JPH0520132B2 - - Google Patents

Info

Publication number
JPH0520132B2
JPH0520132B2 JP59262522A JP26252284A JPH0520132B2 JP H0520132 B2 JPH0520132 B2 JP H0520132B2 JP 59262522 A JP59262522 A JP 59262522A JP 26252284 A JP26252284 A JP 26252284A JP H0520132 B2 JPH0520132 B2 JP H0520132B2
Authority
JP
Japan
Prior art keywords
powder
pressure
dispersion medium
mixing
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59262522A
Other languages
Japanese (ja)
Other versions
JPS61141921A (en
Inventor
Kenji Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59262522A priority Critical patent/JPS61141921A/en
Publication of JPS61141921A publication Critical patent/JPS61141921A/en
Publication of JPH0520132B2 publication Critical patent/JPH0520132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • B01F23/66Mixing solids with solids by evaporating or liquefying at least one of the components; using a fluid which is evaporated after mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、各種機械部品の原料とされる金属
粉やセラミツク粉等の粉末を均質化のための混合
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for homogenizing powders such as metal powders and ceramic powders used as raw materials for various mechanical parts.

従来の技術 周知のように最近では、強度部品や機能部品と
してセラミツク製品が用いられ、また量産生を重
視する部品では焼結鍛造品が採用されるようにな
つてきている。これらセラミツク製品や焼結鍛造
品の原料であるセラミツク粉末や金属粉末は、最
終製品の均質化のために、使用に先立つて充分均
一に混合しておく必要があり、従来、そのための
方法として、低級アルコールや水等の液体を分散
媒とした湿式混合方法が知られている。すなわち
従来の湿式混合方法は、原料粉末と分散媒とを例
えばボールミルに入れて攪拌混合し、しかる後ス
プレードライヤーやその他の適宜の乾燥器で加熱
することにより、分散媒を飛散除去して乾燥し、
あるいは攪拌混合の完了した後に凍結させるとと
もに真空雰囲気とすることにより、分散媒を飛散
除去して乾燥する方法である。
BACKGROUND OF THE INVENTION As is well known, ceramic products have recently been used as strong and functional parts, and sintered forged products have been increasingly used for parts that require mass production. Ceramic powder and metal powder, which are the raw materials for these ceramic products and sintered forged products, must be thoroughly and uniformly mixed before use in order to homogenize the final product. A wet mixing method using a liquid such as lower alcohol or water as a dispersion medium is known. In other words, in the conventional wet mixing method, the raw material powder and the dispersion medium are mixed by stirring in a ball mill, for example, and then heated with a spray dryer or other suitable dryer to remove the dispersion medium and dry the mixture. ,
Alternatively, after stirring and mixing are completed, the mixture is frozen and placed in a vacuum atmosphere, thereby scattering and removing the dispersion medium and drying.

発明が解決しようとする問題点 しかるに上記従来の方法によれば、均一な混合
を行なうことができるが、分散媒の除去過程にお
いて原料粉が変質したり、あるいは大型かつ複雑
な装置を必要とする問題があつた。すなわちスプ
レードライヤーやその他の乾燥器を用いて加熱乾
燥する方法では、原料粉が極めて微細であつて比
表面積が広く、しかも酸化雰囲気で乾燥を行なう
から、炭化ケイ素や窒化ケイ素などのセラミツク
粉末であつても幾分は変質を余儀無くされ、また
鉄粉等の金属粉では酸化してしまい、さらにはい
ずれの粉末でも粒子同士の結合が生じる問題があ
つた。他方、凍結真空乾燥による方法では、凍結
のために多量のエネルギを消費するばかりか、真
空状態を維持する容器、機器が特殊かつ高価にな
らざるを得ず、ランニングコストのみならず設備
コストが嵩む問題があつた。
Problems to be Solved by the Invention However, although the above-mentioned conventional method can achieve uniform mixing, the raw material powder may change in quality in the process of removing the dispersion medium, or it may require large and complicated equipment. There was a problem. In other words, in the method of heating and drying using a spray dryer or other dryer, the raw material powder is extremely fine and has a large specific surface area, and the drying is performed in an oxidizing atmosphere. However, metal powders such as iron powders are oxidized, and all types of powders have the problem of bonding between particles. On the other hand, the freeze-vacuum drying method not only consumes a large amount of energy for freezing, but also requires special and expensive containers and equipment to maintain the vacuum state, which increases not only running costs but also equipment costs. There was a problem.

この発明は上記の事情に鑑み、粉末の変質を防
ぐ、かつ容易に実施することのできる粉末の混合
方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a powder mixing method that prevents deterioration of the powder and can be easily carried out.

問題点を解決するための手段 この発明は、上記の目的を達成するために、分
散媒として、常温常圧で気体となる液化ガスを用
いたことを特徴とするものであり、より詳しく
は、常圧以上に加圧して液化させた液化ガスを分
散媒として金属粉やセラミツク粉等の粉末に混合
し、攪拌混合の完了後に常圧まで減圧して液化ガ
スを気化分離することを特徴とする方法である。
Means for Solving the Problems In order to achieve the above object, the present invention is characterized in that a liquefied gas that becomes a gas at normal temperature and normal pressure is used as a dispersion medium. The method is characterized in that liquefied gas that has been liquefied by pressurizing above normal pressure is mixed with powder such as metal powder or ceramic powder as a dispersion medium, and after completion of stirring and mixing, the pressure is reduced to normal pressure to vaporize and separate the liquefied gas. It's a method.

発明の具体的な説明 この発明で対象とする粉末は、特に限定される
ものではないが、炭化ケイ素や窒化ケイ素あるい
は窒化ホウ素などのセラミツク粉末、特にそのう
ちの炭化物や窒化物、また金属粉のうちの還元鉄
粉等に適用すれば有効である。
DETAILED DESCRIPTION OF THE INVENTION The powders targeted by this invention are not particularly limited, but include ceramic powders such as silicon carbide, silicon nitride, and boron nitride, especially carbides and nitrides thereof, and metal powders. It is effective if applied to reduced iron powder, etc.

また分散媒とする液化ガスは、液化石油ガスや
液化天然ガスあるいは液化フロンなどを用いるこ
とができるが、循環使用をする場合には容易に液
化すること、また毒性がなく、取扱い性、安全性
に優れているものを用いることが好ましい。
In addition, the liquefied gas used as the dispersion medium can be liquefied petroleum gas, liquefied natural gas, or liquefied fluorocarbon, but when reusing it, it should be easily liquefied, non-toxic, easy to handle, and safe. It is preferable to use one that has excellent properties.

さらに攪拌混合は、分散媒を液体状態に保つた
めに加圧雰囲気で行なうことになるが、このよう
な混合操作は、ボールミルや振動ミルを用いて行
なうことができる。
Further, stirring and mixing is performed in a pressurized atmosphere to keep the dispersion medium in a liquid state, and such mixing operation can be performed using a ball mill or a vibration mill.

実施例 以下、この発明の実施例を比較例と併せて記
す。
Examples Examples of the present invention will be described below together with comparative examples.

実施例 1 市販のβ型炭化ケイ素粉末100gと非晶質ホウ
素粉末1.0gとカーボンブラツク1.0gとをナイロン
ボールと共に、ナイロン樹脂で内張りした鋼製の
耐圧性ボールミルに入れ、さらに分散媒として液
体容積で250mlの液化石油ガス(1号プロパン)
をその耐圧性ボールミルに圧入し、その状態で20
時間ボールミルを回転させて混合処理を行なつ
た。混合が完了した後に直ちに耐圧性ボールミル
の内容物をその下側の噴口部から排出させた。そ
の場合、耐圧性ボールミルの内部が高圧であつた
ために、内容物が噴出するとともに、分散媒であ
る液化石油ガスが気化分離され、混合粉末が乾燥
状態となつた、得られた乾燥粉末は、粒径40〜
100μmの球形となつていた。
Example 1 100 g of commercially available β-type silicon carbide powder, 1.0 g of amorphous boron powder, and 1.0 g of carbon black were placed together with nylon balls in a pressure-resistant steel ball mill lined with nylon resin, and a liquid volume was added as a dispersion medium. 250ml of liquefied petroleum gas (No. 1 propane)
is press-fitted into the pressure-resistant ball mill, and in that state it is heated for 20
The mixing process was carried out by rotating the ball mill for hours. Immediately after the mixing was completed, the contents of the pressure ball mill were discharged through its lower spout. In that case, since the inside of the pressure-resistant ball mill was under high pressure, the contents spouted out, and the liquefied petroleum gas, which was the dispersion medium, was vaporized and separated, and the mixed powder became dry. Particle size 40~
It had a spherical shape of 100 μm.

得られた混合粉末の品質を調べるために、その
混合粉末を用いて焼結体を作成した。すなわち、
先ず、その混合粉末を金属製押し型を用いて150
Kg/cm2の圧力で仮成形した後、3.0ton/cm2の圧力
で静水圧加圧した。得られた成形体の密度は
1.86g/cm3であつた。ついで、得られた成形体を
タンマン炉によつてアルゴンガス気流中で2100
℃、30分焼成した。得られた焼結体の密度は
3.12g/cm3であり、3点曲げによる抗折強度は、
65.0Kg/cm2の平均強度であつた。
In order to examine the quality of the obtained mixed powder, a sintered body was created using the mixed powder. That is,
First, the mixed powder was pressed using a metal mold for 150 m
After preliminary molding at a pressure of Kg/cm 2 , hydrostatic pressure was applied at a pressure of 3.0 ton/cm 2 . The density of the obtained compact is
It was 1.86g/ cm3 . Next, the obtained molded body was heated in a Tammann furnace in an argon gas stream for 2100 min.
Baked at ℃ for 30 minutes. The density of the obtained sintered body is
3.12g/ cm3 , and the bending strength by three-point bending is:
The average strength was 65.0Kg/ cm2 .

比較例 1 従来の混合方法によつて行なつた。すなわち上
記の実施例1で示した粉末をアルコールを分散媒
としてボールミルに入れて混合処理を行ない、混
合完了後、内容物を取出して通常の乾燥器によつ
て100℃の温度で乾燥処理を行なつた。得られた
乾燥物は団塊状になつていた。
Comparative Example 1 Made by conventional mixing method. That is, the powder shown in Example 1 above was mixed in a ball mill using alcohol as a dispersion medium, and after the mixing was completed, the contents were taken out and dried at a temperature of 100°C in an ordinary dryer. Summer. The obtained dried product was in the form of nodules.

その乾燥体の品質を調べるために、粉末状にほ
ぐした後、実施例1におけると同様に成形し、焼
成した。得られた焼結体の密度は2.85g/cm3であ
つた。また3点曲げ強度は平均で35.4Kg/cm2であ
つた。
In order to examine the quality of the dried product, it was ground into powder, then molded and fired in the same manner as in Example 1. The density of the obtained sintered body was 2.85 g/cm 3 . The average three-point bending strength was 35.4 Kg/cm 2 .

以上の実施例1および比較的1の結果から、こ
の発明の方法によるセラミツク混合粉末の品質が
優れていることが認められた。
From the results of Example 1 and Comparison 1 above, it was recognized that the quality of the ceramic mixed powder produced by the method of the present invention was excellent.

実施例 2 純鉄粉を均質化するために実施例1で示した方
法で混合した。すなわち平均粒径35μmの純鉄粉
をナイロンボールと共に、ナイロン樹脂で内張り
した鋼製の耐圧性ボールミルに入れ、さらに液化
ガ石油ガス(1号プロパン)を圧入し、その状態
で20時間回転させて混合した。混合の完了した
後、直ちに耐圧性ボールミルの下側噴口部を開い
て噴霧乾燥させながら排出した。
Example 2 Pure iron powder was mixed in the same manner as in Example 1 to homogenize it. In other words, pure iron powder with an average particle size of 35 μm was placed together with nylon balls in a pressure-resistant steel ball mill lined with nylon resin, and liquefied petroleum gas (No. 1 propane) was then pressurized, and the mill was rotated in that state for 20 hours. Mixed. Immediately after the mixing was completed, the lower nozzle of the pressure-resistant ball mill was opened and the mixture was discharged while being spray-dried.

得られた乾燥粉末中の酸素濃度は0.02wt%であ
つた。
The oxygen concentration in the obtained dry powder was 0.02wt%.

比較例 2 アルコールを分散媒として実施例2におけると
同様の方法で純鉄粉(平均粒径35μm)の混合を
行なつた。
Comparative Example 2 Pure iron powder (average particle size 35 μm) was mixed in the same manner as in Example 2 using alcohol as a dispersion medium.

得られた乾燥粉末中の酸素濃度は0.38wt%であ
つた。
The oxygen concentration in the obtained dry powder was 0.38 wt%.

これら実施例2および比較例2の結果から、本
発明法は酸化防止に有効であることが認められ
た。
From the results of Example 2 and Comparative Example 2, it was confirmed that the method of the present invention is effective in preventing oxidation.

考案の効果 以上の説明から明らかなようにこの発明の混合
方法によれば、常温常圧で気体となる液化ガスを
分散媒として用いるから、常圧に戻すだけで、加
熱などの特殊処理を必要とせず、分散媒を分離除
去でき、したがつて湿式混合といえども、均一分
散状態で乾燥混合粉を得ることができ、しかも酸
化などによる劣化を防止でき、均質かつ良質な粉
末材料を得ることができる。また常圧に戻すこと
により乾燥工程を行なうことができるから、操作
および装置が通常用いられている程度の軽易なも
ので良く、さらに常温下で比較的低い圧力で液化
する液化ガスを用いれば、分散媒の回収が容易と
なつて、ランニングコストを低廉化することがで
きる。
Effects of the invention As is clear from the above explanation, according to the mixing method of the present invention, a liquefied gas that becomes a gas at room temperature and pressure is used as a dispersion medium, so special treatment such as heating is not required simply by returning it to normal pressure. To be able to separate and remove the dispersion medium without having to mix, and therefore to obtain a dry mixed powder in a uniformly dispersed state even in wet mixing, and to prevent deterioration due to oxidation, etc., and to obtain a homogeneous and high-quality powder material. I can do it. In addition, since the drying process can be carried out by returning the pressure to normal pressure, the operations and equipment need only be as simple as those normally used.Furthermore, if a liquefied gas that liquefies at a relatively low pressure at room temperature is used, The dispersion medium can be easily recovered and running costs can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 常温常圧で気体となる液化ガスを、加圧液化
させた状態で分散媒として金属粉やセラミツク粉
等の粉末に混合し、攪拌混合の完了後に常圧まで
減圧することにより液化ガスを気化分離させるこ
とを特徴とする粉末の混合方法。
1 Liquefied gas, which is a gas at room temperature and pressure, is liquefied under pressure and mixed with powder such as metal powder or ceramic powder as a dispersion medium, and after stirring and mixing is completed, the pressure is reduced to normal pressure to vaporize the liquefied gas. A method of mixing powders characterized by separation.
JP59262522A 1984-12-12 1984-12-12 Powder mixing method Granted JPS61141921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262522A JPS61141921A (en) 1984-12-12 1984-12-12 Powder mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262522A JPS61141921A (en) 1984-12-12 1984-12-12 Powder mixing method

Publications (2)

Publication Number Publication Date
JPS61141921A JPS61141921A (en) 1986-06-28
JPH0520132B2 true JPH0520132B2 (en) 1993-03-18

Family

ID=17376966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262522A Granted JPS61141921A (en) 1984-12-12 1984-12-12 Powder mixing method

Country Status (1)

Country Link
JP (1) JPS61141921A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739578B2 (en) * 2000-06-27 2011-08-03 岩谷瓦斯株式会社 Method for homogenizing fine powder

Also Published As

Publication number Publication date
JPS61141921A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
US4551436A (en) Fabrication of small dense silicon carbide spheres
JP2001327849A (en) Granule consisting of dispersible fine solids and their manufacturing method
JPH0251863B2 (en)
JPH0520132B2 (en)
JPH11302081A (en) Spray dryer and ceramic powder produced therewith
KR100235522B1 (en) Direct nitridation process of metal having a low melting point
JP2000226264A (en) Production of carbon-ceramic composite molded form
JPH02144186A (en) Manufacture of aggregate for preventing leaching
KR0171868B1 (en) Process to improve the flowability f solid cyanuric chloride
JPH0784604B2 (en) Method for producing iron powder for sinter shrinkage body
JPS63315101A (en) Drying method of fine powdery aqueous slurry
JPH11171652A (en) Producing of silicon carbide sintered compact
JPH0483759A (en) Production of sintered composite boron nitride
JPH05270810A (en) Production of aluminum nitride granule
JPH0757681B2 (en) Method for producing hexagonal boron nitride fine powder
JP2571231B2 (en) Manufacturing method of metal sintered body
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
JPH01234505A (en) Production of iron powder for sintered body
JP3006729B2 (en) Zirconia refractory setter and method for producing the same
Radchenko et al. Properties of molybdenum powders obtained by reduction in moving beds
CA1073214A (en) Process and apparatus for production of slag material of reduced density
JPH04293707A (en) Production of high-density ito sintered body
JPH0677676B2 (en) Method for producing mixed powder
JPH10152701A (en) Low temperature compacting method for iron series alloy and method for controlling its structure
JPS61251509A (en) Production of spherical silica powder