JPH05202536A - Water distribution simulation device - Google Patents

Water distribution simulation device

Info

Publication number
JPH05202536A
JPH05202536A JP1069692A JP1069692A JPH05202536A JP H05202536 A JPH05202536 A JP H05202536A JP 1069692 A JP1069692 A JP 1069692A JP 1069692 A JP1069692 A JP 1069692A JP H05202536 A JPH05202536 A JP H05202536A
Authority
JP
Japan
Prior art keywords
data
pipeline
coordinate
file
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1069692A
Other languages
Japanese (ja)
Other versions
JP2696028B2 (en
Inventor
Hiroshi Nakanishi
弘 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1069692A priority Critical patent/JP2696028B2/en
Publication of JPH05202536A publication Critical patent/JPH05202536A/en
Application granted granted Critical
Publication of JP2696028B2 publication Critical patent/JP2696028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To estimate the dynamic water pressure balance of the whole pipeline net easily by setting the plane arrangement relation of the pipeline network according to an X-Y coordinate plane, and by displaying ground height and dynamic water pressure according to the respective conduit line sections of the pipeline network, with a Z coordinate. CONSTITUTION:By a front-end processor 1, a pipeline network chart is read out of a pipeline network chart file 7A, and when the input of analysis condition from an input device 4 is provided, then an input model is created to be housed in an input model file 7B. Besides, by a hydraulic analysis processor 2, analysis object data are read out of the file 7B, and the flow speed and dynamic water pressure of respective conduit lines are found to be housed in an analysis result file 7C. Then, by a back-end processor 3, from the file 7C, data are read, and every conduit unit, plane arrangement data at both the end sections are set to be X-Y coordinate data, and land height data and dynamic water pressure data in the coordinate are extracted in a Z coordinate and are developed in working memory. Besides, when the memory data are housed in video memory, then a three-dimensional dynamic water pressure gradient chart is displayed on a display device 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管網を構成する各管路
部分から取り出される水量を入力モデルとして生成する
前置処理装置と、その前置処理装置により生成された入
力モデルに対して前記管網の動水圧を演算導出する水理
解析処理装置と、前記水理解析処理装置による解析結果
を出力する後置処理装置とを備えて、前記後置処理装置
を、前記管網の全部或いは一部の地盤高及び動水圧を同
一の座標軸で表す表示制御手段を設けて構成してある配
水シミュレーション装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment device that generates as an input model the amount of water taken out from each pipe portion that constitutes a pipe network, and an input model generated by the pretreatment device. The hydraulic analysis processing device for calculating and deriving the hydraulic pressure of the pipe network, and the post-processing device for outputting the analysis result by the hydraulic analysis processing device, the post-processing device, all of the pipe network Alternatively, the present invention relates to a water distribution simulation device configured by providing display control means for displaying a part of ground height and a part of dynamic water pressure on the same coordinate axis.

【0002】[0002]

【従来の技術】この種の配水シミュレーション装置とし
ては、前記後置処理装置を、前記管網を構成する全部或
いは一部の管路の平面的配置長さを表す座標軸と、それ
に対応する地盤高及び動水圧を表す座標軸とで表現する
二次元表示を行うように構成していた。つまり、図3に
示すように、平面的配置で表された水源Sから配水され
る管網Mのうち、A点からF点に至るルート(A→B→
C→D→E→F)について、かかる出力ファイルがCR
T等の表示装置に表示されると、図5に示すような動水
圧勾配線として表示されるものであった。かかる動水圧
勾配線は、横軸に管路の平面的配置長さを、縦軸に地盤
高及び動水圧を表すもので、各区間毎に示される動水圧
の変化を示し、その勾配が大なる程管路損失が大である
ことを示すとともに、地盤高との差が有効水頭を示し大
なる程水の出がよくなることを示すグラフである。
2. Description of the Related Art As a water distribution simulation device of this type, the post-treatment device is a coordinate system that represents a planar arrangement length of all or some of the pipelines forming the pipe network, and the corresponding ground height. And a coordinate axis indicating the hydraulic pressure are used for two-dimensional display. That is, as shown in FIG. 3, the route from point A to point F (A → B →
C → D → E → F), the output file is CR
When displayed on a display device such as T, it was displayed as a hydraulic pressure gradient line as shown in FIG. The hydraulic pressure gradient line shows the horizontal arrangement length of the pipeline on the horizontal axis and the ground height and the hydraulic pressure on the vertical axis, showing the change in the hydraulic pressure shown for each section, and the gradient is large. It is a graph showing that the greater the pipeline loss, the greater the difference with the ground height is the effective head, and the greater the amount, the better the water output.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来技
術は、図3に示すような管網において選択されたルート
に対する図5に示すような動水圧勾配線を表示するもの
であったので、管網全体を評価するには、管網を構成す
る全管路を網羅すべく複数回のルート選択操作と複数回
の表示処理を行うことが必要であり、極めて煩雑な作業
となるばかりか、全体的な動水圧バランスを評価するこ
とが困難であるという欠点があった。本発明の目的は上
述した従来欠点を解消する点にある。
However, since the above-mentioned prior art displays the hydraulic pressure gradient line as shown in FIG. 5 for the route selected in the pipe network as shown in FIG. 3, In order to evaluate the entire network, it is necessary to perform multiple route selection operations and multiple display processes to cover all the pipelines that make up the network, which is not only extremely complicated work, There is a drawback that it is difficult to evaluate the overall hydraulic pressure balance. An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による配水シミュレーション装置の特徴構成
は、前記表示制御手段を、前記管網の全部或いは一部の
平面的配置関係と、それに対応する地盤高及び動水圧を
表した三次元表示を行うように構成してある点にある。
上述の構成において、前記後置処理装置に、前記三次元
表示を前記管網を構成する管路の平面的配置長さと、そ
れに対応する地盤高及び動水圧を表した二次元表示に変
換する変換手段を設けてあることが好ましい。さらに、
前記後置処理装置に、前記管網から前記変換手段により
二次元表示に変換される管路を選択する選択手段を設け
てあることが好ましい。
In order to achieve this object, a characteristic configuration of a water distribution simulation device according to the present invention is that the display control means is provided in a planar arrangement relation of all or a part of the pipe network, and the corresponding relation. The point is that it is configured to perform a three-dimensional display showing the ground height and the dynamic water pressure.
In the above-mentioned configuration, the post-processing device converts the three-dimensional display into a two-dimensional display that represents the planar arrangement length of the pipelines that form the pipe network and the corresponding ground height and hydraulic pressure. Means are preferably provided. further,
It is preferable that the post-processing apparatus is provided with a selection unit that selects a pipeline that is converted from the pipeline to the two-dimensional display by the conversion unit.

【0005】[0005]

【作用】表示制御手段は、管網の全部或いは一部の平面
的配置関係をXY座標平面に対応させ、その管網の各管
路部分に対応する地盤高及び動水圧をZ座標で表示する
ので、表示されている管網全体の地盤高及び動水圧が目
視でき、全体の動水圧バランスを評価することが短時間
で極めて容易に行える。また、変換手段により、前記三
次元表示を前記管網を構成する管路の平面的配置長さ
と、それに対応する地盤高及び動水圧を表した二次元表
示に変換すると、管路部分の詳細な地盤高及び動水圧を
評価できる。
The display control means causes the planar layout of the whole or a part of the pipe network to correspond to the XY coordinate plane, and displays the ground height and the hydraulic pressure corresponding to each pipe line portion of the pipe network in the Z coordinate. Therefore, the ground height and the hydraulic pressure of the entire pipe network displayed can be visually checked, and the overall dynamic pressure balance can be evaluated very easily in a short time. Further, when the conversion means converts the three-dimensional display into a two-dimensional display showing the planar arrangement length of the pipelines forming the pipeline network and the corresponding ground height and hydraulic pressure, the detailed pipeline section can be obtained. The ground height and hydraulic pressure can be evaluated.

【0006】[0006]

【発明の効果】従って本発明によれば、管網全体の動水
圧バランスを極めて容易に評価でき、しかも各管路の動
水圧バランスをも詳細に評価できる配水シミュレーショ
ン装置を提供できるようになった。
As described above, according to the present invention, it is possible to provide a water distribution simulation device which can very easily evaluate the hydrodynamic pressure balance of the entire pipe network and can evaluate the hydrodynamic pressure balance of each pipe line in detail. .

【0007】[0007]

【実施例】以下に本発明の実施例を説明する。図2に示
すように、配水シミュレーション装置は、管網を構成す
る各管路部分から取り出される水量を入力モデルとして
生成する前置処理装置(プリプロセッサ)1と、その前
置処理装置1により生成された入力モデルに対する前記
管網の各部分の設定時間毎の動水圧を演算導出する水理
解析処理装置(ソルバ)2と、前記水理解析処理装置2
による解析結果を出力する後置処理装置(ポストプロセ
ッサ)3とを備えて演算処理部を構成するとともに、キ
ーボード、デジタイザ、マウス等でなる入力装置4、C
RT等の表示装置5やプリンタ等の出力装置6、磁気デ
ィスク装置等の記憶装置7を前記演算処理部に接続して
構成してある。
EXAMPLES Examples of the present invention will be described below. As shown in FIG. 2, the water distribution simulation device is generated by a pretreatment device (preprocessor) 1 that generates, as an input model, the amount of water taken out from each pipe portion that constitutes the pipe network, and the pretreatment device 1. Hydraulic analysis processing device (solver) 2 for calculating and deriving the hydraulic pressure of each part of the pipe network for each set time with respect to the input model, and the hydraulic analysis processing device 2
And a post-processing device 3 for outputting an analysis result according to the above-mentioned configuration to form an arithmetic processing unit, and an input device 4 and C composed of a keyboard, a digitizer, a mouse and the like
A display device 5 such as an RT, an output device 6 such as a printer, and a storage device 7 such as a magnetic disk device are connected to the arithmetic processing unit.

【0008】図6に示すように、前記前置処理装置1
は、解析対象となる図3に示すような管網図を管網図フ
ァイル7Aから読み出して、前記CRTに表示して、前
記入力装置4から解析条件が設定入力されると、その解
析条件を基に入力モデルを生成して入力モデルファイル
7Bに格納する。詳述すると、前記管網図ファイルに
は、図3に示すような図面情報の他に、構成管路の管
径、管長、埋設深さ、及びその接続情報を管理する属性
情報が含まれており、前記入力モデルは、CRTに表示
された管網図のうち操作者によりマウスを用いてピック
アップされた解析に必要な管路(本例では全管路)と、
その管路に関する属性情報と、キーボードから入力され
た管路から取り出される水量データとから構成される。
As shown in FIG. 6, the pretreatment device 1 is
Reads the network diagram as shown in FIG. 3 to be analyzed from the network diagram file 7A, displays it on the CRT, and when the analysis condition is set and input from the input device 4, the analysis condition is displayed. An input model is generated based on this and stored in the input model file 7B. More specifically, in addition to the drawing information as shown in FIG. 3, the pipe network diagram file includes attribute information for managing pipe diameters, pipe lengths, burial depths, and connection information of the constituent pipelines. The input model is a pipeline (all pipelines in this example) necessary for analysis, which is picked up by an operator using a mouse in the network diagram displayed on the CRT.
It is composed of attribute information about the pipeline and water amount data extracted from the pipeline input from the keyboard.

【0009】図7に示すように、前記水理解析処理装置
2は、取り出し水量モデルに対して、管路に沿って順次
取り出し水量を設定する現実に即した管路取り出しモデ
ルを用いたメッシュ流量法を用いて管路流量を演算導出
することで、各管路の流速、動水圧を求める。即ち、解
析対象データを入力モデルファイル7Bから読み出し
て、解析対象となる管網を構成する各閉路についての水
頭閉合条件式に基づいて、各閉路の未知流量を変数とす
る非線型連立代数方程式を導出し、Newton−Ra
phson法で解く。設定された時間(例えば1時間)
毎に想定された取り出し水量に対して、1日分の解析
(24時間分で24回)の解析が終了すると、前記入力
モデルに対応した解析結果ファイル7Cに解析結果を格
納する。
As shown in FIG. 7, the hydraulic analysis processing apparatus 2 uses a mesh flow rate using a pipeline take-out model in which the taken-out water quantity model is sequentially set along the pipeline. The flow velocity and hydraulic pressure of each pipeline are obtained by calculating and deriving the pipeline flow rate using the method. That is, the analysis target data is read out from the input model file 7B, and a nonlinear simultaneous algebraic equation whose variable is the unknown flow rate of each closed circuit is calculated based on the water head closing conditional expression for each closed circuit constituting the pipe network to be analyzed. Derived, Newton-Ra
Solve using the phson method. Set time (eg 1 hour)
When the analysis of one day's analysis (24 times for 24 hours) is completed with respect to the amount of water taken out for each case, the analysis result is stored in the analysis result file 7C corresponding to the input model.

【0010】前記後置処理装置3は、図1及び図8に示
すように、解析結果ファイル7Cを読み出して、解析結
果ファイル7Cに格納された数値データを人が理解容易
な様々なグラフデータに変換された出力データを生成す
る出力ファイル生成手段3Aと、出力ファイル7Dの内
容を出力装置6に出力する出力制御手段3B等で構成し
てあり、出力制御手段3Bは、例えば、CRTに前記管
網の全部或いは一部の平面的配置関係と、それに対応す
る地盤高及び動水圧を表した三次元表示を行う表示制御
手段3Bとなる。
As shown in FIGS. 1 and 8, the post-processing device 3 reads the analysis result file 7C and converts the numerical data stored in the analysis result file 7C into various graph data which are easy for a person to understand. The output file generating means 3A for generating the converted output data and the output control means 3B for outputting the contents of the output file 7D to the output device 6 are included. The output control means 3B is, for example, a CRT. The display control means 3B performs a three-dimensional display showing the planar layout relationship of all or part of the net and the corresponding ground height and dynamic water pressure.

【0011】詳述すると、前記表示制御手段3Bは、配
水解析処理装置2により導出された動水圧等の解析デー
タや解析対象管路の属性情報を解析結果ファイル7Cか
ら、管網を構成する各管路単位(管路と管路との接続点
間にある管路をいう)にその両端部の平面的配置データ
をXY座標データとして、その座標における地盤高デー
タ及び動水圧データをZ座標データとして抽出して、図
4に示すような三次元動水圧勾配図表示を行うべく、ワ
ーキングメモリ3Cに展開する。このときワーキングメ
モリ3Cに展開された各管路と、解析結果ファイル7C
内の各管路とは1対1に対応付ける管路表示テーブルが
生成される。ワーキングメモリ3Cのデータをビデオメ
モリ3Dに格納すれば、予め設定されたカラールックア
ップテーブル3Eのデータに従いビデオメモリ3Dの内
容がCRTにカラー表示され、図4に示す三次元動水圧
勾配図が、水源から管路末端に至る各部分の地盤高(海
抜)と、動水圧とを表示色を異ならせて表示される。
More specifically, the display control means 3B constructs the pipe network from the analysis result file 7C based on the analysis data such as the hydraulic pressure derived by the water distribution analysis processing device 2 and the attribute information of the pipe to be analyzed. For each pipeline unit (referring to the pipeline between the pipeline and the connection point between pipes), the planar arrangement data at both ends is used as XY coordinate data, and the ground height data and hydraulic pressure data at that coordinate are Z coordinate data. And is expanded to the working memory 3C so as to display the three-dimensional hydraulic pressure gradient diagram as shown in FIG. At this time, each pipeline developed in the working memory 3C and the analysis result file 7C
A pipeline display table is created that is in a one-to-one correspondence with each pipeline inside. If the data of the working memory 3C is stored in the video memory 3D, the contents of the video memory 3D are color-displayed on the CRT according to the data of the preset color lookup table 3E, and the three-dimensional hydrodynamic gradient diagram shown in FIG. The ground height (above sea level) of each part from the water source to the end of the pipeline and the hydraulic pressure are displayed in different display colors.

【0012】前記後置処理装置3には、三次元動水圧勾
配図を構成する特定の管網を選択する選択手段を設けて
あり、選択手段により選択された管路に対して、その管
路の平面的配置長さと、それに対応する地盤高及び動水
圧を表した二次元表示に変換する変換手段を設けてあ
る。詳述すると、前記選択手段は、前記表示制御手段3
Bの一部を構成するもので、ワーキングメモリ3Cに展
開された管路のうち、三次元動水圧勾配図が表示された
画面に対してマウスで指定された座標に最も近い管路が
選択管路として抽出され、前記管路表示テーブルにより
その選択管路に対応する解析結果ファイル7C内の管路
情報が特定される。前記変換手段は、特定された解析結
果ファイル7C内の管路情報から、管網を構成する各管
路単位(管路と管路との接続点間にある管路をいう)に
その両端部の平面的配置データをX座標データとして、
その座標における地盤高データ及び動水圧データをZ座
標データとして抽出して、図5に示すような二次元動水
圧勾配図表示を行うべく、ワーキングメモリ3Cに展開
する。
The post-treatment device 3 is provided with a selecting means for selecting a specific pipe network forming the three-dimensional hydraulic pressure gradient diagram, and for the pipe line selected by the selecting means, the pipe line is selected. A conversion means is provided for converting the two-dimensional display of the plane arrangement length of the ground and the corresponding ground height and dynamic water pressure. More specifically, the selection means is the display control means 3
Of the pipelines that form part of B, the pipeline that is closest to the coordinates specified by the mouse on the screen on which the three-dimensional hydrodynamic gradient map is displayed is the selected pipeline among the pipelines that have been developed in the working memory 3C. The pipeline information is extracted as a pipeline, and pipeline information in the analysis result file 7C corresponding to the selected pipeline is specified by the pipeline display table. The conversion means uses the pipeline information in the identified analysis result file 7C to determine both ends of each pipeline unit (which is a pipeline between the pipelines and the connection points between the pipelines) constituting the pipeline network. The planar arrangement data of is as X coordinate data,
The ground height data and the hydraulic pressure data at the coordinates are extracted as Z coordinate data and expanded in the working memory 3C so as to display the two-dimensional dynamic hydraulic pressure gradient map as shown in FIG.

【0013】上述の選択手段は、三次元動水圧勾配図が
表示された画面に対してマウスで指定された座標に最も
近い管路が選択管路として抽出する旨を説明したが、こ
こで、最も近い管路とは、三次元動水圧勾配図のうち動
水圧勾配線、或いは、地盤高を示す勾配線の何れか勾配
線に最も近い勾配線に対応する管路である。
It has been explained that the above-mentioned selecting means extracts the conduit closest to the coordinates designated by the mouse as the selected conduit on the screen on which the three-dimensional hydraulic pressure gradient diagram is displayed. The closest pipeline is a pipeline corresponding to the gradient line which is the closest to any of the gradient lines of the hydraulic pressure gradient line or the gradient line indicating the ground height in the three-dimensional hydraulic pressure gradient map.

【0014】解析の結果、地盤高と動水圧の差が一定値
を確保できない場合などは、その周辺のバルブの開度を
変更設定して、管網全体が均一な圧力分布となるように
調節することになる。
As a result of the analysis, when the difference between the ground height and the dynamic water pressure cannot be maintained at a constant value, the opening degree of the valve around it can be changed and set so that the entire pipe network has a uniform pressure distribution. Will be done.

【0015】以下に別実施例を説明する。先の実施例で
は、三次元動水圧勾配図を、地盤高と動水圧とを表示色
を異ならせて表示するように構成していたが、さらに、
各管路毎に地盤高と動水圧とを表示色を異ならせて表示
してもよい。先の実施例では、水理解析装置2による解
析手法に、メッシュ流量法を用いた場合を説明したが、
解法はこれに限定するものではなく適宜選択自在であ
る。
Another embodiment will be described below. In the above embodiment, the three-dimensional hydrodynamic pressure gradient map was configured to display the ground height and the hydrodynamic pressure in different display colors.
The ground height and the hydraulic pressure may be displayed in different display colors for each pipeline. In the above embodiment, the case where the mesh flow rate method is used as the analysis method by the hydraulic analysis device 2 has been described.
The solution method is not limited to this, and can be appropriately selected.

【0016】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】後置処理装置のブロック構成図FIG. 1 is a block configuration diagram of a post-processing device.

【図2】配水シミュレーション装置の全体構成図[Figure 2] Overall configuration diagram of the water distribution simulation device

【図3】水理解析対象となる上水道の管網図[Figure 3] Pipe network diagram of the waterworks subject to hydraulic analysis

【図4】CRTに表示された三次元動水圧勾配図[Fig. 4] Three-dimensional hydrodynamic pressure gradient map displayed on the CRT

【図5】CRTに表示された二次元動水圧勾配図FIG. 5: Two-dimensional hydrodynamic pressure gradient map displayed on the CRT

【図6】フローチャートFIG. 6 is a flowchart.

【図7】フローチャートFIG. 7: Flow chart

【図8】フローチャートFIG. 8 is a flowchart

【符号の説明】[Explanation of symbols]

1 前置処理装置 2 水理解析処理装置 3 後置処理装置 3B 表示制御手段 1 Pretreatment device 2 Hydraulic analysis treatment device 3 Posttreatment device 3B Display control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管網を構成する各管路部分から取り出さ
れる水量を入力モデルとして生成する前置処理装置
(1)と、その前置処理装置(1)により生成された入
力モデルに対して前記管網の動水圧を演算導出する水理
解析処理装置(2)と、前記水理解析処理装置(2)に
よる解析結果を出力する後置処理装置(3)とを備え
て、 前記後置処理装置(3)に、前記管網の全部或いは一部
の地盤高及び動水圧を同一の座標軸で表す表示制御手段
(3B)を設けて構成してある配水シミュレーション装
置であって、 前記表示制御手段(3B)を、前記管網の全部或いは一
部の平面的配置関係と、それに対応する地盤高及び動水
圧を表した三次元表示を行うように構成してある配水シ
ミュレーション装置。
1. A pretreatment device (1) for generating, as an input model, the amount of water taken out from each pipe portion constituting a pipe network, and an input model generated by the pretreatment device (1). The hydraulic analysis processing device (2) for calculating and deriving the hydraulic pressure of the pipe network, and the post-processing device (3) for outputting the analysis result by the hydraulic analysis processing device (2) are provided. A water distribution simulation device comprising the processing device (3) provided with a display control means (3B) for displaying the ground height and dynamic water pressure of all or part of the pipe network on the same coordinate axis. A water distribution simulation device, wherein the means (3B) is configured to perform a three-dimensional display that represents the planar arrangement relation of all or part of the pipe network and the corresponding ground height and hydraulic pressure.
【請求項2】 前記後置処理装置(3)に、前記三次元
表示を、前記管網を構成する管路の平面的配置長さと、
それに対応する地盤高及び動水圧を表した二次元表示に
変換する変換手段を設けてある請求項1記載の配水シミ
ュレーション装置。
2. The post-processing device (3) displays the three-dimensional display with a planar arrangement length of pipelines constituting the pipeline network,
The water distribution simulation device according to claim 1, further comprising conversion means for converting the ground height and the dynamic water pressure corresponding thereto into a two-dimensional display.
【請求項3】 前記後置処理装置(3)に、前記管網か
ら前記変換手段により二次元表示に変換される管路を選
択する選択手段を設けてある請求項2記載の配水シミュ
レーション装置。
3. The water distribution simulation device according to claim 2, wherein the post-processing device (3) is provided with a selection means for selecting a pipeline from the pipeline network which is converted into a two-dimensional display by the conversion means.
JP1069692A 1992-01-24 1992-01-24 Water distribution simulation device Expired - Fee Related JP2696028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069692A JP2696028B2 (en) 1992-01-24 1992-01-24 Water distribution simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069692A JP2696028B2 (en) 1992-01-24 1992-01-24 Water distribution simulation device

Publications (2)

Publication Number Publication Date
JPH05202536A true JPH05202536A (en) 1993-08-10
JP2696028B2 JP2696028B2 (en) 1998-01-14

Family

ID=11757451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069692A Expired - Fee Related JP2696028B2 (en) 1992-01-24 1992-01-24 Water distribution simulation device

Country Status (1)

Country Link
JP (1) JP2696028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057407A (en) * 2004-08-24 2006-03-02 Kubota Corp Pipe network analysis method
CN103556681A (en) * 2013-11-15 2014-02-05 卢云飞 Water supply pipeline network section pressure intelligent compensation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057407A (en) * 2004-08-24 2006-03-02 Kubota Corp Pipe network analysis method
JP4716694B2 (en) * 2004-08-24 2011-07-06 株式会社クボタ Pipe network analysis method
CN103556681A (en) * 2013-11-15 2014-02-05 卢云飞 Water supply pipeline network section pressure intelligent compensation system

Also Published As

Publication number Publication date
JP2696028B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
CN110197035A (en) A kind of navigation channel change of Underwater Topography analysis system and method
JP2696028B2 (en) Water distribution simulation device
Chapman et al. Venus, virtual exploration of underwater sites
JP2719260B2 (en) Water distribution simulation device
JPH02197965A (en) Method for displaying three-dimensional analysis data as pattern
CN112270757B (en) Pipeline three-dimensional state monitoring method and device based on space curve
JP7102318B2 (en) Groundwater flow display system
JP2004102606A (en) Environmental assessment system
WO1998050870A1 (en) Three dimensional graphical display generating system and method
Liu The Third Simulation: Augmented Reality Fluvial Modeling Tool
JP2731041B2 (en) Hydraulic analyzer
JPH0887608A (en) Method and device for deforming three-dimensional shape model
JP4336959B2 (en) Marine environment analysis method / program / program recording medium / device
JPH0623991B2 (en) Coordinate grid generation support method and apparatus
KR20120065182A (en) Method of mapping and visualizing time-series information to 3d spatial model, and apparatus for the same
CN117593471B (en) Ocean three-dimensional situation visualization platform based on illusion engine
JP2949594B2 (en) Video display device
Câmara et al. Virtual environments and water quality management
JP2023032756A (en) Water quantity prediction system, water quantity prediction method and program
AU753750B2 (en) Three dimensional graphical display generating system and method
Jung Visualization of flow simulation data in environmental modeling
Razuqi Advanced spatial analysis and visualization using GIS and digital mapping technologies
Czanner et al. Growth simulation of human embryo brain
JPH0619873A (en) Network method analytic result display device
JPH08161377A (en) Geographical feature change simulation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees