JPH05203274A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH05203274A
JPH05203274A JP1010292A JP1010292A JPH05203274A JP H05203274 A JPH05203274 A JP H05203274A JP 1010292 A JP1010292 A JP 1010292A JP 1010292 A JP1010292 A JP 1010292A JP H05203274 A JPH05203274 A JP H05203274A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010292A
Other languages
Japanese (ja)
Inventor
Akira Isaji
晃 伊佐治
Kunio Iritani
邦夫 入谷
Nobunao Suzuki
伸直 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1010292A priority Critical patent/JPH05203274A/en
Publication of JPH05203274A publication Critical patent/JPH05203274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an air conditioning apparatus in which a heat exchanger in a duct is not varied from a refrigerant evaporator to a refrigerant condenser even if dehumidification is switched to a room heating and the air of high humidity is not diffused in a room. CONSTITUTION:An upstream side heat exchanger 18 is connected between a downstream side heat exchanger 19 and an outdoor heat exchanger 21 via a refrigerant piping 27 in a refrigerating cycle 17. The cycle 17 has a bypass refrigerant passage 34 for bypassing the exchanger 18 and a dehumidifying pressure reducing unit 25. The refrigerant of the exchanger 18 is bypassed at the time of room heating. Thus, the exchanger 18 performs a function as a refrigerant evaporator at the time of dehumidifying but since it is paused at the time of room heating, drain water adhered to the exchanger 18 is not evaporated at the time of dehumidifying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクルによっ
て、少なくとも暖房運転と除湿運転が可能な空気調和装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of at least heating operation and dehumidifying operation by a refrigeration cycle.

【0002】[0002]

【発明の背景】本発明者等は車内へ空気流を送るダクト
の上流と下流とに、それぞれ熱交換器を設けて上流側熱
交換器を冷媒蒸発器として使用し、下流側熱交換器を冷
媒凝縮器として使用して、室内を除湿する技術の提案を
している(周知の技術では無い)。この技術の概略を、
図4、図5を用いて説明する。冷凍サイクル100は、
上述の上流側熱交換器101および下流側熱交換器10
2の他に、暖房時に熱の吸熱を行う、あるいは暖房時に
熱の放出を行う室外熱交換器103を備える。そして、
冷凍サイクル100には、下流側熱交換器102と室外
熱交換器103との間に上流側熱交換器101を配した
ものや(図4)、上流側熱交換器101と室外熱交換器
103との間に下流側熱交換器102を配したものがあ
った(図5)。そして、冷凍サイクル100は、冷媒圧
縮機の吐出する冷媒の方向、および冷媒の流路を切り替
えて、室内の冷房運転、暖房運転、除湿運転を行うもの
である。具体的に下流側熱交換器102と室外熱交換器
103との間に上流側熱交換器101を配した図4の冷
凍サイクル100では、冷房運転は図中→Cに示すよう
に、冷媒圧縮機の吐出した冷媒を、室外熱交換器103
→減圧装置104→上流側熱交換器101→下流側熱交
換器102の順に冷媒を流し、暖房運転時は図中→Hに
示すように、冷媒圧縮機の吐出した冷媒を、下流側熱交
換器102→上流側熱交換器101→減圧装置104→
室外熱交換器103の順に冷媒を流し、除湿運転時暖房
運転時は図中→Dに示すように、冷媒圧縮機の吐出した
冷媒を、下流側熱交換器102→減圧装置105→上流
側熱交換器101(→場合によっては室外熱交換器10
3)の順に冷媒を流す。また、上流側熱交換器101と
室外熱交換器103との間に下流側熱交換器102を配
した図5の冷凍サイクル100では、冷房運転時は図中
→Cに示すように、冷媒圧縮機の吐出した冷媒を、室外
熱交換器103→減圧装置104→下流側熱交換器10
2→上流側熱交換器101の順に冷媒を流し、暖房運転
時は図中→Hに示すように、冷媒圧縮機の吐出した冷媒
を、上流側熱交換器101→下流側熱交換器102→減
圧装置104→室外熱交換器103の順に冷媒を流し、
除湿運転時は図中→Dに示すように、冷媒圧縮機の吐出
した冷媒を、(場合によっては室外熱交換器103→)
下流側熱交換器102→減圧装置105→上流側熱交換
器101の順に冷媒を流す。
BACKGROUND OF THE INVENTION The inventors of the present invention have provided heat exchangers upstream and downstream of a duct that sends an air flow into a vehicle, using the upstream heat exchanger as a refrigerant evaporator, and the downstream heat exchanger. A technique for dehumidifying the room by using it as a refrigerant condenser has been proposed (not a known technique). The outline of this technology is
This will be described with reference to FIGS. 4 and 5. The refrigeration cycle 100 is
The upstream heat exchanger 101 and the downstream heat exchanger 10 described above.
In addition to 2, the outdoor heat exchanger 103 that absorbs heat during heating or discharges heat during heating is provided. And
In the refrigeration cycle 100, the upstream heat exchanger 101 is arranged between the downstream heat exchanger 102 and the outdoor heat exchanger 103 (FIG. 4), the upstream heat exchanger 101 and the outdoor heat exchanger 103. There was a device in which the downstream heat exchanger 102 was placed between the two (Fig. 5). The refrigeration cycle 100 switches the direction of the refrigerant discharged from the refrigerant compressor and the flow path of the refrigerant to perform indoor cooling operation, heating operation, and dehumidifying operation. Specifically, in the refrigeration cycle 100 of FIG. 4 in which the upstream heat exchanger 101 is arranged between the downstream heat exchanger 102 and the outdoor heat exchanger 103, the cooling operation is performed as shown by → C in the drawing. The refrigerant discharged from the machine is used as the outdoor heat exchanger 103.
The refrigerant is flowed in the order of the pressure reducing device 104, the upstream heat exchanger 101, and the downstream heat exchanger 102. During heating operation, the refrigerant discharged from the refrigerant compressor is transferred to the downstream heat exchanger as indicated by H in the figure. Vessel 102 → upstream heat exchanger 101 → pressure reducing device 104 →
Refrigerant is caused to flow in the order of the outdoor heat exchanger 103, and during the dehumidifying operation and the heating operation, the refrigerant discharged from the refrigerant compressor is transferred to the downstream heat exchanger 102 → the decompressor 105 → the upstream heat as shown by D in the figure. Exchanger 101 (→ Outdoor heat exchanger 10 in some cases
Refrigerant is caused to flow in the order of 3). Further, in the refrigeration cycle 100 of FIG. 5 in which the downstream heat exchanger 102 is arranged between the upstream heat exchanger 101 and the outdoor heat exchanger 103, during the cooling operation, the refrigerant compression is performed as indicated by → C in the drawing. The refrigerant discharged from the machine is converted into the outdoor heat exchanger 103, the pressure reducing device 104, and the downstream heat exchanger 10.
Refrigerant is caused to flow in the order of 2 → upstream side heat exchanger 101, and during heating operation, as shown by → H in the figure, the refrigerant discharged from the refrigerant compressor is transferred to the upstream side heat exchanger 101 → the downstream side heat exchanger 102 → Refrigerant is caused to flow in the order of the pressure reducing device 104 and the outdoor heat exchanger 103,
During the dehumidifying operation, as shown by → D in the figure, the refrigerant discharged from the refrigerant compressor is changed to (in some cases, the outdoor heat exchanger 103 →).
The refrigerant flows in the order of the downstream heat exchanger 102, the pressure reducing device 105, and the upstream heat exchanger 101.

【0003】[0003]

【発明が解決しようとする課題】上記に示す冷凍サイク
ル100の、各運転時における上流側熱交換器101と
下流側熱交換器102の機能を次の表1に示す。
The following Table 1 shows the functions of the upstream heat exchanger 101 and the downstream heat exchanger 102 in each operation of the refrigerating cycle 100 described above.

【表1】 上記技術に示した冷凍サイクル100は、上記の表1か
らも分かるように、冷房運転から暖房運転に切り替わる
と上流側熱交換器101が冷媒蒸発器から冷媒凝縮器へ
変化する。また、冷房運転から除湿運転に切り替わると
下流側熱交換器102が冷媒蒸発器から冷媒凝縮器へ変
化する。さらに、除湿運転から暖房運転に切り替わると
上流側熱交換器101が冷媒蒸発器から冷媒凝縮器へ変
化する。冷媒蒸発器から冷媒凝縮器へ変化すると、冷媒
蒸発器に付着したドレン水が冷媒凝縮器と変化したこと
により蒸発してダクトから室内へ吹き出される。特に、
自動車等の狭い室内では窓ガラスが曇る不具合が発生す
る。なお、冷房から暖房運転への切り替え、および冷房
から除湿運転への切り替えは、ほとんどない。しかる
に、除湿から暖房運転への切り替えは通常あり得るの
で、除湿から暖房運転へ切り替えても、ダクト内の熱交
換器が冷媒蒸発器から冷媒凝縮器へ変化しない冷凍サイ
クルが望まれている。
[Table 1] As can be seen from Table 1 above, in the refrigeration cycle 100 described in the above technique, when the cooling operation is switched to the heating operation, the upstream heat exchanger 101 changes from the refrigerant evaporator to the refrigerant condenser. Further, when the cooling operation is switched to the dehumidifying operation, the downstream heat exchanger 102 changes from the refrigerant evaporator to the refrigerant condenser. Further, when the dehumidifying operation is switched to the heating operation, the upstream heat exchanger 101 changes from the refrigerant evaporator to the refrigerant condenser. When the refrigerant evaporator is changed to the refrigerant condenser, the drain water attached to the refrigerant evaporator is evaporated due to the change to the refrigerant condenser and is blown out from the duct into the room. In particular,
In a small room such as an automobile, the window glass may become cloudy. Note that there is almost no switching from cooling to heating operation and switching from cooling to dehumidification operation. However, since switching from dehumidification to heating operation is usually possible, a refrigeration cycle in which the heat exchanger in the duct does not change from the refrigerant evaporator to the refrigerant condenser even when switching from dehumidification to heating operation is desired.

【0004】本発明の目的は、除湿から暖房運転へ切り
替えても、ダクト内の熱交換器が冷媒蒸発器から冷媒凝
縮器へ変化しない空気調和装置の提供にある。
An object of the present invention is to provide an air conditioner in which the heat exchanger in the duct does not change from a refrigerant evaporator to a refrigerant condenser even when switching from dehumidification to heating operation.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の空気調和装置は、次の技術的手段を採用す
る。本発明の空気調和装置は、室内への空気通路をなす
ダクトと、このダクトを介して室内へ空気を送る送風機
と、このダクトの内部に配設され、室内に送られる空気
と冷媒との熱交換を行う上流側熱交換器、前記ダクトの
内部で、前記上流側熱交換器の下流に配設され、室内へ
送られる空気と冷媒との熱交換を行う下流側熱交換器、
前記ダクトの外部に配設され、室外の空気と冷媒との熱
交換を行う室外熱交換器と、前記上流側熱交換器を冷媒
がバイパスするバイパス冷媒通路と、除湿運転時に前記
上流側熱交換器を冷媒蒸発器として使用し、前記下流側
熱交換器を冷媒凝縮器として使用し、暖房運転時に前記
バイパス冷媒通路によって冷媒が前記上流側熱交換器を
バイパスし、前記下流側熱交換器を冷媒凝縮器として使
用し、前記室外熱交換器を冷媒蒸発器として使用するよ
うに設けられる。
In order to achieve the above object, the air conditioner of the present invention employs the following technical means. The air conditioner of the present invention includes a duct that forms an air passage to the room, a blower that sends air to the room through the duct, and a heat of the air and the refrigerant that are arranged inside the duct and that is sent to the room. An upstream heat exchanger for exchanging, inside the duct, disposed downstream of the upstream heat exchanger, a downstream heat exchanger for exchanging heat between air and refrigerant sent to the room,
An outdoor heat exchanger arranged outside the duct for exchanging heat between outdoor air and a refrigerant, a bypass refrigerant passage through which the refrigerant bypasses the upstream heat exchanger, and the upstream heat exchange during dehumidifying operation. Used as a refrigerant evaporator, using the downstream heat exchanger as a refrigerant condenser, the refrigerant bypasses the upstream heat exchanger by the bypass refrigerant passage during heating operation, the downstream heat exchanger, It is provided to be used as a refrigerant condenser and the outdoor heat exchanger to be used as a refrigerant evaporator.

【0006】[0006]

【発明の作用】除湿運転が行われると、上流側熱交換器
は冷媒蒸発器として機能し、下流側熱交換器は冷媒凝縮
器として機能する。このため、ダクト内を流れる空気
は、上流側熱交換器を通過する際に熱を奪われ、冷却、
除湿される。上流側熱交換器で冷却された乾いた空気
は、下流側熱交換器を通過する際に加熱されて室内に吹
き出され、室内を除湿する。除湿運転から暖房運転に切
り替わると、バイパス冷媒通路によって冷媒が前記上流
側熱交換器をバイパスする。そして、下流側熱交換器が
冷媒凝縮器として機能し、室外熱交換器が冷媒蒸発器と
して機能する。このため、ダクト内を流れる空気は、下
流側熱交換器を通過する際に加熱されて室内に吹き出さ
れ、室内を暖房する。
When the dehumidifying operation is performed, the upstream heat exchanger functions as a refrigerant evaporator, and the downstream heat exchanger functions as a refrigerant condenser. Therefore, the air flowing in the duct is deprived of heat when passing through the upstream heat exchanger, and is cooled,
Dehumidified. The dry air cooled by the upstream heat exchanger is heated when passing through the downstream heat exchanger and blown out into the room to dehumidify the room. When the dehumidifying operation is switched to the heating operation, the bypass refrigerant passage causes the refrigerant to bypass the upstream heat exchanger. The downstream heat exchanger functions as a refrigerant condenser, and the outdoor heat exchanger functions as a refrigerant evaporator. Therefore, the air flowing in the duct is heated when passing through the downstream heat exchanger and is blown out into the room to heat the room.

【0007】[0007]

【発明の効果】本発明の空気調和装置は、上記の作用で
示したように、除湿運転から暖房運転に切り替えられて
も、上流側熱交換器は冷媒蒸発器から冷媒凝縮器へ切り
替わらない。このため、除湿運転から暖房運転に切り替
えられても、除湿運転時に上流側熱交換器に付着したド
レン水が蒸発しないため、湿度の高い空気が室内に吹き
出される不具合をなくすことができる。
As described above, the air conditioner of the present invention does not switch the upstream heat exchanger from the refrigerant evaporator to the refrigerant condenser even when the dehumidifying operation is switched to the heating operation. Therefore, even if the dehumidifying operation is switched to the heating operation, the drain water adhering to the upstream heat exchanger does not evaporate during the dehumidifying operation, so that it is possible to eliminate the problem that high-humidity air is blown into the room.

【0008】[0008]

【実施例】次に、本発明の空気調和装置を、自動車用空
気調和装置に適用した実施例に基づき説明する。 〔実施例の構成〕図1および図4は本発明の実施例を示
すもので、図1は空気調和装置の冷媒回路図、図2は空
気調和装置の室内ユニットの概略構成図である。室内ユ
ニット1は、車室内に向けて空気を送る空気通路をなす
ダクト2を備える。このダクト2は、車室内に配置さ
れ、ダクト2の一端には、内外気切替手段3を備えた送
風機4が接続されている。内外気切替手段3は、車室内
と連通して車室内の空気(内気)を導入する内気導入口
5と、車室外と連通して車室外の空気(外気)を導入す
る外気導入口6とを備える。そして、内外気切替手段3
は、内外気切替ダンパ7を備え、この内外気切替ダンパ
7により、ダクト2内に導かれる空気を内気と外気とで
切り替えることができる。送風機4は、ファンケース
8、ファン9、モータ10からなり、モータ10は通電
を受けるとファン9を回転し、内気または外気をダクト
2を介して室内へ送る。
Next, the air conditioner of the present invention will be described based on an embodiment applied to an automobile air conditioner. [Configuration of Embodiment] FIGS. 1 and 4 show an embodiment of the present invention. FIG. 1 is a refrigerant circuit diagram of an air conditioner, and FIG. 2 is a schematic configuration diagram of an indoor unit of the air conditioner. The indoor unit 1 includes a duct 2 that forms an air passage for sending air toward the passenger compartment. The duct 2 is arranged in the vehicle compartment, and one end of the duct 2 is connected to a blower 4 having an inside / outside air switching unit 3. The inside / outside air switching means 3 includes an inside air inlet 5 that communicates with the inside of the vehicle and introduces air inside the vehicle (inside air), and an outside air inlet 6 that communicates with the outside of the vehicle and introduces air outside the vehicle (outside air). Equipped with. Then, the inside / outside air switching means 3
Includes an inside / outside air switching damper 7, and the inside / outside air switching damper 7 can switch the air guided into the duct 2 between the inside air and the outside air. The blower 4 is composed of a fan case 8, a fan 9 and a motor 10. When the motor 10 is energized, the fan 9 rotates and sends the inside air or the outside air to the room through the duct 2.

【0009】ダクト2の他端には、ダクト2内を通過し
た空気を車室内の各部に向けて吹き出す吹出口が形成さ
れている。この吹出口は、乗員の頭胸部に向けて主に冷
風を吹き出すベンチレーション吹出口11と、乗員の足
元に向けて主に温風を吹き出すフット吹出口12と、窓
ガラスに向けて主に温風を吹き出すデフロスタ吹出口1
3とからなる。そして、ダクト2内には、各吹出口へ通
じる空気通路に、各吹出口への空気流を制御するベンチ
レーションダンパ14、フットダンパ15、およびデフ
ロスタダンパ16が設けられている。
At the other end of the duct 2, there is formed an air outlet for blowing out the air passing through the duct 2 toward each part in the passenger compartment. This air outlet is a ventilation air outlet 11 that mainly blows cold air toward the occupant's head and chest, a foot air outlet 12 that mainly blows warm air toward the occupant's feet, and a hot air outlet mainly toward the window glass. Defroster outlet 1 that blows out the wind
3 and 3. A ventilation damper 14, a foot damper 15, and a defroster damper 16 that control the air flow to each outlet are provided in the duct 2 in an air passage communicating with each outlet.

【0010】また、ダクト2内には、冷媒と空気との熱
交換を行う冷凍サイクル17の上流側熱交換器18が配
設されている。本実施例の上流側熱交換器18は、ダク
ト2内の空気が全量通過するように設けられている。こ
の上流側熱交換器18の下流には、冷媒と空気との熱交
換を行う冷凍サイクル17の下流側熱交換器19が配設
されている。本実施例の下流側熱交換器19は、上流側
熱交換器18と同様、ダクト2内の空気が全量通過する
ように設けられている。この下流側熱交換器19の下流
には、補助ヒータ20が設けられている。この補助ヒー
タ20は、PTCヒータなどの電気ヒータで、通電量に
応じて発熱し、ダクト2内を流れる空気を加熱する。
Further, in the duct 2, an upstream heat exchanger 18 of the refrigeration cycle 17 for exchanging heat between the refrigerant and air is arranged. The upstream heat exchanger 18 of the present embodiment is provided so that all the air in the duct 2 passes through. Downstream of the upstream heat exchanger 18, a downstream heat exchanger 19 of the refrigeration cycle 17 that exchanges heat between the refrigerant and air is arranged. Like the upstream heat exchanger 18, the downstream heat exchanger 19 of the present embodiment is provided so that all the air in the duct 2 passes through. An auxiliary heater 20 is provided downstream of the downstream heat exchanger 19. The auxiliary heater 20 is an electric heater such as a PTC heater and heats the air flowing in the duct 2 by generating heat according to the amount of energization.

【0011】本実施例に示す冷凍サイクル17は、アキ
ュムレータサイクルで、上述の上流側熱交換器18およ
び下流側熱交換器19の他に、室外熱交換器21、冷媒
圧縮機22、冷房用減圧装置23、暖房用減圧装置2
4、除湿用減圧装置25、アキュムレータ26、および
冷媒の流れ方向を切り替える流路切替手段を備え、冷媒
配管27によって接続されたものである。室外熱交換器
21は、ダクト2の外部において車室外の空気と冷媒と
の熱交換を行うもので、下流側熱交換器19との間に上
流側熱交換器18を冷媒配管27で接続する。なお、室
外熱交換器21は、車両の走行によって生じる走行風の
当たる位置に設けられている。冷媒圧縮機22は、冷媒
の吸入、圧縮、吐出を行うもので、図示しない電動モー
タにより駆動される。この冷媒圧縮機22は、例えば電
動モータと一体的に密封ケース内に配置される。電動モ
ータは、インバータ制御によって回転速度が連続的ある
いは段階的に可変するもので、電動モータの回転速度の
変化によって、冷媒圧縮機22の冷媒吐出容量が変化す
る。なお、本実施例では、冷媒圧縮機22の回転速度の
変化による容量変化により、吹き出し温度の制御を行う
ものである。冷房用減圧装置23および暖房用減圧装置
24は、上流側熱交換器18と室外熱交換器21とを結
ぶ冷媒配管27中に設けられた固定絞りのキャピラリチ
ューブで、冷房用減圧装置23が上流側熱交換器18側
に設けられ、暖房用減圧装置24が室外熱交換器21側
に設けられている。そして、冷房用減圧装置23は室外
熱交換器21から上流側熱交換器18へ流入する冷媒を
減圧膨張し、暖房用減圧装置24は上流側熱交換器18
から室外熱交換器21へ流入する冷媒を減圧膨張する。
除湿用減圧装置25は、上流側熱交換器18と下流側熱
交換器19とを結ぶ冷媒配管27中に設けられた固定絞
りのキャピラリチューブで、除湿運転時に下流側熱交換
器19から上流側熱交換器18へ流入する冷媒を減圧膨
張する。アキュムレータ26は、冷凍サイクル内の余剰
冷媒を蓄えるとともに、冷媒圧縮機22に気相冷媒を送
り、液冷媒が冷媒圧縮機22に吸い込まれるのを防ぐよ
うに設けられている。
The refrigerating cycle 17 shown in this embodiment is an accumulator cycle and is an outdoor heat exchanger 21, a refrigerant compressor 22 and a cooling decompression in addition to the upstream heat exchanger 18 and the downstream heat exchanger 19 described above. Device 23, decompression device 2 for heating
4, a dehumidifying decompression device 25, an accumulator 26, and a flow path switching means for switching the flow direction of the refrigerant, which are connected by a refrigerant pipe 27. The outdoor heat exchanger 21 performs heat exchange between the air outside the vehicle compartment and the refrigerant outside the duct 2, and the upstream heat exchanger 18 is connected to the downstream heat exchanger 19 by the refrigerant pipe 27. .. The outdoor heat exchanger 21 is provided at a position where traveling wind generated by traveling of the vehicle is hit. The refrigerant compressor 22 sucks, compresses, and discharges the refrigerant, and is driven by an electric motor (not shown). The refrigerant compressor 22 is arranged, for example, integrally with an electric motor in a sealed case. The rotation speed of the electric motor is variable continuously or stepwise by inverter control, and the refrigerant discharge capacity of the refrigerant compressor 22 changes according to the change of the rotation speed of the electric motor. In this embodiment, the outlet temperature is controlled by changing the capacity of the refrigerant compressor 22 due to the change in rotation speed. The cooling decompression device 23 and the heating decompression device 24 are fixed-throttle capillary tubes provided in a refrigerant pipe 27 connecting the upstream heat exchanger 18 and the outdoor heat exchanger 21, and the cooling decompression device 23 is upstream. It is provided on the side heat exchanger 18 side, and the heating decompression device 24 is provided on the outdoor heat exchanger 21 side. Then, the cooling decompression device 23 decompresses and expands the refrigerant flowing from the outdoor heat exchanger 21 to the upstream heat exchanger 18, and the heating decompression device 24.
The refrigerant flowing into the outdoor heat exchanger 21 is decompressed and expanded.
The dehumidifying decompression device 25 is a fixed-throttle capillary tube provided in the refrigerant pipe 27 that connects the upstream heat exchanger 18 and the downstream heat exchanger 19, and is used from the downstream heat exchanger 19 to the upstream side during dehumidification operation. The refrigerant flowing into the heat exchanger 18 is decompressed and expanded. The accumulator 26 stores the excess refrigerant in the refrigeration cycle, sends the gas-phase refrigerant to the refrigerant compressor 22, and prevents the liquid refrigerant from being sucked into the refrigerant compressor 22.

【0012】冷媒の流路切替手段は、冷房運転時、暖房
運転時および除湿運転時とで、冷媒の流れ方向を切り替
える。具体的には、冷房運転時と他の運転時とで、冷媒
圧縮機22の吐出方向を切り替える四方弁28、冷房運
転時に暖房用減圧装置24および除湿用減圧装置25を
バイパスさせる逆止弁29、30、暖房運転時に冷房用
減圧装置23をバイパスさせる逆止弁31、暖房運転時
のみ開かれて上流側熱交換器18および除湿用減圧装置
25をバイパスさせる第1電磁開閉弁32、除湿運転時
のみ開かれて上流側熱交換器18を流出した冷媒を冷媒
圧縮機22へバイパスさせる第2電磁開閉弁33を備え
てなる。なお、第1電磁開閉弁32を介して上流側熱交
換器18および除湿用減圧装置25をバイパスさせる冷
媒配管27は、暖房運転時に上流側熱交換器18をバイ
パスする本発明にかかるバイパス冷媒通路34である。
The refrigerant flow path switching means switches the flow direction of the refrigerant between the cooling operation, the heating operation and the dehumidifying operation. Specifically, a four-way valve 28 that switches the discharge direction of the refrigerant compressor 22 between the cooling operation and another operation, and a check valve 29 that bypasses the heating decompression device 24 and the dehumidification decompression device 25 during the cooling operation. , 30, a check valve 31 for bypassing the cooling pressure reducing device 23 during the heating operation, a first electromagnetic opening / closing valve 32 which is opened only during the heating operation and bypasses the upstream heat exchanger 18 and the dehumidifying pressure reducing device 25, the dehumidifying operation A second electromagnetic opening / closing valve 33 is provided for bypassing the refrigerant that is opened only at a time and flows out of the upstream heat exchanger 18 to the refrigerant compressor 22. The refrigerant pipe 27 that bypasses the upstream heat exchanger 18 and the dehumidifying decompression device 25 via the first electromagnetic opening / closing valve 32 is a bypass refrigerant passage according to the present invention that bypasses the upstream heat exchanger 18 during heating operation. 34.

【0013】そして、流路切替手段は、冷房運転時、暖
房運転時および除湿運転時に応じて、次のように冷媒の
流れを切り替える。冷房運転時は、冷媒圧縮機22の吐
出した冷媒を、四方弁28→室外熱交換器21→冷房用
減圧装置23→上流側熱交換器18→下流側熱交換器1
9→四方弁28→アキュムレータ26→冷媒圧縮機22
の順に流す(図中矢印C参照)。暖房運転時は、冷媒圧
縮機22の吐出した冷媒を、四方弁28→下流側熱交換
器19→バイパス冷媒通路34→暖房用減圧装置24→
室外熱交換器21→四方弁28→アキュムレータ26→
冷媒圧縮機22の順に流す(図中矢印H参照)。除湿運
転時は、冷媒圧縮機22の吐出した冷媒を、四方弁28
→下流側熱交換器19→除湿用減圧装置25→上流側熱
交換器18→アキュムレータ26→冷媒圧縮機22の順
に流す(図中矢印D参照)。
The flow path switching means switches the flow of the refrigerant as follows in accordance with the cooling operation, the heating operation and the dehumidifying operation. During the cooling operation, the refrigerant discharged from the refrigerant compressor 22 is supplied with the four-way valve 28 → the outdoor heat exchanger 21 → the cooling decompressor 23 → the upstream heat exchanger 18 → the downstream heat exchanger 1
9 → four-way valve 28 → accumulator 26 → refrigerant compressor 22
Flow in that order (see arrow C in the figure). During the heating operation, the refrigerant discharged from the refrigerant compressor 22 is transferred to the four-way valve 28 → the downstream heat exchanger 19 → the bypass refrigerant passage 34 → the heating decompression device 24 →
Outdoor heat exchanger 21 → four-way valve 28 → accumulator 26 →
It flows in order of the refrigerant compressor 22 (see arrow H in the figure). During the dehumidifying operation, the refrigerant discharged from the refrigerant compressor 22 is supplied to the four-way valve 28.
-> Downstream heat exchanger 19-> Dehumidifying decompression device 25-> Upstream heat exchanger 18-> Accumulator 26-> Refrigerant compressor 22 (see arrow D in the figure).

【0014】上記各運転時における上流側熱交換器18
と下流側熱交換器19の機能を次の表2に示す。
The upstream heat exchanger 18 during each of the above operations
The function of the downstream heat exchanger 19 is shown in Table 2 below.

【表2】 [Table 2]

【0015】〔実施例の作動〕次に、本発明にかかる除
湿運転から暖房運転への切り替えの作動を、簡単に説明
する。使用者によって除湿運転が設定されると、内外気
切替手段3で選択された外気あるいは内気を送風機4が
ダクト2内に吸引し、上流側熱交換器18、下流側熱交
換器19、補助ヒータ20を介して、選択された吹出口
から、車室内へ吹き出す。除湿運転時の冷凍サイクル1
7は、冷媒圧縮機22の吐出した高温高圧の冷媒が、四
方弁28によって下流側熱交換器19に導かれる。ここ
で冷媒は、ダクト2内を流れる空気と熱交換し、ダクト
2内の空気を加熱するとともに、下流側熱交換器19内
で液化凝縮する。液化した冷媒は、除湿用減圧装置25
を通過する際に減圧膨張し、低温低圧の霧状となる。こ
の霧状冷媒は、上流側熱交換器18へ流入して、ダクト
2内を流れる空気より熱を奪って蒸発する。そして、気
化した冷媒は、第2電磁開閉弁33およびアキュムレー
タ26を介して冷媒圧縮機22に再吸入される。ダクト
2内に吸引された空気は、上流側熱交換器18を通過す
る際に、温度の低下により空気中の蒸気が凝縮して上流
側熱交換器18に付着する。その後、下流側熱交換器1
9を通過する際に加熱されるため、空気中の湿度を大幅
に低下させた空気を車室内に吹き出し、車室内の良好な
除湿を行う。
[Operation of Embodiment] Next, the operation of switching from the dehumidifying operation to the heating operation according to the present invention will be briefly described. When the dehumidifying operation is set by the user, the blower 4 sucks the outside air or the inside air selected by the inside / outside air switching means 3 into the duct 2, and the upstream side heat exchanger 18, the downstream side heat exchanger 19, and the auxiliary heater. It blows out into the vehicle interior from the selected outlet through 20. Refrigeration cycle 1 during dehumidification operation
The high-temperature high-pressure refrigerant discharged from the refrigerant compressor 22 is guided to the downstream heat exchanger 19 by the four-way valve 28. Here, the refrigerant exchanges heat with the air flowing in the duct 2, heats the air in the duct 2, and liquefies and condenses in the downstream heat exchanger 19. The liquefied refrigerant is used in the dehumidifying decompression device 25.
When passing through, it expands under reduced pressure and becomes a mist at low temperature and low pressure. The atomized refrigerant flows into the upstream heat exchanger 18, takes heat from the air flowing in the duct 2 and evaporates. Then, the vaporized refrigerant is re-sucked into the refrigerant compressor 22 via the second electromagnetic opening / closing valve 33 and the accumulator 26. When the air sucked into the duct 2 passes through the upstream heat exchanger 18, the vapor in the air is condensed due to the decrease in temperature and adheres to the upstream heat exchanger 18. After that, the downstream heat exchanger 1
Since the air is heated when passing through 9, the air in which the humidity in the air is significantly reduced is blown into the vehicle interior to perform good dehumidification in the vehicle interior.

【0016】使用者によって除湿運転から暖房運転に切
替えられると、下流側熱交換器19で液化凝縮した液冷
媒は、バイパス冷媒通路34を通って上流側熱交換器1
8をバイパスする。上流側熱交換器18をバイパスした
液化した冷媒は、暖房用減圧装置24を通過する際に減
圧膨張し、低温低圧の霧状となる。この霧状冷媒は、室
外熱交換器21へ流入して外気より熱を奪って蒸発し、
四方弁28およびアキュムレータ26を介して冷媒圧縮
機22に再吸入される。ダクト2内に吸引された空気
は、下流側熱交換器19を通過する際に高温の冷媒によ
って加熱されて車室内に吹き出され、車室内の暖房を行
う。
When the user switches from the dehumidifying operation to the heating operation, the liquid refrigerant liquefied and condensed in the downstream heat exchanger 19 passes through the bypass refrigerant passage 34 and the upstream heat exchanger 1
Bypass 8. The liquefied refrigerant that has bypassed the upstream heat exchanger 18 expands under reduced pressure when passing through the heating decompression device 24, and becomes a low-temperature low-pressure mist. This atomized refrigerant flows into the outdoor heat exchanger 21, takes heat from the outside air and evaporates,
It is re-sucked into the refrigerant compressor 22 via the four-way valve 28 and the accumulator 26. The air sucked into the duct 2 is heated by the high-temperature refrigerant when passing through the downstream heat exchanger 19, and is blown into the vehicle interior to heat the vehicle interior.

【0017】〔実施例の効果〕本実施例では、上記に示
したように、除湿運転から暖房運転に切り替えられて
も、上流側熱交換器18は冷媒蒸発器から休止状態へ切
り替わり、冷媒凝縮器へは切り替わらない。このため、
除湿運転から暖房運転に切り替えられても、除湿運転時
に上流側熱交換器18に付着したドレン水が蒸発しない
ため、湿度の高い空気が室内に吹き出されて車両の窓ガ
ラスが曇る不具合をなくすことができる。なお、冷房運
転から除湿運転へ切り替えると、下流側熱交換器19が
冷媒蒸発器から冷媒凝縮器に切り替わるが、冷房運転時
は窓ガラスが曇ることは通常ないので、冷房運転から除
湿運転に切り替える必要な場合は、ほとんど無い。つま
り、冷房運転から除湿運転へ切り替えると、下流側熱交
換器19が冷媒蒸発器から冷媒凝縮器に切り替わるが、
実質的な不具合はあまり無い。また、冷房運転から暖房
運転へ切り替えると、下流側熱交換器19が冷媒蒸発器
から冷媒凝縮器に切り替わるが、発明の背景で示した技
術のように、上流、下流の2つの熱交換器がともに冷媒
蒸発器から冷媒凝縮器に切り替わるのに比較して、一方
の下流側熱交換器19のみが切り替わるだけである(こ
の場合、暖房能力を徐々に上げるように設けると良
い)。また、ドレン水のほとんどは上流側熱交換器18
に付着し、下流側熱交換器19にはあまりドレン水は付
着しない。このため、発明の背景で示した技術より、本
実施例のほうが、吹き出し空気の湿度を低く抑えること
ができる。なお、冷房運転から暖房運転へ切り替える場
合もほとんどなく、実質的な不具合はあまり無い。本実
施例の空気調和装置は、空気調和装置以外の熱源を利用
しないため、電気自動車のように余剰熱源を有しない自
動車に適している。
[Effects of Embodiment] In the present embodiment, as described above, even when the dehumidifying operation is switched to the heating operation, the upstream heat exchanger 18 is switched from the refrigerant evaporator to the idle state and the refrigerant is condensed. It does not switch to a vessel. For this reason,
Even if the dehumidifying operation is switched to the heating operation, the drain water adhering to the upstream heat exchanger 18 does not evaporate during the dehumidifying operation, so that there is no problem that humid air is blown into the room and the window glass of the vehicle becomes cloudy. You can When the cooling operation is switched to the dehumidifying operation, the downstream heat exchanger 19 is switched from the refrigerant evaporator to the refrigerant condenser. However, since the window glass is not normally fogged during the cooling operation, the cooling operation is switched to the dehumidifying operation. If needed, almost never. That is, when the cooling operation is switched to the dehumidifying operation, the downstream heat exchanger 19 is switched from the refrigerant evaporator to the refrigerant condenser.
There are not many practical defects. Further, when the cooling operation is switched to the heating operation, the downstream side heat exchanger 19 is switched from the refrigerant evaporator to the refrigerant condenser. However, as in the technique shown in the background of the invention, two heat exchangers on the upstream side and the downstream side are exchanged. Compared with both switching from the refrigerant evaporator to the refrigerant condenser, only one downstream heat exchanger 19 is switched (in this case, the heating capacity may be gradually increased). Most of the drain water is on the upstream heat exchanger 18
The drain water does not adhere much to the downstream heat exchanger 19. Therefore, the humidity of the blown air can be suppressed lower in the present embodiment than in the technique shown in the background of the invention. In addition, there is almost no case where the cooling operation is switched to the heating operation, and there are not many practical problems. The air conditioner of the present embodiment does not use a heat source other than the air conditioner, and thus is suitable for a vehicle that does not have a surplus heat source such as an electric vehicle.

【0018】〔他の実施例〕図3は他の実施例を示す冷
媒回路図である。上記の実施例では、下流側熱交換器1
9と室外熱交換器21との間に上流側熱交換器18を冷
媒配管27で接続した冷凍サイクル17を示したが、本
実施例では、上流側熱交換器18と室外熱交換器21と
の間に下流側熱交換器19を冷媒配管27で接続する冷
凍サイクル17を示す。また、上記の実施例では冷房用
減圧装置(上記実施例参照)と暖房用減圧装置(上記実
施例参照)をそれぞれに設けた例を示したが、本実施例
では共通化した共通減圧装置35とした。
[Other Embodiments] FIG. 3 is a refrigerant circuit diagram showing another embodiment. In the above embodiment, the downstream heat exchanger 1
9 shows the refrigeration cycle 17 in which the upstream heat exchanger 18 is connected to the outdoor heat exchanger 21 by the refrigerant pipe 27. However, in this embodiment, the upstream heat exchanger 18 and the outdoor heat exchanger 21 are connected to each other. The refrigeration cycle 17 in which the downstream heat exchanger 19 is connected by the refrigerant pipe 27 during the period is shown. Further, in the above embodiment, an example in which the cooling decompression device (see the above embodiment) and the heating decompression device (see the above embodiment) are provided respectively is shown, but in this embodiment, the common decompression device 35 is common. And

【0019】本実施例の流路切替手段は、冷房運転時と
他の運転時とで冷媒圧縮機22の吐出方向を切り替える
四方弁28、冷房運転時および暖房運転時に開かれて除
湿用減圧装置25をバイパスさせる第3電磁開閉弁3
6、暖房運転時に上流側熱交換器18をバイパスさせる
逆止弁37、38、除湿運転時のみ開かれて室外熱交換
器21をよび共通減圧装置35をバイパスさせる第4電
磁開閉弁39を備えてなる。そして、流路切替手段は、
冷房運転時、暖房運転時および除湿運転時に応じて、次
のように冷媒の流れを切り替える。冷房運転時は、冷媒
圧縮機22の吐出した冷媒を、四方弁28→室外熱交換
器21→共通減圧装置35→下流側熱交換器19→第3
電磁開閉弁36→上流側熱交換器18→四方弁28→ア
キュムレータ26→冷媒圧縮機22の順に流す(図中矢
印C参照)。暖房運転時は、冷媒圧縮機22の吐出した
冷媒を、四方弁28→バイパス冷媒通路34→下流側熱
交換器19→共通減圧装置35→室外熱交換器21→四
方弁28→アキュムレータ26→冷媒圧縮機22の順に
流す(図中矢印H参照)。除湿運転時は、冷媒圧縮機2
2の吐出した冷媒を、四方弁28→第4電磁開閉弁39
→下流側熱交換器19→除湿用減圧装置25→上流側熱
交換器18→四方弁28→アキュムレータ26→冷媒圧
縮機22の順に流す(図中矢印D参照)。
The flow path switching means of this embodiment is a four-way valve 28 that switches the discharge direction of the refrigerant compressor 22 between the cooling operation and other operations, and is opened during the cooling operation and the heating operation to decompress the dehumidifying device. Third solenoid on-off valve 3 for bypassing 25
6. Provided with check valves 37 and 38 for bypassing the upstream heat exchanger 18 during the heating operation, and a fourth electromagnetic opening / closing valve 39 which is opened only during the dehumidifying operation to bypass the outdoor heat exchanger 21 and the common pressure reducing device 35. It becomes. And the flow path switching means is
The refrigerant flow is switched as follows depending on the cooling operation, the heating operation, and the dehumidifying operation. During the cooling operation, the refrigerant discharged from the refrigerant compressor 22 is supplied with the four-way valve 28, the outdoor heat exchanger 21, the common pressure reducing device 35, the downstream heat exchanger 19, and the third heat exchanger.
The electromagnetic on-off valve 36, the upstream heat exchanger 18, the four-way valve 28, the accumulator 26, and the refrigerant compressor 22 are passed in this order (see arrow C in the figure). During the heating operation, the refrigerant discharged from the refrigerant compressor 22 is supplied with the four-way valve 28 → the bypass refrigerant passage 34 → the downstream heat exchanger 19 → the common pressure reducing device 35 → the outdoor heat exchanger 21 → the four-way valve 28 → the accumulator 26 → the refrigerant. Flow in the order of the compressor 22 (see arrow H in the figure). During the dehumidifying operation, the refrigerant compressor 2
The discharged refrigerant of 2 is transferred from the four-way valve 28 to the fourth solenoid on-off valve 39.
-> Downstream heat exchanger 19-> Dehumidifying decompression device 25-> Upstream heat exchanger 18-> Four-way valve 28-> Accumulator 26-> Refrigerant compressor 22 (see arrow D in the figure).

【0020】〔変形例〕除湿運転から暖房運転への切替
がなされた場合は、暖房能力を徐々に上げるように設け
ても良い。上記の実施例では、除湿運転時に室外熱交換
器を冷媒がバイパスするように設けた例を示したが、室
外熱交換器に冷媒を通しても良い。上記の例では上流側
熱交換器(下流側熱交換器)と室外熱交換器とを直列に
冷媒配管で連結したが、必要に応じ並列配管するように
しても良い。
[Modification] When the dehumidifying operation is switched to the heating operation, the heating capacity may be gradually increased. In the above-described embodiment, the example in which the outdoor heat exchanger is provided so as to bypass the refrigerant during the dehumidifying operation is shown, but the refrigerant may be passed through the outdoor heat exchanger. In the above example, the upstream heat exchanger (downstream heat exchanger) and the outdoor heat exchanger are connected in series by the refrigerant pipe, but they may be connected in parallel if necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】空気調和装置の冷媒回路図である(実施例)。FIG. 1 is a refrigerant circuit diagram of an air conditioner (example).

【図2】室内ユニットの概略構成図である。FIG. 2 is a schematic configuration diagram of an indoor unit.

【図3】空気調和装置の冷媒回路図である(他の実施
例)。
FIG. 3 is a refrigerant circuit diagram of the air conditioner (another embodiment).

【図4】空気調和装置の冷媒回路図である(提案技
術)。
FIG. 4 is a refrigerant circuit diagram of the air conditioner (proposed technology).

【図5】空気調和装置の冷媒回路図である(他の提案技
術)。
FIG. 5 is a refrigerant circuit diagram of the air conditioner (another proposed technique).

【符号の説明】[Explanation of symbols]

2 ダクト 4 送風機 17 冷凍サイクル 18 上流側熱交換器 19 下流側熱交換器 21 室外熱交換器 27 冷媒配管 34 バイパス冷媒通路 2 Duct 4 Blower 17 Refrigeration cycle 18 Upstream heat exchanger 19 Downstream heat exchanger 21 Outdoor heat exchanger 27 Refrigerant pipe 34 Bypass refrigerant passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a) 室内への空気通路をなすダクトと、 (b) このダクトを介して室内へ空気を送る送風機と、 (c) (c-1) このダクトの内部に配設され、室内に送られ
る空気と冷媒との熱交換を行う上流側熱交換器、 (c-2) 前記ダクトの内部で、前記上流側熱交換器の下流
に配設され、室内へ送られる空気と冷媒との熱交換を行
う下流側熱交換器、 (c-3) 前記ダクトの外部に配設され、室外の空気と冷媒
との熱交換を行う室外熱交換器と、 (d)前記上流側熱交換器を冷媒がバイパスするバイパ
ス冷媒通路と、 (e)除湿運転時に前記上流側熱交換器を冷媒蒸発器と
して使用し、前記下流側熱交換器を冷媒凝縮器として使
用し、 (f)暖房運転時に前記バイパス冷媒通路によって冷媒
が前記上流側熱交換器をバイパスし、前記下流側熱交換
器を冷媒凝縮器として使用し、前記室外熱交換器を冷媒
蒸発器として使用するように設けられたことを特徴とす
る空気調和装置。
1. (a) a duct forming an air passage to the room; (b) a blower for sending air to the room through the duct; (c) (c-1) disposed inside the duct. An upstream heat exchanger for exchanging heat between the air sent to the room and the refrigerant, (c-2), inside the duct, disposed downstream of the upstream heat exchanger, and sent to the room. A downstream heat exchanger for exchanging heat with the refrigerant, (c-3) an outdoor heat exchanger arranged outside the duct for exchanging heat between the outdoor air and the refrigerant, and (d) the upstream side. A bypass refrigerant passage through which the refrigerant bypasses the heat exchanger, and (e) the upstream heat exchanger is used as a refrigerant evaporator during the dehumidifying operation, and the downstream heat exchanger is used as a refrigerant condenser, (f) During the heating operation, the bypass refrigerant passage allows the refrigerant to bypass the upstream heat exchanger and cool the downstream heat exchanger. Use as vessel, an air conditioning apparatus, characterized in that provided for use as a refrigerant evaporator to the outdoor heat exchanger.
JP1010292A 1992-01-23 1992-01-23 Air conditioning apparatus Pending JPH05203274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010292A JPH05203274A (en) 1992-01-23 1992-01-23 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010292A JPH05203274A (en) 1992-01-23 1992-01-23 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH05203274A true JPH05203274A (en) 1993-08-10

Family

ID=11740959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010292A Pending JPH05203274A (en) 1992-01-23 1992-01-23 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH05203274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186709A (en) * 1993-12-24 1995-07-25 Matsushita Electric Ind Co Ltd Heat pump air-conditioning/heating and dehumidifying equipment for electric vehicle
EP0678409A1 (en) * 1994-04-21 1995-10-25 Nippondenso Co., Ltd. Air-conditioning apparatus
US10955149B2 (en) 2016-07-25 2021-03-23 Carrier Corporation Dehumidification system for heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186709A (en) * 1993-12-24 1995-07-25 Matsushita Electric Ind Co Ltd Heat pump air-conditioning/heating and dehumidifying equipment for electric vehicle
EP0678409A1 (en) * 1994-04-21 1995-10-25 Nippondenso Co., Ltd. Air-conditioning apparatus
US10955149B2 (en) 2016-07-25 2021-03-23 Carrier Corporation Dehumidification system for heat pump

Similar Documents

Publication Publication Date Title
JP2979802B2 (en) Air conditioner
JP3966044B2 (en) Air conditioner
JP3799748B2 (en) Air conditioner for vehicles
JP3939445B2 (en) Air conditioner for automobile
JP3246250B2 (en) Heat pump air conditioner dehumidifier for electric vehicles
JPH05178068A (en) Air conditioner for vehicle
JPH0596940A (en) Air-conditioning device for electrically driven automobile
JP3433297B2 (en) Air conditioner
WO2018173544A1 (en) Air-conditioning device
JP4056151B2 (en) Heat pump air conditioner
JPH05203274A (en) Air conditioning apparatus
JP3929606B2 (en) Air conditioner for automobile
JPS60219114A (en) Air conditioner for automobile
JPH06147690A (en) Air conditioning apparatus
JPH1053022A (en) Air-conditioning device for vehicle
JP2536172B2 (en) Heat pump system
JPH0596931A (en) Vehicle air-conditioning device
JP3265842B2 (en) Heat pump air conditioner dehumidifier for electric vehicles
JP3684673B2 (en) Air conditioner for bus
JPH0781387A (en) Air-conditioner for vehicle
JP3812042B2 (en) Air conditioner for electric vehicles
JP3156256B2 (en) Automotive air conditioners
JP3293141B2 (en) Automotive air conditioners
JPH10264647A (en) Air conditioner for vehicle
JPH06185829A (en) Air conditioner for vehicle