer scan
US5668690A (en) Method and apparatus for lifetime prediction of gas lubricated interfaces in data storage devices
JP2001013118A (en) Electromagnetic ultrasonic probe
Tong et al. Fabrication of a piezoelectric impact hammer and its application to the in-situ nondestructive evaluation of concrete
CN116295987B (en) High-spatial-resolution stress dynamic measurement method based on air-coupled ultrasound
Matsumoto et al. Measurement of slider/disk collision forces using acoustic emission source wave analysis
Sun Application of guided acoustic waves to delamination detection
Kishigami et al. An experimental investigation of contact characteristics between a slider and medium using the electrical resistance method
JPH0875714A (en) Flaw detection test method and probe
SU868538A1 (en) Method of non-destructive testing of magnetisable materials
Imaino Photoacoustic determination of tension in magnetic tape
Zeng et al. Two calibration methods of AE measurement channels for slider-disk contact detection
JP4286980B2 (en) Electromagnetic ultrasonic sensor