JPH05200382A - Method and device for clarifying water - Google Patents

Method and device for clarifying water

Info

Publication number
JPH05200382A
JPH05200382A JP4234179A JP23417992A JPH05200382A JP H05200382 A JPH05200382 A JP H05200382A JP 4234179 A JP4234179 A JP 4234179A JP 23417992 A JP23417992 A JP 23417992A JP H05200382 A JPH05200382 A JP H05200382A
Authority
JP
Japan
Prior art keywords
water
infrared ray
far
ray generating
air diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234179A
Other languages
Japanese (ja)
Inventor
Hachiro Yoshizawa
八郎 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4234179A priority Critical patent/JPH05200382A/en
Publication of JPH05200382A publication Critical patent/JPH05200382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To remove chlorine and the other harmful or unnecessary substance contained in water by diffusing extremely fine bubbles into water to be treated and also allowing infrared rays to act. CONSTITUTION:A floating water cylinder 2 is erected by a leg piece 5 in the central part of the inside of a water clarification tank 1. The inserted cylinder 7 of an air diffuser board 4 is fixed on a support plate 6 fixed to the lower part of the floating water cylinder 2. A network body 13 is horizontally spread in the upper part of the air diffuser board 4. Many spherical bodies 3 for generating far infrared rays are packed on the network body 13. Water is supplied into the water clarification tank 1 by opening a valve 18 and an air pump 11 is started and also the valve 18 is closed. Pressurized air passes through the air diffuser board 4 and ascends as fine bubbles and furthermore passes through the layer for generating far infrared rays. When bubbles ascend, water in the vicinity thereof inevitably ascends in the same direction and therefore water in the clarification tank starts convection. In such a way, since extremely fine bubbles are diffused in the water to be treated and also far infrared rays are allowed to act, chlorine, red rust, water-bloom and the other harmful or unnecessary substances dissolved in water or mixed therewith are removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、給水を逐次淨水して
取水することを目的とした淨水方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for irrigation for the purpose of successively irrigating and supplying water.

【0002】[0002]

【従来の技術】従来大量水の淨水には曝気方法及び装
置、微生物使用する装置が知られており、飲料水などの
淨水には、吸着剤を使用したり、濾過層を通過させる装
置が知られていた。
2. Description of the Related Art Conventionally, an aeration method and an apparatus for brewing a large amount of water and an apparatus for using microorganisms are known, and an apparatus for using an adsorbent or for passing through a filtration layer for drinking water or the like. Was known.

【0003】[0003]

【発明により解決すべき課題】前記曝気方法及び装置
は、ダム、湖、沼などの大量水の溶存酸素量を改善し、
有機固形物の微生物処理については著しい効果をあげて
いるが、飲用に供する為の塩素、トリハロメタン、赤さ
び、アオコ等の除去について、飲用に適する程の効果は
期待できない。
The aeration method and apparatus improve the dissolved oxygen content of large amounts of water in dams, lakes, swamps, etc.,
Although the microorganism treatment of the organic solids is remarkably effective, it cannot be expected to be effective enough for drinking to remove chlorine, trihalomethane, red rust, water-bloom, etc. for drinking.

【0004】また近来多用されている吸着剤使用による
淨水又は濾過を主体とする淨水についても、相当の効果
を示すものもあるが、塩素、トリハロメタンなどの除去
が不十分であったり、重金属の除去ができなかったりす
る問題点があるのみならず、吸着剤等へ微生物が付着繁
殖する為に障害を生じたり、目詰りその他により吸着剤
の効力が失われる為に短期の交換を必要とする問題点が
あった。また濾過層を主体とする場合においても、濾過
層の目詰りその他、前記各問題点を免れることはできな
かった。
In addition, there are some effects of considerable effects on the fresh water mainly using the adsorbent which has been widely used in recent years or the fresh water mainly composed of filtration, but the removal of chlorine, trihalomethane and the like is insufficient, and heavy metals In addition to the problem that the adsorbent cannot be removed, short-term replacement is necessary because the microorganisms adhere to and propagate on the adsorbent and cause problems, and the effect of the adsorbent is lost due to clogging and the like. There was a problem to do. Even when the filter layer is mainly used, the above problems such as clogging of the filter layer cannot be avoided.

【0005】[0005]

【課題を解決するための手段】この発明は、微細気泡と
遠赤外線とを作用させることにより塩素、トリハロメタ
ン、重金属、赤さび、アオコ等を著しい高率で除去し得
ると共に、自己淨化により遠赤外線発生部材の交換の必
要がなく、その上溶存酸素量の改善と、PH調整できる
他、温水に使用し得るなど、前記従来の問題点を悉く解
除することに成功したのである。
The present invention is capable of removing chlorine, trihalomethanes, heavy metals, red rust, blue-green algae, etc. at a significantly high rate by causing fine bubbles and far infrared rays to act, and at the same time, far infrared rays are generated by self-conditioning. It has succeeded in alleviating the above-mentioned conventional problems such as the fact that it is not necessary to replace the members, and the amount of dissolved oxygen can be improved, the pH can be adjusted, and hot water can be used.

【0006】即ちこの発明の方法は処理すべき水に極微
細気泡を散気させると共に、遠赤外線を作用させること
を特徴とした淨水方法である。また処理すべき水を遠赤
外線発生部材の間に流動させると共に、該流動水中に微
細孔から散気させた極微細気泡を混入することを特徴と
した淨水方法である。次に処理すべき水の流動は、極微
細気泡の散気により生成させたものである。
That is, the method of the present invention is a fresh water method characterized in that far-infrared rays are allowed to act on the water to be treated while aerating ultrafine bubbles. Further, it is a fresh water method characterized in that water to be treated is made to flow between far-infrared ray generating members, and ultrafine bubbles diffused from fine pores are mixed into the flowing water. The flow of water to be treated next is generated by the diffusion of ultrafine bubbles.

【0007】この発明の装置は給水手段と取水手段を有
する淨水槽の内側下部に無数の極微細孔を有する散気盤
を設置し、該散気盤に給気手段を付与すると共に、前記
散気盤の上方に遠赤外線発生部材を架設したことを特徴
とする淨水装置である。また極微細孔は100μより小
さくしたものである。次に散気盤と遠赤外線発生部材と
を同一淨水筒に設置し、該淨水筒を給水手段と取水手段
を有する淨水槽内へ着脱自在に設置したことを特徴とす
る淨水装置である。更に遠赤外線発生部材を、遠赤外線
発生粒子層及び遠赤外線発生連通孔層としたものであ
る。
In the apparatus of the present invention, an air diffuser having a myriad of fine holes is installed in the inner lower part of a fresh water tank having a water supply means and a water intake means. The water discharge device is characterized in that a far infrared ray generating member is installed above the air board. Further, the ultrafine pores are smaller than 100μ. Next, the air diffuser and the far-infrared ray generating member are installed in the same fresh water cylinder, and the fresh water cylinder is detachably installed in a fresh water tank having a water supply means and a water intake means. Is. Further, the far infrared ray generating member is a far infrared ray generating particle layer and a far infrared ray generating communication hole layer.

【0008】前記における散気盤の微小孔の大きさは、
例えば100μ以下、好ましくは50μ以下を用い、3
0μ〜40μが好適である。また空気圧は、所定の空気
量を微細孔から噴出できればよいので、通常0.3kg/
cm2 位を用いる。また遠赤外線発生部材中粒子の大きさ
は、通過抵抗、接触時間などとの関係で、直径20mm〜
5mmの球状粒子を混合して使用するが必ずしも球状に限
定するものではない。例えば砕石状、粗砂状、網状、棒
状などが考えられる。またハニカム状または連続連通孔
の場合には孔径2mm〜5mm程度が好適とされる。
The size of the minute holes of the air diffuser in the above is
For example, 100μ or less, preferably 50μ or less is used, and 3
0 μ to 40 μ is preferable. The air pressure is usually 0.3 kg /
Use the cm 2 position. The size of the particles in the far infrared ray generating member depends on the passage resistance, the contact time, etc.
5 mm spherical particles are mixed and used, but the shape is not necessarily limited to spherical. For example, crushed stones, coarse sands, nets, rods and the like are possible. Further, in the case of a honeycomb shape or a continuous communication hole, a hole diameter of about 2 mm to 5 mm is suitable.

【0009】前記遠赤外線発生部材と、微細気泡量と
は、求める淨水能力により異なるが、毎分1,800cc
の淨水する場合に、1kg(比重2.0〜3.0)の遠赤
外線発生部材を用い、平均径40μの無数の微小孔を用
いた(例えば10万個/20cm2 )散気盤から、毎分
3,000ccの微細気泡を噴出させた所、塩素及び重金
属をほぼ100%除去できた。
The far-infrared ray generating member and the amount of fine bubbles are 1,800 cc / min, though it depends on the required water discharge capacity.
In the case of flushing water, a far infrared ray generating member of 1 kg (specific gravity 2.0 to 3.0) was used, and innumerable micro holes with an average diameter of 40 μ were used (for example, 100,000 pieces / 20 cm 2 ) from an air diffuser. When 3,000 cc of minute bubbles were ejected, chlorine and heavy metals could be removed almost 100%.

【0010】前記装置において、淨水槽の内壁に重金属
その他の折出物が付着するので、1ヶ月〜3ヶ月に1回
水洗することが好ましい。またPH調整については、原
水のPHにより多少異なるが、例えばPH7.5の原水
が、この発明の淨水槽を通過することでPH7.8とな
った。また溶存酸素量は飽和状態になることが認められ
た。
In the above apparatus, since heavy metals and other protrusions adhere to the inner wall of the fresh water tank, it is preferable to wash with water once every one to three months. Regarding the pH adjustment, although slightly different depending on the pH of the raw water, for example, the raw water having a pH of 7.5 became PH 7.8 by passing through the fresh water tank of the present invention. It was also confirmed that the amount of dissolved oxygen was saturated.

【0011】前記遠赤外線発生部材の設置位置と、散気
盤の設置位置とに、特別の関係はないが対流生成上、上
下関係位置が良好である。
There is no special relationship between the installation position of the far-infrared ray generating member and the installation position of the air diffuser, but the upper and lower positions are favorable in terms of convection generation.

【0012】この発明という遠赤外線発生連通孔層は、
例えば、プラスチック性の線織体を網目状にからみ合せ
て、直径1mm〜3mmの連続孔を無数に形成する。この保
持体を石膏型内に入れた後、セラミックス泥漿を、前記
型内にし込み、一定時間放置すると、保持体表面にセラ
ミックス泥漿が付着する。ついで付着しないセラミック
ス泥漿を取り除き(型を倒にする)、前記型を外して乾
燥後、施紬焼等の工程を経て焼結すれば(特公平1−2
3435号)、この発明にいう遠赤外線発生連通孔層が
できる。
The far-infrared ray generating through-hole layer of the present invention is
For example, a plastic wire woven body is intertwined in a mesh shape to form an infinite number of continuous holes having a diameter of 1 mm to 3 mm. After the holder is put in a plaster mold, the ceramic slurry is put into the mold and left for a certain period of time, and the ceramic slurry adheres to the surface of the holder. Then, remove the ceramic sludge that does not adhere (tilt the mold), remove the mold, dry it, and sinter through a process such as tsubaki-shiki (Japanese Patent Publication No. 1-2.
No. 3435), the far-infrared ray generating communication hole layer according to the present invention can be formed.

【0013】前記の外、セラミックス泥漿と、可燃性繊
維との混合物より盤状物を成形し、この盤状物を焼成し
て、前記可燃繊維を消失させれば、多孔性セラミックス
盤ができる。
In addition to the above, if a plate-like material is formed from a mixture of ceramic sludge and combustible fibers and the plate-like material is fired to eliminate the combustible fibers, a porous ceramic disk can be formed.

【0014】更にセラミックス泥漿に発泡剤を混入し、
成形固化後焼成することにより、連続孔成形物を得るこ
とができる。
Further, a foaming agent is mixed in the ceramic slurry,
By molding and solidifying and then firing, a continuous-hole molded product can be obtained.

【0015】[0015]

【作用】この発明は遠赤外線と極微細気泡を共に作用さ
せるので、塩素、赤さび、アオコその他の重金属などの
有害物質を除去乃至激減させる。またPHと溶存酸素量
を改善する。更に遠赤外線発生部材は極微細気泡を受け
る為に目詰りと汚損を防止される。
In the present invention, since far infrared rays and ultrafine bubbles act together, harmful substances such as chlorine, red rust, water-bloom and other heavy metals are removed or drastically reduced. It also improves PH and dissolved oxygen content. Further, since the far infrared ray generating member receives extremely fine bubbles, clogging and stains are prevented.

【0016】[0016]

【実施例1】容量10リットルの円筒状の淨水槽1の内
側へ、淨水筒2を設置し、淨水筒の上部内側へ、直径2
0mm〜5mmの遠赤外線発生球体3、3を1kg充填して層
とし、その下方に5,500個/cm2 の極微小孔を有す
る散気盤4を設置し、散気盤4の下部に0.3kg/cm2
の圧力で3,000cc/分の空気を給送した所、30分
で残留塩素0となり、溶存酸素量を増加した。
Example 1 A water tub 2 was installed inside a cylindrical water tub 1 having a capacity of 10 liters, and a diameter 2 was set inside the upper part of the water tub.
The far infrared ray generating spheres 3 and 3 of 0 mm to 5 mm are filled in 1 kg to form a layer, and the air diffuser plate 4 having 5,500 micro holes / cm 2 is installed below the air diffuser plate 4 and the lower part of the air diffuser plate 4 is installed. 0.3 kg / cm 2
When air of 3,000 cc / min was fed under the pressure of, the residual chlorine became 0 in 30 minutes and the amount of dissolved oxygen increased.

【0017】前記におけるPHは7.5から7.8に変
った。この場合の水温20℃であった(越谷市の水道
水)。
The above-mentioned PH has changed from 7.5 to 7.8. The water temperature in this case was 20 ° C. (tap water in Koshigaya City).

【0018】[0018]

【実施例2】図1において、淨水槽1の内側中央部に淨
水筒2を脚片5、5により立設し、前記淨水筒2の下部
に支板6を固定し、支板6上へ散気盤4の嵌挿筒7を固
定する。この嵌挿筒7は有底であって、上部開口部に、
無数の微小孔(例えば30μ、5,500個/cm2 )を
有する散気盤4を密嵌してある(ゴムパッキンを介在
し、気密にする)。前記嵌挿筒7の底板7aと、散気盤
4の下面との間の空間8に、送気管9が開口し、送気管
9には、送気ホース10の一端が連結され送気ホース1
0の他端はエアポンプ11の吐出口に連結してある。前
記エアポンプ11は、前記淨水槽1の本体カバー12上
へ設置されている。
[Embodiment 2] In FIG. 1, a fresh water cylinder 2 is erected at the center of the inside of the fresh water tank 1 with leg pieces 5 and 5, and a supporting plate 6 is fixed to the lower part of the fresh water cylinder 2 to support the supporting plate 6. The fitting tube 7 of the air diffuser 4 is fixed to the top. The insertion tube 7 has a bottom, and the upper opening is
An air diffuser plate 4 having innumerable minute holes (for example, 30 μ, 5,500 holes / cm 2 ) is tightly fitted (rubber packing is interposed to make airtight). An air supply pipe 9 is opened in a space 8 between the bottom plate 7a of the fitting tube 7 and the lower surface of the air diffuser 4, and one end of an air supply hose 10 is connected to the air supply pipe 9 and the air supply hose 1
The other end of 0 is connected to the discharge port of the air pump 11. The air pump 11 is installed on the main body cover 12 of the fresh water tank 1.

【0019】前記散気盤4の上方には、網体13(又は
パンチングメタル板)を横に張設し、網板13の上へ遠
赤外線発生球体3(直径15mm、5mm、混用、遠赤ボー
ル、日本板硝子株式会社製)を多数充填する。前記遠赤
外線発生球体3は大球と小球を混用して、間隙を小さく
する。
A net body 13 (or a punching metal plate) is stretched laterally above the air diffuser 4, and far infrared ray generating spheres 3 (diameter 15 mm, 5 mm, mixed, far red) are placed on the net plate 13. Balls, made by Nippon Sheet Glass Co., Ltd.) are filled. The far-infrared ray generating sphere 3 mixes large spheres and small spheres to reduce the gap.

【0020】前記遠赤外線発生球体3の上部には、押え
として網板13aを載置する。前記淨水槽1の一側上部
には取水管14を連結し、他側上部から給水管15を内
装し、給水管15の先端は前記散気盤4の下方に開口さ
せてある。図中16はエアポンプカバー、17はスイッ
チ、18は給水管15のバルブである。
On the upper part of the far-infrared ray generating sphere 3, a mesh plate 13a is placed as a presser. An intake pipe 14 is connected to the upper part of one side of the fresh water tank 1, and a water supply pipe 15 is installed from the upper part of the other side. The tip of the water supply pipe 15 is opened below the air diffuser 4. In the figure, 16 is an air pump cover, 17 is a switch, and 18 is a valve of the water supply pipe 15.

【0021】前記実施例の動作について説明する。The operation of the above embodiment will be described.

【0022】先づバルブ18を開くと、水は矢示19の
ように供給され、矢示20のように淨水槽1内へ放出さ
れる。このようにして水位が21に達し(又は相当の水
位になったならば)スイッチ17を入れてエアポンプ1
1を始動すると共に、バルブ18を閉にする。エアポン
プ11の始動により、加圧エアが矢示22のように送気
ホース10を介して嵌挿筒7の空間8に入るので、加圧
空気は矢示23のように散気盤4を通過し、微細気泡と
なって矢示24のように上昇し、更に矢示25のように
遠赤外線発生層(球体の充填による層)を通過する。こ
のように気泡が上昇すると、必然的に付近の水も矢示2
4と同方向へ上昇するので、淨水槽の下側内壁部の水は
矢示26の方向へ流動し、全体として矢示24、25、
27、28、26と対流を開始する。このようにして数
分〜30分間に全ての水が処理される。
When the valve 18 is first opened, water is supplied as shown by an arrow 19 and is discharged into the fresh water tank 1 as shown by an arrow 20. In this way, when the water level reaches 21 (or becomes a considerable water level), the switch 17 is turned on and the air pump 1
1 is started and the valve 18 is closed. When the air pump 11 is started, the pressurized air enters the space 8 of the fitting tube 7 via the air supply hose 10 as indicated by the arrow 22, so that the pressurized air passes through the air diffuser 4 as indicated by the arrow 23. Then, it becomes fine bubbles and rises as shown by the arrow 24, and further passes through the far infrared ray generating layer (layer formed by filling the sphere) as shown by the arrow 25. When the bubbles rise in this way, the water in the vicinity also inevitably shows an arrow 2.
As it rises in the same direction as 4, the water in the lower inner wall of the water tank flows in the direction of arrow 26, and as a whole, arrows 24, 25,
Start convection with 27, 28 and 26. In this way, all the water is treated within a few minutes to 30 minutes.

【0023】処理能力により異なるけれども、10リッ
トルの水に対し、遠赤外線発生球体1kg、加圧空気3,
000cc/分の場合には、20分程度で完全淨化(塩素
0)の状態となるので、スイッチを切る。前記において
分離した塩素ガスは水面上の空間に上昇し、ついで取水
栓14その他の空隙から外界へ排出される。次に水を必
要とする場合には、バルブ18を開くことにより(この
場合には手動又は連動でスイッチを入れ、又はスイッチ
を切らないでおく)。水は送水管15より淨水槽1内へ
放出され、淨水済の水と混入しつつ上昇し、気泡と混合
すると共に、遠赤外線発生層を通過して処理され、矢示
29、30のように取水栓から供給される。
Although it depends on the treatment capacity, 1 kg of far-infrared ray-generating spheres, pressurized air 3, and 10 liters of water are used.
At 000 cc / min, the switch will be turned off because it will be in a completely deliquefied state (chlorine 0) in about 20 minutes. The chlorine gas separated in the above rises to the space above the water surface, and is then discharged from the water intake plug 14 and other voids to the outside. The next time water is needed, by opening valve 18 (in this case either manually or interlocked or not switched on). Water is discharged from the water supply pipe 15 into the fresh water tank 1, rises while mixing with fresh water, mixes with bubbles, and is processed through the far infrared ray generation layer, as shown by arrows 29 and 30. Supplied from the water tap.

【0024】前記のように大部分の淨水済の中へ新しく
送水された水は混入し、速かに淨水されるので、必然的
にほぼ完全淨水された水が取り出される。
As described above, most of the fresh water is mixed with the freshly sent water, and the fresh water is swiftly supplied, so that almost completely fresh water is necessarily taken out.

【0025】前記において、通常の水道水は、PH7.
5位であるが、前記装置の処理によりPH7.8位に変
化し、かつ溶存酸素量も増加するので必然的に美味しい
水となる。
In the above, ordinary tap water is PH7.
Although it is in the 5th place, the pH of the water is changed to 7.8th place by the treatment of the above apparatus, and the amount of dissolved oxygen is also increased, so that the water is inevitably delicious.

【0026】前記は水道水について説明したが加温水
(例えば温水器を介し50℃〜70℃)であっても同様
の処理ができる。加温水の場合には遠赤外線発生球体の
活性化が進み淨化効率の向上も認められた。
Although tap water has been described above, the same treatment can be performed with heated water (for example, 50 ° C. to 70 ° C. through a water heater). In the case of heated water, activation of far-infrared ray-generating spheres proceeded, and improvement of the cleaning efficiency was also observed.

【0027】[0027]

【実施例3】図2について説明する。[Third Embodiment] FIG. 2 will be described.

【0028】図2の実施例は、前記実施例2における淨
水筒、送気ホース、送気管を本体カバー12及び取付板
31に固定し、淨水槽1と前記本体カバー12とを止ね
じ32、32で固定し、淨水槽1のみを容易に取外し得
るようにしたものである。
In the embodiment shown in FIG. 2, the fresh water cylinder, the air supply hose, and the air supply pipe of the second embodiment are fixed to the main body cover 12 and the mounting plate 31, and the fresh water tank 1 and the main body cover 12 are fixed with a set screw 32. , 32 so that only the fresh water tank 1 can be easily removed.

【0029】この実施例における淨水操作は全て実施例
2と同一につきその説明を省略する。 前記実施例にお
いて、止ねじ32、32を外すと、淨水槽1のみ取外す
ことができるので、これを取外し、その内側を自由且つ
完全に洗淨することができる。 この発明の装置を使用
すると水中の塩素を除去する外、赤さび、アオコ、重金
属類を分離し、その分離物が淨水槽1の内壁へ付着する
ので1ヶ月〜3ヶ月毎に清掃することが好ましい。従っ
て実施例3の構造にすれば、清掃が容易となり、淨水筒
を取外す手間も不必要となる。
The operation of the fresh water in this embodiment is the same as that of the second embodiment, and the explanation thereof is omitted. In the above embodiment, when the setscrews 32, 32 are removed, only the fresh water tank 1 can be removed, so that this can be removed and the inside can be washed freely and completely. When the apparatus of the present invention is used, chlorine in water is removed, and red rust, water-bloom, and heavy metals are separated, and the separated substances adhere to the inner wall of the fresh water tank 1, so it is preferable to clean them every 1 to 3 months. . Therefore, with the structure of the third embodiment, cleaning is facilitated, and labor for removing the water bottle is unnecessary.

【0030】[0030]

【実施例4】図3、4について説明する。[Fourth Embodiment] FIGS. 3 and 4 will be described.

【0031】この実施例は、前記各実施例の遠赤外線発
生球体3の層に代えて、遠赤外線ハニカム層33(図
3)又は遠赤外線連通孔層34を用いたものである。前
記遠赤外線発生ハニカム層33又は遠赤外線発生連通孔
層34の外周は、共にセラミックス製外筒35であっ
て、遠赤外線を発生する。
In this embodiment, the far-infrared honeycomb layer 33 (FIG. 3) or the far-infrared communicating hole layer 34 is used in place of the far-infrared ray generating sphere 3 of each of the above-mentioned embodiments. The outer periphery of the far-infrared ray generating honeycomb layer 33 or the far-infrared ray generating communication hole layer 34 is a ceramic outer cylinder 35, and generates far-infrared rays.

【0032】この実施例は、遠赤外線発生球体に代えて
遠赤外線発生ハニカム層33又は遠赤外線発生連通孔層
34を用いたもので、他の構造は総て実施例1と同一に
つき、淨水態様についての説明を省略した。この遠赤外
線発生ハニカム等は、小球体より通水抵抗が少なく、か
つ接触面積が著しく多くなるので、淨水効率が頗る良好
である。例えば直径5mm〜15mmの球体混合層の厚さ1
00mmに対し、同一平面積ハニカム層はほぼ50mmで同
一作用効果を奏する。図中36、36aは止リングであ
る。
In this embodiment, a far infrared ray generating honeycomb layer 33 or a far infrared ray generating communicating hole layer 34 is used in place of the far infrared ray generating sphere, and the other structures are all the same as those in the first embodiment. The description of the mode is omitted. This far-infrared ray generating honeycomb or the like has less water resistance than the small spheres and has a remarkably large contact area, so that it has good drainage efficiency. For example, a spherical mixed layer with a diameter of 5 mm to 15 mm has a thickness of 1
With respect to 00 mm, the same flat area honeycomb layer has the same function and effect when it is approximately 50 mm. In the figure, 36 and 36a are stop rings.

【0033】[0033]

【発明の効果】この発明によれば、処理すべき水に極微
細気泡を散気させると共に、遠赤外線を作用させるの
で、水中に溶解又は混入している塩素、赤さび、アオコ
その他の有害又は不用物を除去し得る効果がある。
EFFECTS OF THE INVENTION According to the present invention, since ultrafine air bubbles are diffused into the water to be treated and far infrared rays act, harmful or unnecessary chlorine, red rust, water-bloom, etc. dissolved or mixed in the water are used. There is an effect that the thing can be removed.

【0034】又この発明の装置によれば、淨水槽内へ、
極微細気泡発生手段と、遠赤外線発生手段とを供えた淨
水筒を設置したので、一旦淨水槽内全部の水を淨化して
おけば、爾後の送水は極めて効率よく淨化できる効果が
ある。
Further, according to the device of the present invention, in the fresh water tank,
Since the water tank equipped with the ultra-fine bubble generating means and the far-infrared ray generating means is installed, once the entire water in the water tank is liquefied, the water can be effectively pumped after the sewage. ..

【0035】この発明で用いる淨化手段は、遠赤外線発
生粒子又は遠赤外線発生連通孔層と、極微細気泡発生の
散気盤とを結合させたものであるから、長期の使用に際
しても淨水能力を低減するおそれがない。従って短期
(例えば3ヶ月、6ヶ月毎)の取換えを要しない効果が
ある。更に遠赤外線処理した水は、長く変質しない効果
もある。
The cleaning means used in the present invention is a combination of the far-infrared ray-generating particles or the far-infrared ray-generating communicating hole layer and the diffuser disc for generating ultrafine bubbles, and therefore has the ability to remove water even during long-term use. There is no fear of reducing. Therefore, there is an effect that replacement in a short period (for example, every 3 months or 6 months) is not required. Further, the water treated with far-infrared rays also has an effect of not deteriorating for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施装置の縦断正面図。FIG. 1 is a vertical sectional front view of a device for carrying out the present invention.

【図2】同じく他の実施装置の縦断正面図。FIG. 2 is a vertical sectional front view of another embodiment of the same.

【図3】同じく他の実施装置の縦断正面図。FIG. 3 is a vertical sectional front view of another embodiment of the same.

【図4】同じく遠赤外線発生連続通気層の実施例の断面
図。
FIG. 4 is a sectional view of an example of a far infrared ray generating continuous ventilation layer.

【符号の説明】[Explanation of symbols]

1 淨水槽 2 淨水筒 3 遠赤外線発生球体 4 散気盤 5 脚片 6 支板 7 嵌挿筒 8 空間 9 送気管 10 送気ホース 11 エアポンプ 12 本体カバー 13、13a 網板 14 取水栓 15 給水管 16 エアポンプカバー 17 スイッチ 18 バルブ 1 Water tank 2 Water tank 3 Far-infrared ray generating sphere 4 Air diffuser 5 Leg piece 6 Support plate 7 Fitting tube 8 Space 9 Air supply pipe 10 Air supply hose 11 Air pump 12 Body cover 13, 13a Net plate 14 Water intake plug 15 Water supply Pipe 16 Air pump cover 17 Switch 18 Valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C02F 9/00 Z 8515−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C02F 9/00 Z 8515-4D

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 処理すべき水に極微細気泡を散気させる
と共に、遠赤外線を作用させることを特徴とした淨水方
法。
1. A water freshening method, characterized in that far-infrared rays are caused to act on the water to be treated while aerating ultrafine bubbles.
【請求項2】 処理すべき水を遠赤外線発生部材の間に
流動させると共に、該流動水中に微細孔から散気させた
極微細気泡を混入することを特徴とした淨水方法。
2. A fresh water method characterized in that water to be treated is made to flow between far-infrared ray generating members, and ultrafine bubbles diffused from fine holes are mixed into the flowing water.
【請求項3】 処理すべき水の流動は、極微細気泡の散
気により生成させた請求項2記載の淨水方法。
3. The fresh water method according to claim 2, wherein the flow of water to be treated is generated by aeration of ultrafine bubbles.
【請求項4】 給水手段と取水手段を有する淨水槽の内
側下部に無数の極微細孔を有する散気盤を設置し、該散
気盤に給気手段を付与すると共に、前記散気盤の上方に
遠赤外線発生部材を架設したことを特徴とする淨水装
置。
4. An air diffuser having innumerable ultrafine holes is installed in the lower inner part of a fresh water tank having a water supply means and a water intake means, and the air supply means is attached to the air diffuser and the air diffuser is provided with A fresh water device characterized in that a far infrared ray generating member is installed above.
【請求項5】 極微細孔は100μより小さくした請求
項4記載の淨水装置。
5. The fresh water device according to claim 4, wherein the ultrafine holes are smaller than 100 μm.
【請求項6】 散気盤と遠赤外線発生部材とを同一淨水
筒に設置し、該淨水筒を給水手段と取水手段を有する淨
水槽内へ着脱自在に設置したことを特徴とする淨水装
置。
6. An air diffuser and a far-infrared ray generating member are installed in the same water pipe, and the water pipe is detachably installed in a water tank having a water supply means and a water intake means. Fresh water equipment.
【請求項7】 遠赤外線発生部材を、遠赤外線発生粒子
層及び遠赤外線発生連通孔層とした請求項4又は6記載
の淨水装置。
7. The water purifier according to claim 4, wherein the far infrared ray generating member is a far infrared ray generating particle layer and a far infrared ray generating communication hole layer.
JP4234179A 1991-10-07 1992-08-10 Method and device for clarifying water Pending JPH05200382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234179A JPH05200382A (en) 1991-10-07 1992-08-10 Method and device for clarifying water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-287147 1991-10-07
JP28714791 1991-10-07
JP4234179A JPH05200382A (en) 1991-10-07 1992-08-10 Method and device for clarifying water

Publications (1)

Publication Number Publication Date
JPH05200382A true JPH05200382A (en) 1993-08-10

Family

ID=26531410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234179A Pending JPH05200382A (en) 1991-10-07 1992-08-10 Method and device for clarifying water

Country Status (1)

Country Link
JP (1) JPH05200382A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399295B1 (en) * 2001-07-23 2003-09-26 삼성에버랜드 주식회사 Reactor installed in baffle
WO2005033012A1 (en) * 2003-10-03 2005-04-14 Kazuo Takaku Water purifying device
JP2009101250A (en) * 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus
WO2016095231A1 (en) * 2014-12-19 2016-06-23 深圳市同盛绿色科技有限公司 Water treatment system and dechlorination device therefor
FR3081858A1 (en) * 2018-06-05 2019-12-06 Saur WATER AERATION CARAFE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245287A (en) * 1989-03-17 1990-10-01 Sugita Sueko Device for diminishing water molecular group in size
JPH03137985A (en) * 1989-10-23 1991-06-12 Takumi Kawada Air feeder for keeping activity of water
JPH04277075A (en) * 1991-03-01 1992-10-02 Shoei Pack:Kk Water treatment and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245287A (en) * 1989-03-17 1990-10-01 Sugita Sueko Device for diminishing water molecular group in size
JPH03137985A (en) * 1989-10-23 1991-06-12 Takumi Kawada Air feeder for keeping activity of water
JPH04277075A (en) * 1991-03-01 1992-10-02 Shoei Pack:Kk Water treatment and apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399295B1 (en) * 2001-07-23 2003-09-26 삼성에버랜드 주식회사 Reactor installed in baffle
WO2005033012A1 (en) * 2003-10-03 2005-04-14 Kazuo Takaku Water purifying device
JP2009101250A (en) * 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus
WO2016095231A1 (en) * 2014-12-19 2016-06-23 深圳市同盛绿色科技有限公司 Water treatment system and dechlorination device therefor
FR3081858A1 (en) * 2018-06-05 2019-12-06 Saur WATER AERATION CARAFE

Similar Documents

Publication Publication Date Title
US5096580A (en) Iron removal system and method
US4021347A (en) Sewage treatment system
CA1072018A (en) Ship waste water treating with flotation and membrane permeation
US3734850A (en) Wastewater treatment system
JPH05200382A (en) Method and device for clarifying water
US2769779A (en) Water purifier for aquariums
JP2575863Y2 (en) Water purifier
JPH0677650B2 (en) Upflow filtration method and device
GB2146255A (en) Pond filter
US6306304B1 (en) Aerobic treatment of septic tank effluent
JPH0751687A (en) Upward current type biological filter device
JPH09164304A (en) Filter water purifier
AU2005306597A1 (en) Waste water treatment process system
US3442387A (en) Filtering apparatus
JP2565427B2 (en) Organic sewage biological filtration equipment
JPH06218381A (en) Generating apparatus for purified water and activated water
RU2036687C1 (en) Continuous water filter
JPH0728955Y2 (en) Water purifier
JPH08215693A (en) Waste water treatment apparatus
RU2181343C2 (en) Aerator for liquid
JPH0244880Y2 (en)
JP3374252B2 (en) Input water purifier and water purification method using the same
JPH05329491A (en) Sewage treatment by biological membrane
JP3569978B2 (en) Aerobic treatment method for wastewater containing organic matter and its aerobic treatment device
JP3378628B2 (en) Filtration and denitrification equipment for sewage and filtration and denitrification method