JPH05203130A - Heat reactor - Google Patents
Heat reactorInfo
- Publication number
- JPH05203130A JPH05203130A JP4032972A JP3297292A JPH05203130A JP H05203130 A JPH05203130 A JP H05203130A JP 4032972 A JP4032972 A JP 4032972A JP 3297292 A JP3297292 A JP 3297292A JP H05203130 A JPH05203130 A JP H05203130A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- barrier
- combustion chamber
- passage
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Incineration Of Waste (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、廃棄物等を燃焼させる
熱反応炉に係り、特に火床からの未燃ガスと二次空気と
の混合を向上させ、未燃カーボン、流動媒体等の炉外へ
の飛散を抑制できる熱反応炉に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal reaction furnace for burning wastes, etc., and particularly for improving mixing of unburned gas from a fire bed with secondary air, and The present invention relates to a thermal reaction furnace capable of suppressing scattering outside the furnace.
【0002】[0002]
【従来の技術】従来、廃棄物等の燃焼における未燃ガス
を抑制する技術としては、種々のものが提案されてい
る。例えば、特開昭63−279013号公報には、
「流動床焼却炉のNOx及び未燃ガス抑制装置」が記載
されている。上記の技術は、燃焼室を横断して中空障壁
が配置され、炉側壁と障壁との間の開口部を上昇する燃
焼ガスによって生じる渦流により、前記中空障壁の噴出
孔から噴出する酸素と未燃ガスとの混合を促進させ、未
燃ガス等の有害物質の排出を抑制している。2. Description of the Related Art Conventionally, various techniques have been proposed as a technique for suppressing unburned gas in combustion of wastes and the like. For example, in Japanese Patent Laid-Open No. 63-279013,
"NOx and unburned gas suppressor of fluidized bed incinerator" is described. According to the above technique, a hollow barrier is arranged across the combustion chamber, and the vortex flow generated by the combustion gas rising in the opening between the furnace side wall and the barrier causes oxygen and unburned gas to be ejected from the ejection holes of the hollow barrier. It promotes mixing with gas and suppresses the emission of harmful substances such as unburned gas.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記技
術も酸素(二次空気)と未燃ガスの混合は、噴出空気の
貫通力(二次空気の吹き込み流速)にかかっており、二
次空気噴出孔から離れるに従い、急激に攪拌力が弱まる
ために、噴出二次空気の影響力の及ばない領域を未燃ガ
スがすり抜けてしまい未燃ガスと空気の混合が行われな
い恐れがあった。また、これを防止するため空気噴出口
を増やすと噴出空気の貫通力が弱まってしまうという問
題が生じる。However, in the above technique as well, the mixing of oxygen (secondary air) and unburned gas depends on the penetrating force of the ejected air (blowing velocity of the secondary air). The agitation force abruptly weakens with increasing distance from the holes, and there is a risk that unburned gas and air will not be mixed with each other because the unburned gas slips through a region that is not affected by the secondary air jet. In addition, if the number of air jets is increased to prevent this, there arises a problem that the penetrating force of jetted air is weakened.
【0004】また、混合、攪拌を行なわすために上昇す
る流速を速くすると、燃焼ガスに同伴した未燃カーボン
や、流動媒体も、そのまま絞り部を通過してしまうた
め、ガス流速は2m/s程度に制限される。従って、上
部燃焼室は、一般に下部燃焼室に比べて大きくなるよう
に構成されてしまう問題がある。本発明は上述の点に鑑
みてなされたもので、前記絞り部の通過ガス流速が速く
ても未燃カーボンや、流動媒体の飛散を最小限にし、か
つ未燃ガスが未反応のまますり抜けることがなく、未燃
ガスと酸素との反応が確実且つ急速に進行して、未燃ガ
スを最小限に抑制できる熱反応炉を提供することを目的
とする。Further, when the rising flow velocity for mixing and stirring is increased, unburned carbon entrained in the combustion gas and the flowing medium also pass through the throttle as they are, so the gas flow velocity is 2 m / s. Limited to the extent. Therefore, there is a problem that the upper combustion chamber is generally configured to be larger than the lower combustion chamber. The present invention has been made in view of the above points, even if the passing gas flow velocity of the throttle portion is fast, unburned carbon and the scattering of the fluid medium are minimized, and the unburned gas passes through unreacted. It is an object of the present invention to provide a thermal reactor in which the reaction between unburned gas and oxygen proceeds reliably and rapidly, and the unburned gas can be suppressed to a minimum.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明では焼却物を火格子部又は流動砂層部で燃焼
させ、発生した燃焼ガスを上部に連接する燃焼室に導入
し、該燃焼室で二次空気と混合させ一定の滞留時間を保
持させて燃焼を完結させるように構成した熱反応炉にお
いて、前記燃焼室は途中をガス流れ方向に対して横断面
方向に絞り、一定距離の通路をおいて再び拡大する絞り
部を形成し、該絞り部通路出口に山笠構造の障壁を設
け、該障壁の下方に下部燃焼室を上方に上部燃焼室を形
成し、該障壁には一定距離のガス通路を設けると共に、
上部燃焼室には障壁出口の燃焼ガスの流れに対向又は交
差する方向に二次空気を噴出させる複数個の二次空気吹
込口を配設し、前記障壁のガス通路を末広がりに構成し
たものである。In order to achieve the above object, in the present invention, the incinerated matter is combusted in a grate part or a fluidized sand layer part, and the generated combustion gas is introduced into a combustion chamber connected to the upper part, In a thermal reaction furnace configured to mix with secondary air in a combustion chamber to maintain a constant residence time to complete combustion, the combustion chamber is squeezed in the transverse direction with respect to the gas flow direction, and the combustion chamber has a constant distance. The expansion part is formed again with the passage of No. 1, a barrier of Yamakasa structure is provided at the outlet of the passage of the restriction, a lower combustion chamber is formed below the barrier, and an upper combustion chamber is formed above the barrier. With a gas passage of a certain distance,
The upper combustion chamber is provided with a plurality of secondary air blowing ports for ejecting secondary air in a direction facing or intersecting with the flow of combustion gas at the barrier outlet, and the gas passage of the barrier is configured to be widened toward the end. is there.
【0006】前記熱反応炉において、絞り部通路出口部
に設けた障壁(第1の障壁)は、外周を耐火物で被覆す
るか、あるいは該障壁を水管で形成し、その外周を耐火
物で被覆するのがよく、また、前記上下部燃焼室、及び
絞り部通路を水管壁で構成し、その高速ガス接触部を耐
火物で被覆するのがよい。前記第1の障壁の幅は絞り部
通路幅と同じか又はそれ以上とするのがよく、該障壁に
設けたガス通路は炉壁軸線に対して30°〜60°の範
囲の角度をなす末広がりとするのがよく、これによって
燃焼ガスを反転旋回流として未燃ガスと二次空気の混合
を向上させることができ、また、該障壁の山笠の傾斜角
度は、炉壁軸線に対し30°〜60°の範囲とするのが
よく、これにより、未燃カーボンや飛散流動媒体を下部
燃焼室に戻すことができる。In the above thermal reaction furnace, the barrier (first barrier) provided at the outlet of the throttle passage is covered with a refractory material, or the barrier is formed with a water pipe, and the outer circumference is made of a refractory material. It is preferable that the upper and lower combustion chambers and the throttle passage are formed of a water pipe wall, and the high-speed gas contact portion thereof is covered with a refractory. The width of the first barrier may be equal to or larger than the width of the narrowed passage, and the gas passage provided in the barrier forms a divergent angle that forms an angle of 30 ° to 60 ° with respect to the furnace wall axis. This makes it possible to improve the mixing of unburned gas and secondary air by making the combustion gas a reversing swirl flow, and the inclination angle of the barrier cap is 30 ° with respect to the furnace wall axis. The range is preferably in the range of -60 °, whereby unburned carbon and scattered fluidized medium can be returned to the lower combustion chamber.
【0007】さらに、前記熱反応炉において、上部燃焼
室内には、別の障壁(第2の障壁)が炉壁側面から上向
きに傾斜して傾斜上端を垂直上方の炉壁天井方向に折り
曲げて配設されており、炉壁天井と該障壁の間に開口が
形成され、該障壁内の炉壁側面に燃焼ガス排出口を設け
ている。上記のように構成した本発明の熱反応炉におい
ては、絞り部通路の最小断面を通過して第1の障壁のガ
ス通路に流入する燃焼ガスの流速を8〜10m/sと
し、ガス通路内の流速を10〜15m/sとし、上部燃
焼室の最小断面を通過して流出する燃焼ガスの流速を3
〜6m/sとして運転するのがよく、また、前記絞り部
通路入口の二次空気吹き込み孔位置から、前記下部燃焼
室の燃焼ガスの出口部迄の平均ガス滞留時間を1秒以上
とし、前記第1の障壁のガス通路出口の二次空気吹き込
み孔位置から、前記上部燃焼室の燃焼ガス出口部迄の平
均ガス滞留時間を3秒以上として運転するのがよい。Further, in the above thermal reaction furnace, another barrier (second barrier) is arranged in the upper combustion chamber by sloping upward from the side surface of the furnace wall, and the upper end of the slope is bent vertically toward the ceiling of the furnace wall. An opening is formed between the ceiling of the furnace wall and the barrier, and a combustion gas discharge port is provided on the side surface of the furnace wall inside the barrier. In the thermal reactor of the present invention configured as described above, the flow velocity of the combustion gas passing through the minimum cross section of the throttle passage and flowing into the gas passage of the first barrier is set to 8 to 10 m / s, and Of 10 to 15 m / s, and the flow rate of the combustion gas flowing out through the minimum cross section of the upper combustion chamber is 3
It is preferable to operate at ~ 6 m / s, and the average gas residence time from the position of the secondary air blowing hole at the inlet of the throttle passage to the outlet of the combustion gas of the lower combustion chamber is set to 1 second or more, and The average gas residence time from the position of the secondary air blowing hole at the gas passage outlet of the first barrier to the combustion gas outlet of the upper combustion chamber is preferably set to 3 seconds or more.
【0008】[0008]
【作用】上記のように燃焼室の途中に絞り部通路を設
け、該絞り部出口に配置した第1の障壁の下方を下部燃
焼室、上方を上部燃焼室とし、該障壁のガス通路を通る
燃焼ガスを略等量に分流するように、前記障壁にガス通
路を上下部各燃焼室を横断して配設するから、下部燃焼
室で発生した燃焼ガスは絞り部通路の出口の該障壁で略
2分して、各分流を増速した後、該障壁のガス通路が末
広がりで横断面方向に対し角度が付いていることによ
り、ガス通路を通過する際旋回流となり噴出後上部燃焼
室の炉側に沿って流出した後中央に向って反転流とな
る。即ち、該燃焼ガスの流れを制動するように該障壁の
ガス通路を末広がり形成とし、且つ山笠構造とすること
によって、燃焼ガスの持つ運転エネルギーを最大限に利
用して、反転流を得ることができ、未燃カーボンや流動
媒体の飛散を最小限に抑制出来、また未燃ガスが未反応
のまま抜けることがなく、未燃ガスと酸素との反応が確
実且つ急速に進行し、未燃ガスを最小限に抑制すること
ができる。As described above, the throttle passage is provided in the middle of the combustion chamber, and the lower portion of the first barrier disposed at the outlet of the throttle portion is the lower combustion chamber and the upper portion is the upper combustion chamber, and the passage passes through the gas passage of the barrier. Since the gas passages are arranged across the upper and lower combustion chambers in the barrier so as to divide the combustion gas into substantially equal amounts, the combustion gas generated in the lower combustion chamber is generated in the barrier at the outlet of the throttle passage. After accelerating each branch flow for about two minutes, the gas passage of the barrier is divergent and angled with respect to the cross-sectional direction. After flowing out along the furnace side, it becomes a reverse flow toward the center. That is, by forming the gas passage of the barrier to widen toward the end so as to dampen the flow of the combustion gas, and to form the Yamakasa structure, the operating energy of the combustion gas is maximally utilized to obtain a reverse flow. It is possible to suppress the scattering of unburned carbon and fluidized medium to a minimum, and the unburned gas does not escape unreacted, and the reaction between the unburned gas and oxygen proceeds reliably and rapidly, Gas can be suppressed to a minimum.
【0009】[0009]
【実施例】以下、図面を用いて本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。 実施例1 図1、図2及び図3は本発明の一例を示す熱反応炉の断
面構造図であり、図1は縦断面図、図2は図1のA−A
断面図、図3は図1のB−B断面図である。図示するよ
うに、熱反応炉10は炉壁11で囲まれ、下から順に流
動砂層12、下部燃焼室13、絞り部通路14、第1の
障壁16、第1の障壁の燃焼ガス通路17、上部燃焼室
15及び第2の障壁23が配置されている。即ち、絞り
部通路14は燃焼室の途中をガス流れ方向に対して横断
面方向に絞ってガス通過流速を速めた一定の長さの通路
であり、その上方を下部燃焼室13とし、第1の障壁1
6の上方を上部燃焼室15としている。絞り部通路14
の出口近傍に燃焼ガスを略等量に分流するように、第1
の障壁16を下部燃焼室13を横断して配設し、また、
燃焼ガスを炉壁11の側面より排出するように、第2の
障壁23を上部燃焼室15を横断して配設している。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these. Example 1 FIGS. 1, 2 and 3 are sectional structural views of a thermal reaction furnace showing an example of the present invention, FIG. 1 is a longitudinal sectional view, and FIG. 2 is AA of FIG.
A sectional view and FIG. 3 are sectional views taken along line BB of FIG. As shown in the figure, the thermal reaction furnace 10 is surrounded by a furnace wall 11, and a fluidized sand layer 12, a lower combustion chamber 13, a throttle passage 14, a first barrier 16, a combustion gas passage 17 of a first barrier, in order from the bottom. The upper combustion chamber 15 and the second barrier 23 are arranged. That is, the throttle passage 14 is a passage having a constant length in which the middle of the combustion chamber is narrowed in the cross-sectional direction with respect to the gas flow direction to accelerate the gas passage velocity. Barrier 1
The upper part of 6 is the upper combustion chamber 15. Throttle passage 14
So that the combustion gas is divided into approximately equal amounts near the outlet of the first
A barrier 16 of the above is disposed across the lower combustion chamber 13, and
The second barrier 23 is arranged across the upper combustion chamber 15 so that the combustion gas is discharged from the side surface of the furnace wall 11.
【0010】絞り部通路14の出口近傍に配設した第1
の障壁は、その外周が耐火物で被覆された山笠構造であ
り、第1の障壁16のガス通路17は末広がりとすると
共に横断面方向に対し角度を付けるように形成されてい
る。また、この第1の障壁16及び、第2障壁23は水
管で形成し、その外周面を耐火物で被覆する構造として
もよい。また、第1の障壁16は山笠構造とし、その障
壁出口の燃焼ガスの流れに対向或いは交差する向きに二
次空気を噴出させる複数個の二次空気吸込口22を設け
たものとしてもよい。A first member disposed near the outlet of the throttle passage 14
The barrier has a Yamakasa structure in which the outer periphery is covered with a refractory, and the gas passage 17 of the first barrier 16 is formed so as to widen toward the end and form an angle with respect to the cross-sectional direction. Further, the first barrier 16 and the second barrier 23 may be formed by a water pipe, and the outer peripheral surface thereof may be covered with a refractory material. Further, the first barrier 16 may have a Yamakasa structure, and a plurality of secondary air suction ports 22 for ejecting secondary air may be provided in a direction facing or intersecting the flow of the combustion gas at the barrier outlet. ..
【0011】流動砂層12の下部にはウィドボックス1
8が設けられ、該ウィドボックス18の側部には一次空
気吹込口20が設けられている。また、下部燃焼室13
の側部炉壁11には焼却物投入口19が設けられてい
る。一次空気吹込口20から吹き込まれた一次空気によ
り流動砂層12は流動化している。ここに焼却物投入口
19から焼却物を投入すると該焼却物は流動砂層12の
高温によりガス化(未燃ガスや未燃カーボン及び飛散流
動媒体を多く含む)され、上昇する。このガスは、下部
燃焼室13、上部炉壁11及び第1の障壁16により下
部燃焼室13に長く滞留するように制動を受ける。そこ
に二次空気吹込口22aから二次空気を吹き込み、該二
次空気と未燃ガスと混合させる。絞り部通路14は横断
面積が小さいから、ガスの速度は速くなると同時に二次
空気と未燃ガスは激しく攪拌される。ここで、第1の障
壁16の上記下部燃焼室13の燃焼ガス出口迄の平均ガ
ス滞留時間は、1秒以上になるようにする。Below the fluidized sand layer 12, a widbox 1
8 is provided, and a primary air blowing port 20 is provided on a side portion of the wid box 18. In addition, the lower combustion chamber 13
The side furnace wall 11 is provided with an incinerator inlet 19. The fluidized sand layer 12 is fluidized by the primary air blown from the primary air blowing port 20. When the incinerated material is introduced into the incinerated material inlet 19 here, the incinerated material is gasified (including a large amount of unburned gas, unburned carbon and scattered fluidized medium) by the high temperature of the fluidized sand layer 12 and rises. This gas is braked by the lower combustion chamber 13, the upper furnace wall 11 and the first barrier 16 so as to stay in the lower combustion chamber 13 for a long time. Secondary air is blown therein through the secondary air blowing port 22a to mix the secondary air with unburned gas. Since the cross-sectional area of the throttle passage 14 is small, the velocity of the gas is increased and the secondary air and the unburned gas are vigorously stirred. Here, the average gas residence time of the first barrier 16 to the combustion gas outlet of the lower combustion chamber 13 is set to 1 second or more.
【0012】絞り部通路14で増速されたガスは、第1
の障壁16の両端にあるガス通路17へと流れ込む。前
記ガス通路は末広がり形状でかつ、横断面方向に角度が
付いていることより、ガスはガス通路を旋回しながら上
部燃焼室15に噴出されると、炉壁11に沿って上昇
し、途中より中央に向って反転流21となり、衝突合流
する。更に二次空気吹込口22bからの二次空気の貫通
力により、該二次空気は未燃ガスと激しく攪拌される。
上記の過程で略完全混合した燃焼ガスは、上部燃焼室1
5で高温を維持したまま、所定時間滞留した後、ガス出
口より排出する。ここで、第1の障壁16の上記上部燃
焼室15の燃焼ガス出口迄の平均ガス滞留時間は3秒以
上になるようにする。一方、未燃カーボンや飛散流媒体
は、前記反転流21により第1の障壁16の下方にある
下部燃焼室13に戻される。The gas accelerated in the throttle passage 14 is
Flow into the gas passages 17 at both ends of the barrier 16. Since the gas passage has a divergent shape and is angled in the cross-sectional direction, when the gas is jetted into the upper combustion chamber 15 while swirling in the gas passage, it rises along the furnace wall 11 and from the middle. The reverse flow 21 is formed toward the center and collides and merges. Further, the penetrating force of the secondary air from the secondary air blowing port 22b causes the secondary air to be vigorously stirred with the unburned gas.
The combustion gas which is almost completely mixed in the above process is
While maintaining the high temperature at 5, after staying for a predetermined time, it is discharged from the gas outlet. Here, the average gas residence time of the first barrier 16 to the combustion gas outlet of the upper combustion chamber 15 is set to 3 seconds or more. On the other hand, the unburned carbon and the scattered medium are returned to the lower combustion chamber 13 below the first barrier 16 by the reverse flow 21.
【0013】前記第1の障壁16と下部燃焼室13の上
方炉壁との間を通って、ガス通路17に流入するガスの
主流方向の絞り部通路14の軸線Yに対する角度θは、
60°≧θ≧30°の角度となるようにする。また、第
1の障壁16と下部燃焼室13の上方炉壁との間を通っ
て流出するガスは、絞り部通路の最小断面を通過して第
1の障壁のガス通路17に流入するガスの平均流速V1
を8m/s〜10m/sとし、ガス通路17を通るガス
の平均流速V2を10m/s〜15m/sとし、ガス通
路17から流出して、第2の障壁23と上部燃焼室15
の下方炉壁との間を通過するガスの平均流速V3を3m
/s〜6m/sにする。また、第2の障壁23は、上部
燃焼室15内に該障壁を上向きに傾斜し、傾斜上端を垂
直上方に配置し、炉壁11側面より燃焼ガスを排出する
ことにする。また、この第2の障壁23は水管で形成
し、その外周囲を耐火物で被覆する構造としてもよい。The angle θ with respect to the axis Y of the throttle passage 14 in the main flow direction of the gas flowing into the gas passage 17 through the space between the first barrier 16 and the upper furnace wall of the lower combustion chamber 13 is:
The angle is set to 60 ° ≧ θ ≧ 30 °. Further, the gas flowing out through between the first barrier 16 and the upper furnace wall of the lower combustion chamber 13 passes through the minimum cross section of the throttle passage, and flows into the gas passage 17 of the first barrier. Average flow velocity V1
Is 8 m / s to 10 m / s, the average flow velocity V2 of the gas passing through the gas passage 17 is 10 m / s to 15 m / s, and the gas flows out from the gas passage 17 to the second barrier 23 and the upper combustion chamber 15
The average flow velocity V3 of the gas passing between the lower furnace wall of the
/ S to 6 m / s. In addition, the second barrier 23 is configured such that the barrier is inclined upward in the upper combustion chamber 15, the upper end of the inclination is arranged vertically upward, and the combustion gas is discharged from the side surface of the furnace wall 11. Further, the second barrier 23 may be formed of a water pipe and the outer periphery thereof may be covered with a refractory material.
【0014】実施例2 図4〜図7は本発明の他の熱反応炉の構造を示す断面図
であり、図4は縦断面図、図5は第1の障壁の構造を示
す拡大図、図6は図4のC−C断面図、図7は図4のD
−D断面図である。本実施例の熱反応炉はストーカ炉で
あり、図において、火格子34の上の下部燃焼室31、
絞り部通路32及び上部燃焼室33が下から順に配置さ
れている。炉壁37は外側が水管壁37aからなり、内
側が耐火物37bからなる。Embodiment 2 FIGS. 4 to 7 are sectional views showing the structure of another thermal reactor of the present invention, FIG. 4 is a longitudinal sectional view, and FIG. 5 is an enlarged view showing the structure of a first barrier. 6 is a cross-sectional view taken along line CC of FIG. 4, and FIG. 7 is D of FIG.
It is a -D sectional view. The thermal reaction furnace of this embodiment is a stoker furnace, and in the figure, the lower combustion chamber 31 above the grate 34,
The throttle passage 32 and the upper combustion chamber 33 are arranged in order from the bottom. The furnace wall 37 has a water tube wall 37a on the outer side and a refractory material 37b on the inner side.
【0015】絞り部通路32の出口近傍に燃焼ガスを略
等量に分流できるように第1の障壁36を絞り部通路3
2の上部のガス通路を横断して配設し、下部燃焼室31
の側部には焼却物投入口38が配設され、上部燃焼室3
3の上部にはボイラー等の熱回収部39が配設されてい
る。第1の障壁36は、実施例1の熱反応炉の第1の障
壁16と略同じ構造としているが、この第1の障壁36
は水管で形成し、その外周面を耐火物で被覆する構造と
している。第1の障壁は例えば図5に示すように、3個
のヘッダ40を水管41、42で連結してその外表面を
耐火物43で被覆している。The first barrier 36 is provided near the outlet of the throttle passage 32 so as to divide the combustion gas into substantially equal amounts.
2 is disposed across the upper gas passage of 2, and the lower combustion chamber 31
An incinerator inlet 38 is provided on the side of the upper combustion chamber 3
A heat recovery unit 39 such as a boiler is arranged on the upper part of the unit 3. The first barrier 36 has substantially the same structure as the first barrier 16 of the thermal reactor of the first embodiment, but the first barrier 36 is the same.
Is made of a water pipe, and its outer peripheral surface is covered with a refractory material. For example, as shown in FIG. 5, the first barrier is formed by connecting three headers 40 with water pipes 41 and 42 and covering the outer surface thereof with a refractory material 43.
【0016】なお、第1の障壁36と下部燃焼室31の
上方炉壁との間を通って、ガス通路35に流入するガス
の主流方向の絞り部通路32の軸線Yに対する角度θ、
第1の障壁36と下部燃焼室31の上方炉壁との間を通
ってガス通路35に流入する未燃ガスの平均流速V1、
ガス通路35を通る未燃ガスの平均流速V2、ガス通路
35から流出して、上部燃焼室33の下方炉壁との間を
通過する未燃ガスの平均流速V3は、実施例1と同じに
なるようにする。熱反応炉を上記のような構造とするこ
とにより、流動砂層12又は火格子34で燃焼して発生
して下部燃焼室13、32へ流出した、ガスは(未燃ガ
スと未燃カーボンや飛散流動媒体を多く含む)第1の障
壁16、36により略等量ずつに2方向に分流して、こ
の第1の障壁16、36と下部燃焼室13、32の側壁
との間で各々8m/s〜10m/sに増速され、ガス通
路17、35の入口付近で衝突、合流して激しく混合
し、急激に未燃ガスと酸素の反応が進行する。The angle θ with respect to the axis Y of the throttle passage 32 in the main flow direction of the gas flowing into the gas passage 35 through the space between the first barrier 36 and the upper furnace wall of the lower combustion chamber 31,
An average velocity V1 of unburned gas flowing into the gas passage 35 through the space between the first barrier 36 and the upper furnace wall of the lower combustion chamber 31;
The average flow velocity V2 of the unburned gas passing through the gas passage 35 and the average flow velocity V3 of the unburned gas flowing out of the gas passage 35 and passing between the lower combustion chamber wall and the upper combustion chamber 33 are the same as those in the first embodiment. To be By constructing the thermal reaction furnace as described above, the gas generated by burning in the fluidized sand layer 12 or the grate 34 and flowing out to the lower combustion chambers 13 and 32 is a gas (unburned gas and unburned carbon or scattered gas). The first barriers 16 and 36 divide the flow into two substantially equal amounts in two directions, and the first barriers 16 and 36 and the side walls of the lower combustion chambers 13 and 32 are respectively 8 m / The speed is increased to s to 10 m / s, and the gas collides near the inlets of the gas passages 17 and 35, merges and vigorously mixes, and the reaction of unburned gas and oxygen rapidly progresses.
【0017】ガス通路17、35の入口で合流したガス
は混合しながら10m/s〜15m/sの流速を保持し
たまま通路を旋回しながら、前記ガス通路17、35の
出口より噴出されると炉壁11、44に沿って上昇し、
途中より中央に向って反転流21、45となり衝突合流
する。更に二次空気吹込口22b、46bからの二次空
気の貫通力により該二次空気は未燃ガスと激しく攪拌さ
れる。一方未燃カーボンや飛散流動媒体は前記反転流2
1、45により第1の障壁16、36の下方にある下部
燃焼室13、32に多量戻される。上記の過程で略完全
混合した燃焼ガスは上部燃焼室15、33で高温を維持
したまま、所定時間滞留した後ガス出口より排出する。
ここで、第1の障壁16、36の上記上部燃焼室15、
33の燃焼ガス出口迄の平均ガス滞留時間は3秒以上に
なるようにすると共に該第1の障壁の下方にある下部燃
焼室13、32の燃焼ガス出口迄の平均ガス滞留時間は
1秒以上になるようにする。When the gases joined at the inlets of the gas passages 17 and 35 are jetted from the outlets of the gas passages 17 and 35 while being swirled while mixing and maintaining a flow velocity of 10 m / s to 15 m / s. Ascend along the furnace walls 11, 44,
The reverse flows 21 and 45 are formed toward the center from the middle and collide and merge. Furthermore, the secondary air is vigorously agitated with the unburned gas by the penetrating force of the secondary air from the secondary air blowing ports 22b and 46b. On the other hand, unburned carbon and scattered fluid medium are the reverse flow 2
A large amount is returned to the lower combustion chambers 13 and 32 below the first barriers 16 and 36 by 1, 45. The combustion gas which is almost completely mixed in the above process is discharged from the gas outlet after staying for a predetermined time while maintaining the high temperature in the upper combustion chambers 15, 33.
Here, the upper combustion chamber 15 of the first barriers 16, 36,
The average gas residence time to the combustion gas outlet 33 is 3 seconds or more, and the average gas residence time to the combustion gas outlets of the lower combustion chambers 13 and 32 below the first barrier is 1 second or more. Try to be.
【0018】以上のように、上記実施例によれば、下部
燃焼室での還元燃焼と上部燃焼室での酸化燃焼を行なう
と共に第1の障壁のガス噴流通路の末広がり形成により
燃焼ガスの旋回反転運動を生じさせ未燃カーボンや飛散
流動媒体の再燃焼と回収を有効に行なうため、従来のよ
うな未燃ガス排出や未燃カーボン及び飛散流動媒体の流
出によるトラブルを略完全に防止することが可能とな
る。As described above, according to the above-described embodiment, reductive combustion in the lower combustion chamber and oxidative combustion in the upper combustion chamber are performed, and the swirl reversal of the combustion gas is formed by forming the end wall of the gas jet passage of the first barrier. Since motion is generated to effectively reburn and recover unburned carbon and scattered fluid medium, it is possible to almost completely prevent problems due to conventional unburned gas discharge and outflow of unburned carbon and scattered fluid medium. It will be possible.
【0019】[0019]
【発明の効果】以上説明したように本発明によれば下記
のような優れた効果が得られる。 (1)燃焼ガス同士或いは燃焼ガスと障壁とのガス自身
の持つ運動エネルギーを利用した強力な反転流や攪拌力
によって、未燃カーボンや飛散流動媒体の流出が最小限
となり、かつ未燃ガスと二次空気との混合が略完全に行
なわれ、未燃ガスのすり抜けを防止することができる。 (2)未燃ガスと二次空気の混合性が良いので、従来例
に比べて、炉内に吹き込む二次空気量を減らすこと(空
気比を下げること)ができ、燃焼ガス温度を高温に維持
できるから、ダイオキシン等の有害物質の分解が促進さ
れる。 (3)以上の効果によって、本発明の熱反応炉によれば
廃棄物等の焼却炉から排出するCO等の未燃ガスの量を
最小限に抑制でき、またダイオキシン等の有害物質の排
出を減らすことが可能である。As described above, according to the present invention, the following excellent effects can be obtained. (1) The strong reversal flow or stirring force using the kinetic energy of the combustion gas itself or the combustion gas and the barrier gas itself minimizes the outflow of unburned carbon and scattered fluidized medium, and Mixing with the secondary air is almost complete, and it is possible to prevent the unburned gas from passing through. (2) Since the unburnt gas and the secondary air have a good mixing property, it is possible to reduce the amount of secondary air blown into the furnace (reduce the air ratio) and raise the combustion gas temperature to a higher temperature than in the conventional example. Since it can be maintained, the decomposition of harmful substances such as dioxins is promoted. (3) Due to the above effects, the thermal reactor of the present invention can minimize the amount of unburned gas such as CO discharged from the incinerator of wastes, and also discharges harmful substances such as dioxins. It is possible to reduce.
【図1】本発明の熱反応炉の構造を示す縦断面図であ
る。FIG. 1 is a vertical cross-sectional view showing the structure of a thermal reaction furnace of the present invention.
【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.
【図3】図1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG.
【図4】本発明の熱反応炉の構造を示す縦断面図であ
る。FIG. 4 is a vertical cross-sectional view showing the structure of the thermal reaction furnace of the present invention.
【図5】第2の障壁の構造を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a structure of a second barrier.
【図6】図4のC−C断面図である。6 is a cross-sectional view taken along line CC of FIG.
【図7】図4のD−D断面図である。7 is a cross-sectional view taken along the line DD of FIG.
10、30:熱反応炉、11、37:炉壁、12:流動
砂層、13、31:下部燃焼室、14、32:絞り部通
路、15、33:上部燃焼室、16、36:第1の障
壁、17、35:ガス通路、18:ウィドボックス、1
9、38:焼却物投入口、20:一次空気吹込口、2
1、45:反転流、22、46:二次空気吹込口、2
3:第2の障壁、34:火格子、39:熱回収部、4
0:ヘッダ、41、42:水管、43:耐火物、44:
水冷炉壁10, 30: Thermal reactor, 11, 37: Furnace wall, 12: Fluidized sand layer, 13, 31: Lower combustion chamber, 14, 32: Throttle passage, 15, 33: Upper combustion chamber, 16, 36: 1st Barriers, 17, 35: Gas passage, 18: Widbox, 1
9, 38: Incinerator inlet, 20: Primary air inlet, 2
1, 45: reverse flow, 22, 46: secondary air inlet, 2
3: Second barrier, 34: Grate, 39: Heat recovery part, 4
0: header, 41, 42: water pipe, 43: refractory material, 44:
Water cooling wall
フロントページの続き (72)発明者 佐藤 啓一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Front page continuation (72) Inventor Keiichi Sato 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION
Claims (8)
させ、発生した燃焼ガスを上部に連接する燃焼室に導入
し、該燃焼室で二次空気と混合させ一定の滞留時間を保
持させて燃焼を完結させるように構成した熱反応炉にお
いて、前記燃焼室は途中をガス流れ方向に対して横断面
方向に絞り、一定距離の通路をおいて再び拡大する絞り
部を形成し、該絞り部通路出口に山笠構造の障壁を設
け、該障壁の下方に下部燃焼室を上方に上部燃焼室を形
成し、該障壁には一定距離のガス通路を設けると共に、
上部燃焼室には障壁出口の燃焼ガスの流れに対向又は交
差する方向に二次空気を噴出させる複数個の二次空気吹
込口を配設し、前記障壁のガス通路を末広がりに構成し
たことを特徴とする熱反応炉。1. An incinerator is combusted in a grate part or a fluidized sand layer part, and the generated combustion gas is introduced into a combustion chamber connected to the upper part and mixed with secondary air in the combustion chamber to maintain a constant residence time. In the thermal reaction furnace configured to complete combustion, the combustion chamber is throttled in the transverse direction with respect to the gas flow direction to form a throttle portion that expands again with a passage of a certain distance. A barrier of Yamakasa structure is provided at the outlet of the throttle passage, a lower combustion chamber is formed below the barrier, and an upper combustion chamber is formed above the barrier.
In the upper combustion chamber, a plurality of secondary air blowing ports for ejecting secondary air in a direction facing or intersecting the flow of the combustion gas at the barrier outlet is arranged, and the gas passage of the barrier is configured to be widened toward the end. Characteristic thermal reactor.
周を耐火物で被覆したことを特徴とする請求項1記載の
熱反応炉。2. The thermal reactor according to claim 1, wherein the outer periphery of the barrier provided at the outlet of the throttle passage is covered with a refractory material.
火物で被覆したことを特徴とする請求項1記載の熱反応
炉。3. The thermal reactor according to claim 1, wherein the barrier is formed of a water pipe, and the outer periphery of the barrier is covered with a refractory material.
を水管壁で構成し、その高速ガス接触部を耐火物で被覆
したことを特徴とする請求項1記載の熱反応炉。4. The thermal reactor according to claim 1, wherein the upper and lower combustion chambers, the barrier and the narrowed passage are formed by water pipe walls, and the high-speed gas contact portion is covered with a refractory.
を絞り部通路幅と同じか又はそれ以上としたことを特徴
とする請求項1記載の熱反応炉。5. The thermal reactor according to claim 1, wherein the width of the barrier provided at the outlet of the throttle passage is equal to or larger than the width of the throttle passage.
に対して30°〜60°の範囲の角度であることを特徴
とする請求項1記載の熱反応炉。6. The thermal reactor according to claim 1, wherein the gas passage provided in the barrier is at an angle of 30 ° to 60 ° with respect to the furnace wall axis.
に対し30°〜60°の範囲としたことを特徴とする請
求項1記載の熱反応炉。7. The thermal reaction furnace according to claim 1, wherein an inclination angle of the mountain cap of the barrier is in a range of 30 ° to 60 ° with respect to a furnace wall axis line.
側面から上向きに傾斜して傾斜上端を垂直上方の炉壁天
井方向に折り曲げて配設されており、炉壁天井と該障壁
の間に開口が形成され、該障壁内の炉壁側面に燃焼ガス
排出口を設けたことを特徴とする請求項1記載の熱反応
炉。8. A separate barrier is arranged in the upper combustion chamber so as to incline upward from the side wall of the furnace wall and the upper end of the slope is bent toward the ceiling of the furnace wall vertically above the furnace wall ceiling and the barrier. The thermal reaction furnace according to claim 1, wherein an opening is formed between the two, and a combustion gas discharge port is provided on a side surface of the furnace wall inside the barrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032972A JP3007215B2 (en) | 1992-01-24 | 1992-01-24 | Thermal reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032972A JP3007215B2 (en) | 1992-01-24 | 1992-01-24 | Thermal reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05203130A true JPH05203130A (en) | 1993-08-10 |
JP3007215B2 JP3007215B2 (en) | 2000-02-07 |
Family
ID=12373813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4032972A Expired - Fee Related JP3007215B2 (en) | 1992-01-24 | 1992-01-24 | Thermal reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3007215B2 (en) |
-
1992
- 1992-01-24 JP JP4032972A patent/JP3007215B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3007215B2 (en) | 2000-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3099109B2 (en) | Pulverized coal burner | |
JP2544662B2 (en) | Burner | |
EP0687853B1 (en) | Staged combustion for reducing nitrogen oxides | |
JPS63282414A (en) | Garbage burning method and device | |
JP2000130710A (en) | Pulverized coal combustion burner | |
AU642345B2 (en) | Incinerator | |
US20040185401A1 (en) | Mixing process for combustion furnaces | |
JPH05203130A (en) | Heat reactor | |
WO1990009549A1 (en) | Fluidized bed combustion furnace | |
JP2994133B2 (en) | Incinerator | |
JPH07180822A (en) | Incinerator and incinerating method by incinerator | |
JP4729382B2 (en) | Multi-pipe once-through boiler | |
JP2657344B2 (en) | Incinerator | |
US5257585A (en) | Incinerator | |
CN215112714U (en) | Cyclone burner and system thereof | |
JP2008075911A (en) | Gas injection port | |
JP4236593B2 (en) | Waste incinerator | |
KR100760724B1 (en) | Fluidized bed furnace | |
JP2003172508A (en) | Incinarator | |
JPS5828487B2 (en) | Low NOx combustion method and device | |
KR100376619B1 (en) | Low Nitrogen Oxide Coal Firing Burner | |
JP2859871B1 (en) | Incinerator | |
JP4628922B2 (en) | After airport | |
JP2003343801A (en) | Air supply method and device for stoker type boiler | |
JP2002243112A (en) | Combustion device and its operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |