JPH052005A - Gas sensor and its manufacture - Google Patents

Gas sensor and its manufacture

Info

Publication number
JPH052005A
JPH052005A JP3180252A JP18025291A JPH052005A JP H052005 A JPH052005 A JP H052005A JP 3180252 A JP3180252 A JP 3180252A JP 18025291 A JP18025291 A JP 18025291A JP H052005 A JPH052005 A JP H052005A
Authority
JP
Japan
Prior art keywords
sno
gas sensor
gas
film
graph showing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3180252A
Other languages
Japanese (ja)
Other versions
JP2942974B2 (en
Inventor
Masami Ando
正美 安藤
Seiichi Sudo
誠一 須藤
Takahiro Suzuki
貴弘 鈴木
Noriyuki Tsuchida
敬之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP18025291A priority Critical patent/JP2942974B2/en
Publication of JPH052005A publication Critical patent/JPH052005A/en
Application granted granted Critical
Publication of JP2942974B2 publication Critical patent/JP2942974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To increase the sensor output and gas sensitivity of a semiconductor gas sensor at the measuring time at high temperatures, while enhancing the recovery and response properties at the measuring time at low temperatures. CONSTITUTION:A pair of arch-shaped Au electrodes 3, 3 are burnt on are alumina substrate 1 of a gas sensor 1. An SnO2 film 4 connected by the Au electrodes 3, 3 is similarly burnt on the surface of the alumina substrate 2. Moreover, a heater 5 is built in the alumina substrate 2. The thickness of the SnO2 film 4 is not. larger than 1mum, and the average diameter of minute openings of the film is not smaller than 100Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はH2S(硫化水素ガス)
の検出に優れたガスセンサ及びその製造方法に関する。
The present invention relates to H 2 S (hydrogen sulfide gas)
The present invention relates to a gas sensor excellent in detecting gas and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ガスの吸脱着により抵抗値が変化する金
属酸化物半導体(SnO2)に電極を接続し、抵抗値を測
定することでガスの有無を検出するようにした半導体ガ
スセンサが従来からガス漏れ警報器等として使用されて
いる。
2. Description of the Related Art A semiconductor gas sensor has been conventionally used in which an electrode is connected to a metal oxide semiconductor (SnO 2 ) whose resistance value changes due to adsorption and desorption of gas, and the presence or absence of gas is detected by measuring the resistance value. It is used as a gas leak alarm.

【0003】一方、最近ではトイレやキッチン等の住居
内におけるオートベンチレーション(自動換気)を行な
うためのガスセンサの開発が要望されている。つまり、
トイレやキッチン等の悪臭成分の主なものは、硫化水
素、アンモニア、アミン類及びメルカプタン類であり、
快適な住環境を維持するにはこれらのガス濃度が数pp
b〜数ppmの範囲で検出できるセンサが必要とされ
る。しかしながら従来の金属酸化物半導体ガスセンサに
よる検出可能濃度は数百ppm以上である。
On the other hand, recently, there has been a demand for development of a gas sensor for performing automatic ventilation in a house such as a toilet or a kitchen. That is,
The main offensive odor components in toilets and kitchens are hydrogen sulfide, ammonia, amines and mercaptans,
To maintain a comfortable living environment, these gas concentrations are several pp
A sensor capable of detecting in the range of b to several ppm is required. However, the detectable concentration by the conventional metal oxide semiconductor gas sensor is several hundred ppm or more.

【0004】そこで、特開昭63−313048号及び
特開昭63−313049号には、Snのアルコキシド
溶液を絶縁基板に塗布した後、アルコキシド溶液を熱分
解してSnO2膜を形成し、このSnO2膜に別の金属(通
常酸化物の形態となっている)を添加して、ガス検出感
度を高めるようにした提案がなされている。しかしこの
方法ではH2S除去時の応答速度が遅く、ヒートクリー
ニングする方法が用いられている。
Therefore, in JP-A-63-313048 and JP-A-63-313049, an Sn alkoxide solution is applied to an insulating substrate and then the alkoxide solution is thermally decomposed to form a SnO 2 film. It has been proposed to add another metal (usually in the form of an oxide) to the SnO 2 film to enhance the gas detection sensitivity. However, in this method, the response speed at the time of removing H 2 S is slow, and a method of heat cleaning is used.

【0005】[0005]

【発明が解決しようとする課題】図9は上述した従来の
ガスセンサのSnO2膜の細孔分布を示すグラフ、図10
は同ガスセンサのSnO2膜の細孔面積分布を示すグラフ
であり、図9からは従来のSnO2膜の細孔分布は均一性
に欠け、また図10からは大部分の細孔表面は30Å以
下の細孔内に存在していることが分る。
FIG. 9 is a graph showing the pore distribution of the SnO 2 film of the conventional gas sensor described above, and FIG.
Is a graph showing the pore area distribution of the SnO 2 film of the same gas sensor. From FIG. 9, the pore distribution of the conventional SnO 2 film lacks uniformity, and from FIG. 10, most of the pore surface has 30 Å It can be seen that they are present in the pores below.

【0006】また図11は上述したSnO2からなるガス
センサの応答曲線を示すグラフであり、縦軸はガス感度
の逆数を対数目盛で表示している。これより200℃及
び300℃の応答曲線を見ると、ガス感度は比較的良好
であるが雰囲気をH2Sから空気に切り替えた時の回復
応答性が悪いことが分る。一方センサ温度を400℃ま
で高めれば回復応答性は良くなるが、図12にも示すよ
うにSnO2及びIn23は急激にガス感度が低下する。
尚図12中、低温側の素子温度でガス感度の表示のない
ものは素子抵抗が測定限界であることを示す。
FIG. 11 is a graph showing the response curve of the above-mentioned SnO 2 gas sensor, and the vertical axis represents the reciprocal of the gas sensitivity on a logarithmic scale. From this, it can be seen from the response curves at 200 ° C. and 300 ° C. that the gas sensitivity is relatively good, but the recovery response is poor when the atmosphere is switched from H 2 S to air. On the other hand, if the sensor temperature is increased to 400 ° C., the recovery response is improved, but as shown in FIG. 12, SnO 2 and In 2 O 3 have a sharp decrease in gas sensitivity.
In FIG. 12, the element temperature on the low temperature side without gas sensitivity indicates that the element resistance is at the measurement limit.

【0007】また回復応答性を高めるためにセンサを加
熱するヒートクリーンニングも知られているが、この場
合には連続測定ができず更にヒートクリーンニング用の
別回路が必要となる。
Heat cleaning is also known in which a sensor is heated to improve recovery response, but in this case continuous measurement cannot be performed and a separate circuit for heat cleaning is required.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め本発明者らは多孔質物質内でのガス拡散について着目
した。即ち、半導体ガスセンサのような多孔質物質内に
おけるガス拡散は非常に遅くクヌッセン拡散と呼ばれ、
この時の細孔内における拡散定数は以下の(数1)で表
わされる。
In order to solve the above problems, the present inventors have paid attention to gas diffusion in a porous material. That is, gas diffusion in a porous material such as a semiconductor gas sensor is very slow and is called Knudsen diffusion.
The diffusion constant in the pores at this time is represented by the following (Equation 1).

【0009】[0009]

【数1】 [Equation 1]

【0010】また、この時の拡散速度式は以下の(数
2)で示すグムケラーの拡散式が成立すると考えられ
る。
Further, it is considered that the diffusion rate equation at this time is satisfied by Gumkeller's diffusion equation shown in the following (Equation 2).

【0011】[0011]

【数2】 [Equation 2]

【0012】上記の(数2)より短時間で吸脱着が平衡
に達するためには細孔の半径(r)が大きく、膜厚Lが
小さく、温度Tが大きい程有利である。
In order for adsorption and desorption to reach equilibrium in a shorter time than the above (Equation 2), it is advantageous that the radius (r) of the pore is large, the film thickness L is small, and the temperature T is large.

【0013】上記の知見に基づき本発明は、絶縁基板上
に形成するSnO2膜の厚みを1μm以下とし且つ平均細
孔径を100Å以上とした。
Based on the above findings, the present invention sets the thickness of the SnO 2 film formed on the insulating substrate to 1 μm or less and the average pore diameter to 100 Å or more.

【0014】[0014]

【作用】絶縁基板上にSnO2をゾルの形態で塗布し、こ
れを600℃以上の温度で焼成することで細孔分布を均
一にし且つ細孔径の平均を100Å以上にすることがで
きる。
By applying SnO 2 in the form of a sol on an insulating substrate and firing it at a temperature of 600 ° C. or higher, the distribution of pores can be made uniform and the average pore diameter can be 100 Å or higher.

【0015】[0015]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで図1は本発明に係るガスセンサの一例
を示す斜視図、図2は同ガスセンサの拡大断面図であ
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a perspective view showing an example of a gas sensor according to the present invention, and FIG. 2 is an enlarged sectional view of the gas sensor.

【0016】ガスセンサ1はアルミナ基板2に一対の櫛
形Au電極3,3を焼成により形成し、このAu電極3,
3が接続するSnO2膜4を同じく焼成によりアルミナ基
板2表面に形成し、更にアルミナ基板2内にはヒータ5
を埋設している。
In the gas sensor 1, a pair of comb-shaped Au electrodes 3, 3 are formed on an alumina substrate 2 by firing, and the Au electrodes 3, 3 are formed.
A SnO 2 film 4 to which 3 is connected is similarly formed on the surface of the alumina substrate 2 by firing, and a heater 5 is provided in the alumina substrate 2.
Is buried.

【0017】SnO2膜4は厚みが1μm以下で平均細孔
径が100Å以上になっている。斯かるSnO2膜4を形
成するにはSnO2ゾルをアルミナ基板2に塗布した後焼
成する。具体的には、塩化第二スズ水溶液に重炭酸アン
モニウム水溶液を添加、生成したゲルを水洗いし、これ
にアンモニア水を加えてpH10にした後、オートクレ
ーブ中で200℃で水熱処理することにより20Å程度
の結晶形のSnO2ゾルを生成し、このSnO2ゾルをアル
ミナ基板2に塗布し乾燥せしめた後焼成する。
The SnO 2 film 4 has a thickness of 1 μm or less and an average pore diameter of 100 Å or more. In order to form such SnO 2 film 4, SnO 2 sol is applied to the alumina substrate 2 and then baked. Specifically, add an aqueous solution of ammonium bicarbonate to an aqueous solution of stannic chloride, wash the resulting gel with water, add ammonia water to adjust the pH to 10, and then perform hydrothermal treatment at 200 ° C in an autoclave to about 20Å. The SnO 2 sol having the crystal form is produced, and the SnO 2 sol is applied to the alumina substrate 2, dried and then fired.

【0018】SnO2ゾルの製法は上記に限らず、塩化第
二スズの塩酸酸性水溶液に水酸化ナトリウムを添加混合
する方法、塩化第二スズ水溶液を陰イオン交換樹脂によ
り処理する方法、スズアルコキシドを各種の手段で加水
分解する方法等が挙げられる。
The method of producing the SnO 2 sol is not limited to the above, and a method of adding and mixing sodium hydroxide to a hydrochloric acid acidic aqueous solution of stannic chloride, a method of treating the stannic chloride aqueous solution with an anion exchange resin, and a tin alkoxide are used. Examples thereof include a method of hydrolyzing by various means.

【0019】ところで、図3はSnO2ゾルの焼成温度と
細孔分布との関係を示すグラフ、図4はSnO2ゾルの焼
成温度と細孔面積分布との関係を示すグラフであり、前
記したように短時間で吸脱着が平衡に達するためには細
孔の分布が均一で半径(r)が大きい程有利であること
を鑑みれば、焼成温度は600℃以上とすべきである。
このように焼成温度を600℃以上とすることで平均細
孔径が100Å以上のSnO2膜を形成することができ
る。
Incidentally, FIG. 3 is a graph showing the relationship between the firing temperature of SnO 2 sol and the pore distribution, and FIG. 4 is a graph showing the relationship between the firing temperature of SnO 2 sol and the pore area distribution. Considering that it is advantageous that the distribution of pores is uniform and the radius (r) is large in order to reach the equilibrium of adsorption / desorption in a short time, the firing temperature should be 600 ° C. or higher.
By setting the firing temperature to 600 ° C. or higher, an SnO 2 film having an average pore size of 100 Å or higher can be formed.

【0020】また図5はSnO2ゾルの焼成温度、測定温
度及びガス感度の関係を示すグラフ、図6はSnO2ゾル
の焼成温度と応答曲線との関係を示すグラフ、図7はガ
スセンサの測定温度と応答曲線との関係を示すグラフ、
図8は700℃で焼成した場合のガス濃度とガス感度と
の関係を示すグラフであり、図5からは600℃以上で
焼成した場合にはガス感度が飛躍的に向上することが分
る。また図6からは600℃以上で焼成した場合にセン
サ出力及び回復応答性が向上することが分る。そして、
図7及び図8からは600℃以上(700℃)で焼成す
れば測定温度が160℃〜300℃程度においても充分
なガス感度、センサ出力及び回復応答性を発揮すること
が分る。
FIG. 5 is a graph showing the relationship between the baking temperature of SnO 2 sol, the measurement temperature and the gas sensitivity, FIG. 6 is a graph showing the relationship between the baking temperature of SnO 2 sol and the response curve, and FIG. 7 is the measurement of the gas sensor. Graph showing the relationship between temperature and response curve,
FIG. 8 is a graph showing the relationship between the gas concentration and the gas sensitivity when fired at 700 ° C. From FIG. 5, it can be seen that the gas sensitivity is dramatically improved when fired at 600 ° C. or higher. Further, it can be seen from FIG. 6 that the sensor output and the recovery response are improved when firing at 600 ° C. or higher. And
It can be seen from FIGS. 7 and 8 that sufficient gas sensitivity, sensor output, and recovery response can be exhibited even if the temperature is measured at 160 ° C. to 300 ° C. by firing at 600 ° C. or higher (700 ° C.).

【0021】[0021]

【発明の効果】以上に説明した如く本発明によれば、絶
縁基板上にSnO2ゾルを塗布するようにしたので、焼成
後のSnO2膜の厚みを1μm以下にコントロールするこ
とができ、また焼成温度を600℃以上としたのでSn
2膜の平均細孔径を100Å以上にすることができ
る。そして、SnO2膜の厚みを1μm以下とし平均細孔
径を100Åとすることで、ガス感度、センサ出力及び
回復応答性に優れたガスセンサとすることができる。
As described above, according to the present invention, since the SnO 2 sol is applied onto the insulating substrate, the thickness of the SnO 2 film after firing can be controlled to 1 μm or less. Since the firing temperature was 600 ° C or higher, Sn
The average pore diameter of the O 2 film can be 100 Å or more. By setting the thickness of the SnO 2 film to 1 μm or less and setting the average pore diameter to 100 Å, a gas sensor excellent in gas sensitivity, sensor output and recovery response can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガスセンサの一例を示す斜視図FIG. 1 is a perspective view showing an example of a gas sensor according to the present invention.

【図2】同ガスセンサの拡大断面図FIG. 2 is an enlarged sectional view of the gas sensor.

【図3】SnO2ゾルの焼成温度と細孔分布との関係を示
すグラフ
FIG. 3 is a graph showing the relationship between the firing temperature of SnO 2 sol and the pore distribution.

【図4】SnO2ゾルの焼成温度と細孔面積分布との関係
を示すグラフ
FIG. 4 is a graph showing the relationship between the firing temperature of SnO 2 sol and the pore area distribution.

【図5】SnO2ゾルの焼成温度、測定温度及びガス感度
の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the firing temperature of SnO 2 sol, the measurement temperature, and the gas sensitivity.

【図6】SnO2ゾルの焼成温度と応答曲線との関係を示
すグラフ
FIG. 6 is a graph showing the relationship between the firing temperature of SnO 2 sol and the response curve.

【図7】ガスセンサの測定温度と応答曲線との関係を示
すグラフ
FIG. 7 is a graph showing the relationship between the measured temperature of the gas sensor and the response curve.

【図8】ガス濃度とガス感度との関係を示すグラフFIG. 8 is a graph showing the relationship between gas concentration and gas sensitivity.

【図9】従来のSnO2膜の細孔分布を示すグラフFIG. 9 is a graph showing the pore distribution of a conventional SnO 2 film.

【図10】従来のSnO2膜の細孔面積分布を示すグラフFIG. 10 is a graph showing the pore area distribution of a conventional SnO 2 film.

【図11】従来のガスセンサの応答曲線を示すグラフFIG. 11 is a graph showing a response curve of a conventional gas sensor.

【図12】各種金属酸化物半導体のH2S感度と温度と
の関係を示すグラフ
FIG. 12 is a graph showing the relationship between H 2 S sensitivity and temperature of various metal oxide semiconductors.

【符号の説明】[Explanation of symbols]

1…ガスセンサ、2…絶縁基板、3…電極、4…SnO2
膜。
1 ... Gas sensor, 2 ... Insulating substrate, 3 ... Electrode, 4 ... SnO 2
film.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年8月30日[Submission date] August 30, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】数1[Name of item to be corrected] Number 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【数1】 [Equation 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】数2[Name of item to be corrected] Number 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【数2】 [Equation 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 貴弘 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 土田 敬之 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takahiro Suzuki             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Noriyuki Tsuchida             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SnO2に対するガスの吸脱着による抵抗
値の変化を利用したガスセンサにおいて、前記SnO2
絶縁基板上に薄膜として形成され、その厚みは1μm以
下で且つ平均細孔径が100Å以上であることを特徴と
するガスセンサ。
1. A gas sensor using a change in resistance value due to adsorption and desorption of gas with respect to SnO 2 , wherein the SnO 2 is formed as a thin film on an insulating substrate, the thickness thereof is 1 μm or less, and the average pore diameter is 100 Å or more. A gas sensor characterized by being present.
【請求項2】 SnO2に対するガスの吸脱着による抵抗
値の変化を利用したガスセンサの製造方法において、前
記SnO2は絶縁基板上にSnO2ゾルの形態で塗布した
後、600℃以上の温度で焼成して形成することを特徴
とするガスセンサの製造方法。
2. A method of manufacturing a gas sensor using a change in resistance value due to adsorption and desorption of gas with respect to SnO 2 , wherein the SnO 2 is applied on an insulating substrate in the form of SnO 2 sol, and then at a temperature of 600 ° C. or higher. A method of manufacturing a gas sensor, characterized by forming by firing.
JP18025291A 1991-06-25 1991-06-25 Gas sensor and manufacturing method thereof Expired - Lifetime JP2942974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18025291A JP2942974B2 (en) 1991-06-25 1991-06-25 Gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18025291A JP2942974B2 (en) 1991-06-25 1991-06-25 Gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH052005A true JPH052005A (en) 1993-01-08
JP2942974B2 JP2942974B2 (en) 1999-08-30

Family

ID=16080021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18025291A Expired - Lifetime JP2942974B2 (en) 1991-06-25 1991-06-25 Gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2942974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512661A (en) * 2004-09-07 2008-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor element for particle sensor and method of operating the sensor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512661A (en) * 2004-09-07 2008-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor element for particle sensor and method of operating the sensor element
US7886578B2 (en) 2004-09-07 2011-02-15 Robert Bosch Gmbh Sensor element for particle sensors and method for operating the sensor element
JP4922169B2 (en) * 2004-09-07 2012-04-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor element for particle sensor and method of operating the sensor element

Also Published As

Publication number Publication date
JP2942974B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP2921032B2 (en) Ammonia gas sensor
CN107991372A (en) A kind of method for lead ion detection
JPH052005A (en) Gas sensor and its manufacture
JPH0560714A (en) Gas sensor and its manufacture
JPH0618467A (en) Gas sensor
CN111024777B (en) Tin oxide modified sensor, preparation method thereof and application thereof in gas-sensitive detection of nitric oxide
JP2921033B2 (en) Hydrogen sulfide gas sensor
JPH05142177A (en) Gas sensor
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
JP2004245726A (en) Sulfur compound gas detection element
JPH04269650A (en) Oxide semiconductor gas sensor
JPH06148112A (en) Hydrogen gas detecting element
JPH0318933Y2 (en)
JPS5879149A (en) Gas detection element
RU2096774C1 (en) Sensor determining concentration of gases
JP2002286672A (en) Gas detector and gas detection method
JPS5960349A (en) Gas sensitive element
JPH03220448A (en) Humidity sensor
JPH0682112B2 (en) Semiconductor gas sensor
JPH0815195A (en) Gas sensor
RU8481U1 (en) CARBON OXIDE CONCENTRATION SENSOR IN GAS MIXTURES
CN116482186A (en) Pure titanium material coating sensor for detecting low-concentration ammonia gas and preparation method and application thereof
JPH11132980A (en) Hydrocarbon gas detection element
JPH08170955A (en) Aldehyde gas detection element
JP2005134249A (en) Membrane gas sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11