JPH05199995A - Pupil photographing device and visual line detector - Google Patents

Pupil photographing device and visual line detector

Info

Publication number
JPH05199995A
JPH05199995A JP4033921A JP3392192A JPH05199995A JP H05199995 A JPH05199995 A JP H05199995A JP 4033921 A JP4033921 A JP 4033921A JP 3392192 A JP3392192 A JP 3392192A JP H05199995 A JPH05199995 A JP H05199995A
Authority
JP
Japan
Prior art keywords
image
pupil
eyeball
distance
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033921A
Other languages
Japanese (ja)
Inventor
Akira Tomono
明 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4033921A priority Critical patent/JPH05199995A/en
Publication of JPH05199995A publication Critical patent/JPH05199995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To detect a visual line with high accuracy while permitting the move ment of a head in a wide range without mounting. CONSTITUTION:The eyeball 30 is irradiated with the near IR light from a light source 5 and the reflected light thereof is imaged to an image pickup image 4 in a camera 1. On the other hand, the light reflected by a half mirror 3 in a lens system is branched to two beams which are then imaged onto a CCD line sensor 11 by respective lenses 10. An out of focus is detected by an out-of- focus detection processing section 12 from the spacing therebetween. The image of the pupil is then picked up by executing focusing and zooming until the spacing is minimized. The rotating angle of the eyeball is calculated in accordance with the image of the image pickup image 4 from the moving quantity of the lenses of this time, by which the visual line detection is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、瞳孔または角膜反射像
の動きに焦点を合わせつつこれを撮影し、その位置を検
出する瞳孔撮影装置と、画像処理を用いて非装着で視線
を検出する視線検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pupil photographing apparatus for photographing a pupil or a corneal reflection image while focusing on the movement of the image and detecting the position of the pupil or the corneal reflection image, and for detecting the line of sight without wearing the pupil using image processing. The present invention relates to a line-of-sight detection device.

【0002】[0002]

【従来の技術】視線検出を非装着な手段で行うために画
像処理の適用を考えると、特徴点の抽出,特徴点の位置
検出,眼球位置と回転角の推計が必要である。視線検出
の特徴点としては、従来、瞳孔,角膜反射像などがよく
用いられている。また、これらを抽出するためには眼に
照明を当てて、この反射光をカメラで撮影する方法が効
果的であることも知られている。従って、これらの特徴
点の空間位置を求めることができれば視線に変換するこ
とができる。
2. Description of the Related Art Considering the application of image processing for performing line-of-sight detection by a non-wearing means, it is necessary to extract feature points, detect position of feature points, and estimate eyeball position and rotation angle. Conventionally, a pupil, a corneal reflection image, and the like are often used as the characteristic points of the sight line detection. It is also known that a method of illuminating the eyes and photographing the reflected light with a camera is effective for extracting these. Therefore, if the spatial positions of these feature points can be obtained, they can be converted into the line of sight.

【0003】[0003]

【発明が解決しようとする課題】ところで、特徴点の空
間位置を求める方法は様々あり、代表的なものはステレ
オ画像計測であるが、カメラが2台必要であり、マン−
マシンのインタフェースの環境ではやや大型になる問題
がある。従って、単眼カメラでの計測が望ましいが、こ
の場合、距離情報が得にくい問題がある。超音波などを
組み合わせるなどして距離を求める方法もあるが、十分
な精度が得られない。
By the way, there are various methods for obtaining the spatial position of a feature point, and a typical one is stereo image measurement, but two cameras are required, and
There is a problem that the interface environment of the machine is rather large. Therefore, measurement with a monocular camera is desirable, but in this case, there is a problem that it is difficult to obtain distance information. There is a method of obtaining the distance by combining ultrasonic waves, etc., but sufficient accuracy cannot be obtained.

【0004】また、角膜反射像は、照明を当てて撮影す
るため、照明の位置によってこの特徴点の空間位置は変
化する。従って、視線に変換しやすい位置にこの像を生
成することも重要である。
Further, since the corneal reflection image is photographed by applying illumination, the spatial position of this feature point changes depending on the position of illumination. Therefore, it is important to generate this image at a position where it can be easily converted into the line of sight.

【0005】本発明は、照明を当て瞳孔と角膜反射像を
効率よく抽出するとともに、この特徴点に焦点を合わせ
るようにカメラの調節機構を変化させ、そのときの調節
機構の駆動量から距離情報を得て、眼球の位置と回転角
を推計することによって、非装着な手段で広い範囲で頭
部の動きを許容しつつ、高い精度で視線を検出するため
の瞳孔撮影装置と視線検出装置を実現することにある。
The present invention efficiently illuminates the pupil and the corneal reflection image and changes the adjusting mechanism of the camera so as to focus on this characteristic point. The distance information is calculated from the driving amount of the adjusting mechanism at that time. Then, by estimating the position and rotation angle of the eyeball, a pupil imaging device and a line-of-sight detection device for detecting the line of sight with high accuracy while allowing the movement of the head in a wide range by a non-wearing means are provided. It is to be realized.

【0006】[0006]

【課題を解決するための手段】本発明にかかる瞳孔撮影
装置は、カメラのレンズの光軸近くから前方に近赤外光
を照射する照明装置と、この照明装置の照明により眼底
または角膜表面で反射する光を集光して瞳孔像または角
膜反射像を撮像面に結像させるレンズ系と、このレンズ
系の途中に設けられ光学路を分岐するハーフミラーと、
このハーフミラーで反射した光を2つに分岐した後、各
々結像させ、その結像点間の距離から焦点ボケを検出す
る焦点ボケ検出処理部と、前記結像点間の距離が最も小
さくなるように前記レンズの焦点調節部を駆動する焦点
調節駆動機構とを備えたものである。
SUMMARY OF THE INVENTION A pupillary photographing apparatus according to the present invention comprises an illuminating device for irradiating near infrared light forward from near the optical axis of a lens of a camera, and a fundus or corneal surface for illumination by the illuminating device. A lens system that collects the reflected light and forms a pupil image or a corneal reflection image on the imaging surface, and a half mirror that is provided in the middle of the lens system and branches an optical path.
The light reflected by the half mirror is split into two, and each image is formed, and the focus blur detection processing unit that detects the focus blur from the distance between the image formation points and the distance between the image formation points are the smallest. Thus, a focus adjustment drive mechanism for driving the focus adjustment unit of the lens is provided.

【0007】また、本発明にかかる視線検出装置は、上
記の瞳孔撮影装置を用い、その焦点調節駆動機構による
レンズ移動量から撮影対象である瞳孔または角膜反射像
までの距離を計算する距離計算部と、瞳孔撮影装置から
得られた画像から瞳孔および角膜反射像を抽出する画像
処理部と、前記距離情報と画面上の瞳孔と角膜反射像の
位置情報から眼球の回転角を計算する眼球回転角の計算
部と、距離情報と眼球回転角から視線を検出する視線検
出部とを備えたものである。
Further, a line-of-sight detecting apparatus according to the present invention uses the above-mentioned pupil photographing apparatus, and calculates a distance from a lens movement amount by a focus adjustment driving mechanism to a pupil or a corneal reflection image to be photographed. And an image processing unit that extracts a pupil and corneal reflection image from an image obtained from a pupil imaging device, and an eyeball rotation angle that calculates an eyeball rotation angle from the distance information and position information of the pupil and corneal reflection image on the screen. And a line-of-sight detection unit that detects the line of sight from the distance information and the eyeball rotation angle.

【0008】[0008]

【作用】本発明の瞳孔撮影装置においては、カメラのレ
ンズの光軸近くから光を照射することによって、網膜反
射光が捉えられ、瞳孔が明るく撮影できる。また、この
ときにできる角膜反射像は、カメラと角膜曲率中心を結
ぶ線上に生ずるため、角膜反射光の位置を求めることに
よって角膜曲率中心の位置を計算でき、視線を求めやす
い。
In the pupil photographing apparatus of the present invention, by irradiating light from near the optical axis of the lens of the camera, the reflected light from the retina is captured and the pupil can be photographed brightly. Further, since the corneal reflection image formed at this time is generated on the line connecting the camera and the center of curvature of the cornea, the position of the center of corneal curvature can be calculated by determining the position of the light reflected by the cornea, and the line of sight can be easily obtained.

【0009】また、ハーフミラーで分岐され、さらに2
つに分岐された反射光の結像系によって焦点ボケが検出
されるため、焦点調節部はボケが少なくなるように機構
部を制御することができ、また、このときの機構部の移
動量から距離情報が得られる。
[0009] Further, it is branched by a half mirror, and further 2
Since the focus blur is detected by the imaging system of the reflected light that is branched into two, the focus adjustment unit can control the mechanism unit so that the blur is reduced. Also, from the movement amount of the mechanism unit at this time, Distance information is obtained.

【0010】さらに、本発明にかかる視線検出装置にお
いては、カメラのレンズの光軸付近から照明による角膜
反射像を用いること、カメラが自動焦点でアクティブに
働き、常に瞳孔または角膜反射像を画面の中心に捉える
こと、により撮影画面上で瞳孔中心から角膜反射像へ向
かうベクトルは眼球回転角に対して一次式または二次式
で近似できるため、画像上の2点(瞳孔と角膜反射像)
の位置と眼球までの距離から視線が計算できる。
Further, in the visual axis detection device according to the present invention, the corneal reflection image by illumination is used from near the optical axis of the lens of the camera, the camera actively works in auto focus, and the pupil or corneal reflection image is constantly displayed on the screen. By capturing in the center, the vector from the center of the pupil to the corneal reflection image on the photographic screen can be approximated by a linear or quadratic equation with respect to the eye rotation angle, so there are two points on the image (pupil and corneal reflection image)
The line of sight can be calculated from the position of and the distance to the eyeball.

【0011】[0011]

【実施例】図1は本発明の実施例である。同図におい
て、1はカメラ、2はズームレンズ、3はハーフミラ
ー、4は撮像素子、5は光源、6は集光レンズ、7は近
赤外バンドパスフィルタであり、5〜7で照明装置が構
成される。8は反射鏡、9は近赤外バンドパスフィル
タ、10は焦点ボケ検出センサ用のレンズ、11はCC
Dラインセンサであり、10,11で焦点ボケ検出セン
サが構成される。12は焦点ボケ検出処理部、13は焦
点調節駆動機構、14はズーム駆動機構、15,16は
焦点とズームレンズの移動量測定部、17は距離計算
部、18は瞳孔と角膜反射像を抽出する画像処理部、1
9は眼球回転角の計算部、20は視線検出部、21はカ
メラ駆動制御部、30は眼球である。そして、点線で囲
った部分100は瞳孔撮影装置を示し、200はこの瞳
孔撮影装置100を用いた視線検出装置を示す。また、
(a)は画像処理部18からの出力、(b)は距離計算
部17の出力であり、共にカメラ駆動制御部21に入力
され、このカメラ駆動制御部21からズーム指令(c)
がズーム駆動機構14に入力され、また回転指令(d)
がカメラ1の方向を変えるための駆動機構(図示せず)
に加えられる。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a camera, 2 is a zoom lens, 3 is a half mirror, 4 is an image sensor, 5 is a light source, 6 is a condenser lens, 7 is a near-infrared band pass filter, and 5-7 are illumination devices. Is configured. 8 is a reflecting mirror, 9 is a near infrared band pass filter, 10 is a lens for a focus blur detection sensor, 11 is a CC
It is a D line sensor, and a defocus detection sensor is composed of 10. Reference numeral 12 is a focus blur detection processing unit, 13 is a focus adjustment drive mechanism, 14 is a zoom drive mechanism, 15 and 16 are movement amount measurement units of the focus and the zoom lens, 17 is a distance calculation unit, and 18 is a pupil and corneal reflection image. Image processing unit, 1
9 is an eyeball rotation angle calculation unit, 20 is a line-of-sight detection unit, 21 is a camera drive control unit, and 30 is an eyeball. A portion 100 surrounded by a dotted line indicates a pupil photographing device, and a reference numeral 200 indicates a line-of-sight detecting device using the pupil photographing device 100. Also,
(A) is an output from the image processing unit 18, and (b) is an output from the distance calculation unit 17, both of which are input to the camera drive control unit 21, and a zoom command (c) from the camera drive control unit 21.
Is input to the zoom drive mechanism 14, and a rotation command (d)
Is a drive mechanism (not shown) for changing the direction of the camera 1.
Added to.

【0012】次に、動作について説明する。光源5から
出た光は、反射鏡8で反射し、ズームレンズの光軸上か
ら人の眼球30を照明する。この光の一部は瞳孔から眼
球30内に入り眼底で反射し、再び瞳孔を通過しカメラ
1で捉えられる。従って、瞳孔は明るく撮影される。ま
た、一部の光は眼球30の角膜表面で反射するが、角膜
が凸面であることから眼球30内に虚像(角膜反射像)
を作る。この像がカメラ1で捉えられる。捉えられた反
射光は、カメラ1の中ではハーフミラー3によって2つ
に分岐される。一方は結像面に置かれた撮像素子4によ
って捉えられ、画像処理部18によって瞳孔と角膜反射
像が分離抽出される。
Next, the operation will be described. The light emitted from the light source 5 is reflected by the reflecting mirror 8 and illuminates the human eyeball 30 from the optical axis of the zoom lens. Part of this light enters the eyeball 30 from the pupil, is reflected by the fundus, passes through the pupil again, and is captured by the camera 1. Therefore, the pupil is photographed brightly. Also, some light is reflected on the corneal surface of the eyeball 30, but since the cornea is a convex surface, a virtual image (corneal reflex image) is formed in the eyeball 30.
make. This image is captured by the camera 1. The reflected light captured is split into two by the half mirror 3 in the camera 1. One is captured by the image sensor 4 placed on the image plane, and the image processing unit 18 separates and extracts the pupil and the corneal reflection image.

【0013】ハーフミラー3によって分岐された他方
は、対になった2つのレンズ10でCCDラインセンサ
11上に結像される。ボケがあると像が大きくなるた
め、CCDラインセンサ11上の2つの点の距離が長く
なる。これを検出しボケが小さくなるように焦点調節駆
動機構13,ズーム駆動機構14を動かす。また、レン
ズ駆動系はエンコーダが設けられており、ズームレンズ
2の移動量は移動量測定部15,16で測定される。こ
の移動量はあらかじめ較正によって求めたズームレンズ
2の移動量と距離に関するデータと照合することにより
距離に変換される。距離計算部17の出力として得られ
る距離データ、画像処理部18の出力として得られる眼
球30中心から角膜反射像へ向かうベクトル量をもと
に、眼球回転角の計算部19によって眼球回転角が計算
される。
The other half branched by the half mirror 3 is imaged on the CCD line sensor 11 by the two lenses 10 forming a pair. Since the image becomes large when there is blur, the distance between two points on the CCD line sensor 11 becomes long. When this is detected, the focus adjustment drive mechanism 13 and the zoom drive mechanism 14 are moved so as to reduce the blur. Further, the lens drive system is provided with an encoder, and the movement amount of the zoom lens 2 is measured by the movement amount measuring units 15 and 16. This amount of movement is converted into a distance by collating the amount of movement of the zoom lens 2 previously obtained by calibration and data relating to the distance. The eye rotation angle calculation unit 19 calculates the eye rotation angle based on the distance data obtained as the output of the distance calculation unit 17 and the vector amount from the center of the eye 30 toward the corneal reflection image obtained as the output of the image processing unit 18. To be done.

【0014】また、本システムでは、頭部の動きによっ
て眼の空間位置が変化する場合には、カメラ1はこれに
追随するようにカメラ駆動制御部21によって回転され
る。この際の回転角(パン、チルト)は視線検出部20
に送られる。距離計算部17の距離データ、カメラ1の
回転角、画像上の特徴点の位置データから、特徴点であ
る瞳孔または角膜反射像の空間位置が同図には示してな
い手段により求まる。
Further, in the present system, when the spatial position of the eye changes due to the movement of the head, the camera 1 is rotated by the camera drive control unit 21 so as to follow it. The rotation angle (pan, tilt) at this time is determined by the line-of-sight detection unit 20.
Sent to. From the distance data of the distance calculator 17, the rotation angle of the camera 1, and the position data of the characteristic points on the image, the spatial position of the pupil or corneal reflection image, which is the characteristic point, can be obtained by means not shown in the figure.

【0015】瞳孔または角膜反射像の空間位置は眼球中
心の近くにあるので、近似的にこれらの位置を眼球中心
とするか、所定のオフセットを加えて眼球中心位置とす
ることができる。この眼球中心位置と眼球回転角の計算
部19の回転角から視線検出部20によって視線が検出
される。
Since the spatial position of the pupil or the corneal reflection image is near the center of the eyeball, these positions can be approximated to the center of the eyeball, or a predetermined offset can be added to the center position of the eyeball. The line-of-sight detection unit 20 detects the line of sight from the eyeball center position and the rotation angle of the eyeball rotation angle calculation unit 19.

【0016】図2は瞳孔と角膜反射像の位置が分かった
場合の視線検出方法の一例である。X(W)−Y(W)
−Z(W)は求めようとする注視対象を記述する座標系
である。この座標系でカメラ1の初期位置、初期回転角
は既知とする。また、光源5の位置Lは図1で説明した
ように、ズームレンズ2の前に設けられているものとす
る。
FIG. 2 shows an example of a visual axis detection method when the positions of the pupil and the corneal reflection image are known. X (W) -Y (W)
-Z (W) is a coordinate system that describes the gaze target to be obtained. The initial position and the initial rotation angle of the camera 1 are known in this coordinate system. The position L of the light source 5 is assumed to be provided in front of the zoom lens 2 as described with reference to FIG.

【0017】光源5と眼球30の位置が離れている場
合、角膜表面に入射する光はほぼ平行光になる。角膜表
面を球と仮定すると、角膜反射像はカメラ1の位置から
見た場合、光源5と角膜曲率中心Kを結ぶ線上で、r/
2(r:角膜曲率半径)の点に生ずる。角膜曲率半径r
は個人によって異なるが、あらかじめ別な方法で測定し
ておくことができる。従って、角膜反射像の位置Pr、
瞳孔の中心位置Puおよび光源5の位置Lが分かると、
眼球30の光軸Aは以下のように求まる。なお、Gは視
線を示す。
When the positions of the light source 5 and the eyeball 30 are apart from each other, the light incident on the corneal surface becomes almost parallel light. Assuming that the corneal surface is a sphere, the corneal reflection image is r / on the line connecting the light source 5 and the corneal curvature center K when viewed from the position of the camera 1.
It occurs at the point 2 (r: radius of curvature of the cornea). Corneal curvature radius r
Can vary from individual to individual, but can be measured in advance by a different method. Therefore, the position Pr of the corneal reflection image,
When the center position Pu of the pupil and the position L of the light source 5 are known,
The optical axis A of the eyeball 30 is obtained as follows. In addition, G shows a line of sight.

【0018】[0018]

【数1】 視線Gは、図2のように、光軸Aと一定の傾きを持った
直線として定義できる。この傾きは、X(W)−Y
(W)−Z(W)系に位置が既知な視標を用意し、これ
を注視したときの光軸を求め、視線Gと比較することで
推計することができる。
[Equation 1] The line of sight G can be defined as a straight line having a constant inclination with the optical axis A as shown in FIG. This inclination is X (W) -Y
It can be estimated by preparing an optotype whose position is known in the (W) -Z (W) system, obtaining an optical axis when gazing at this, and comparing it with the line of sight G.

【0019】図3は瞳孔または角膜反射像の位置から眼
球中心31を求め、また、画面上の瞳孔と角膜反射像の
位置から眼球回転角を推計し、これらを統合して視線を
計算するアルゴリズムの例で、請求項2に対応する。図
3(a)で、31は眼球中心、32は瞳孔であり、両眼
球30はいずれも光軸Aに対し角度θだけ傾いている。
カメラ1の画面33はそれぞれ図2(b),(c)のよ
うになる。カメラ1に近い方の瞳孔像34は遠い方より
大きくなる。瞳孔中心35から角膜反射像36までの矢
印で示すのがベクトルである。カメラ1は眼球30の動
きに追随して回転し、また、焦点調節、ズーム等を行
う。従って、カメラ画像では瞳孔32または角膜反射像
36が画面23の中心付近に来る。このような状況で画
面33の中の瞳孔中心35と角膜反射像36を結ぶベク
トルを考えると、この方向は、眼球回転角(水平θ,垂
直ψ)により決まる。また、絶対値はθ,ψ、カメラ1
から眼球30までの距離dおよびカメラ1の倍率Eによ
り決まる。つまり次式が成立する。
FIG. 3 is an algorithm for calculating the eyeball center 31 from the position of the pupil or corneal reflection image, estimating the eyeball rotation angle from the positions of the pupil and corneal reflection image on the screen, and integrating these to calculate the line of sight. The example corresponds to claim 2. In FIG. 3A, 31 is the center of the eyeball, 32 is the pupil, and both eyes 30 are inclined by the angle θ with respect to the optical axis A.
The screens 33 of the camera 1 are as shown in FIGS. 2B and 2C, respectively. The pupil image 34 closer to the camera 1 becomes larger than that farther away. A vector is shown by an arrow from the pupil center 35 to the corneal reflection image 36. The camera 1 rotates following the movement of the eyeball 30, and also performs focus adjustment, zooming, and the like. Therefore, in the camera image, the pupil 32 or the cornea reflection image 36 comes near the center of the screen 23. Considering the vector connecting the center 35 of the pupil and the corneal reflection image 36 in the screen 33 in this situation, this direction is determined by the eyeball rotation angle (horizontal θ, vertical ψ). Also, absolute values are θ, ψ, and camera 1
Is determined by the distance d from the eyeball 30 to the magnification E of the camera 1. That is, the following formula is established.

【0020】[0020]

【数2】 従って、E,d,Vx,Vyが上記のようにして求まれ
ば、眼球回転角θ,ψが分かる。また、眼球中心31の
位置も同様に分かっているため、カメラ1と眼球中心3
1を結ぶ線分をZ軸とする眼球座標系を設定し、θ,ψ
を眼球回転角とする線分を求めると光軸が求まる。光軸
に所定の傾きを加えて視線が求まる。
[Equation 2] Therefore, if E, d, Vx, Vy are obtained as described above, the eyeball rotation angles θ, ψ can be known. Further, since the position of the eyeball center 31 is similarly known, the camera 1 and the eyeball center 3 are also known.
Set the eye coordinate system with the line segment connecting 1 as the Z axis, and set θ, ψ
The optical axis can be found by finding the line segment with the eyeball rotation angle as. The line of sight can be obtained by adding a predetermined inclination to the optical axis.

【0021】ここで、(3)(4)式のfは未知である
が、あらかじめ視標を指示してこれを見たときのVx,
Vyと対応させることで求めておくことができる。
Here, f in the equations (3) and (4) is unknown, but Vx, when a target is previously instructed and viewed,
It can be obtained by associating with Vy.

【0022】図4は視線検出の応用を示した例である。
同図において、100は瞳孔像撮影装置、101は発振
器と受信器とからなる超音波センサである。利用者が同
図のように撮影範囲Z1を移動しても、図1に示すカメ
ラ1がカメラズームまたは追跡範囲Z2内でこれに追随
して眼球30を捉えている限り、注視画面300のどこ
を見ているか検出できる。しかし、カメラ1は眼球30
をズームアップするため頭が高速に動くと、眼球30が
注視画面300から外れることがある。そこで、超音波
センサ101によって頭のおおよその位置を検出してお
り、眼球30が画面から外れ、カメラ1だけで探索が困
難な場合、超音波センサ101の検出方向にカメラ1を
向ける制御を行う。
FIG. 4 is an example showing an application of line-of-sight detection.
In the figure, 100 is a pupil image capturing apparatus, and 101 is an ultrasonic sensor including an oscillator and a receiver. Even if the user moves the shooting range Z1 as shown in the figure, as long as the camera 1 shown in FIG. 1 catches the eyeball 30 by following the camera zoom or tracking range Z2, the position of the gaze screen 300 You can detect whether you are looking at. However, the camera 1 has an eyeball 30
When the head moves at high speed to zoom in, the eyeball 30 may be off the gaze screen 300. Therefore, when the ultrasonic sensor 101 detects the approximate position of the head and the eyeball 30 is off the screen and the search is difficult only with the camera 1, control is performed to point the camera 1 in the detection direction of the ultrasonic sensor 101. ..

【0023】[0023]

【発明の効果】本発明にかかる瞳孔撮影装置は、カメラ
のレンズの光軸近くから前方に近赤外光を照射する照明
装置と、この照明装置の照明により眼底または角膜表面
で反射する光を集光して瞳孔像または角膜反射像を撮像
面に結像させるレンズ系と、このレンズ系の途中に設け
られ光学路を分岐するハーフミラーと、このハーフミラ
ーで反射した光を2つに分岐した後、各々結像させ、そ
の結像点間の距離から焦点ボケを検出する焦点ボケ検出
処理部と、結像点間の距離が最も小さくなるようにレン
ズの焦点調節部を駆動する焦点調節駆動機構とを備えた
ので単眼カメラを用いて、非装着で瞳孔を撮像すること
ができる。また、焦点ボケを確実に検出することができ
る。
The pupil photographing apparatus according to the present invention provides an illuminating device which irradiates near infrared light from near the optical axis of the lens of the camera to the front, and a light which is reflected on the fundus or corneal surface by the illumination of this illuminating device. A lens system that condenses and forms a pupil image or a corneal reflection image on the imaging surface, a half mirror that is provided in the middle of this lens system to branch the optical path, and the light reflected by this half mirror is split into two. After that, each image is formed, and the focus blur detection processing unit that detects the focus blur from the distance between the image formation points and the focus adjustment that drives the focus adjustment unit of the lens to minimize the distance between the image formation points Since the driving mechanism is provided, the pupil can be imaged without using a monocular camera. In addition, it is possible to reliably detect defocus.

【0024】また、本発明にかかる視線検出装置は、前
記瞳孔撮影装置を用い、その焦点調節駆動機構によるレ
ンズ移動量から撮影対象である瞳孔または角膜反射像ま
での距離を計算する距離計算部と、瞳孔撮影装置から得
られた画像から瞳孔および角膜反射像を抽出する画像処
理部と、距離情報と画面上の瞳孔と角膜反射像の位置情
報から眼球の回転角を計算する眼球回転角の計算部と、
距離情報と眼球回転角から視線を検出する視線検出部と
を備えたので、非装着で視線を検出することができる。
装置構成は小形化に適しており、また、高速な制御もで
きる。マンマシンのインタフェースにおいて、視線によ
る指示入力装置や、意図抽出への応用も可能である。
Further, the visual axis detection device according to the present invention uses the pupil photographing device, and a distance calculator for calculating a distance from the lens movement amount by the focus adjustment drive mechanism to the pupil or corneal reflection image to be photographed. , An image processing unit that extracts a pupil and a corneal reflection image from an image obtained from a pupil imaging device, and an eyeball rotation angle calculation that calculates an eyeball rotation angle from distance information and position information of the pupil and the corneal reflection image on the screen Department,
Since the line-of-sight detection unit that detects the line-of-sight from the distance information and the eyeball rotation angle is provided, the line-of-sight can be detected without wearing.
The device configuration is suitable for miniaturization, and high-speed control is also possible. In the man-machine interface, it is also possible to apply to the instruction input device by the line of sight and the intention extraction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による瞳孔撮影装置と視線検出装置の一
実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a pupil imaging apparatus and a line-of-sight detection apparatus according to the present invention.

【図2】瞳孔と角膜反射像を用いた視線検出の原理を説
明するための図である。
FIG. 2 is a diagram for explaining the principle of line-of-sight detection using a pupil and a corneal reflection image.

【図3】視線検出の他の例を説明するための図である。FIG. 3 is a diagram for explaining another example of line-of-sight detection.

【図4】本発明の応用例を示す構成略図である。FIG. 4 is a schematic configuration diagram showing an application example of the present invention.

【符号の説明】[Explanation of symbols]

1 カメラ 2 ズームレンズ 3 ハーフミラー 4 撮像素子 5 光源 6 集光レンズ 7 近赤外バンドパスフィルタ 8 反射鏡 9 近赤外バンドパスフィルタ 10 レンズ 11 CCDラインセンサ 12 焦点ボケ検出処理部 13 焦点調節駆動機構 14 ズーム駆動機構 15 移動量測定部 16 移動量測定部 17 距離計算部 18 画像処理部 19 眼球回転角の計算部 20 視線検出部 21 カメラ駆動制御部 30 眼球 100 瞳孔撮影装置 200 視線検出装置 1 Camera 2 Zoom Lens 3 Half Mirror 4 Image Sensor 5 Light Source 6 Condenser Lens 7 Near-infrared Bandpass Filter 8 Reflector 9 Near-infrared Bandpass Filter 10 Lens 11 CCD Line Sensor 12 Focus Blurring Detection Processing Section 13 Focus Adjustment Drive Mechanism 14 Zoom drive mechanism 15 Moving amount measuring unit 16 Moving amount measuring unit 17 Distance calculating unit 18 Image processing unit 19 Eye rotation angle calculating unit 20 Eye-gaze detecting unit 21 Camera drive control unit 30 Eyeball 100 Pupil imaging device 200 Eye-gaze detecting device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カメラのレンズの光軸近くから前方に近
赤外光を照射する照明装置と、この照明装置の照明によ
り眼底または角膜表面で反射する光を集光して瞳孔像ま
たは角膜反射像を撮像面に結像させるレンズ系と、この
レンズ系の途中に設けられ光学路を分岐するハーフミラ
ーと、このハーフミラーで反射した光を2つに分岐した
後、各々結像させ、その結像点間の距離から焦点ボケを
検出する焦点ボケ検出処理部と、前記結像点間の距離が
最も小さくなるように前記レンズの焦点調節部を駆動す
る焦点調節駆動機構とを備えたことを特徴とする瞳孔撮
影装置。
1. An illuminating device that irradiates near-infrared light forward from near the optical axis of a camera lens, and a pupil image or corneal reflection by collecting light reflected by the fundus or corneal surface by the illumination of this illuminating device. A lens system for forming an image on the image pickup surface, a half mirror provided in the middle of the lens system for branching the optical path, and the light reflected by the half mirror is split into two and then each image is formed. A focus blur detection processing unit that detects focus blur from the distance between the image formation points, and a focus adjustment drive mechanism that drives the focus adjustment unit of the lens so that the distance between the image formation points is minimized. Pupil imaging device characterized by.
【請求項2】 請求項1記載の瞳孔撮影装置を用い、そ
の焦点調節駆動機構によるレンズ移動量から撮影対象で
ある瞳孔または角膜反射像までの距離を計算する距離計
算部と、瞳孔撮影装置から得られた画像から瞳孔および
角膜反射像を抽出する画像処理部と、前記距離情報と画
面上の瞳孔と角膜反射像の位置情報から眼球の回転角を
計算する眼球回転角の計算部と、前記距離情報と眼球回
転角から視線を検出する視線検出部とを備えたことを特
徴とする視線検出装置。
2. The pupil photographing apparatus according to claim 1, wherein a distance calculating unit for calculating a distance from a lens movement amount by a focus adjustment drive mechanism to a pupil or a corneal reflection image to be photographed, and a pupil photographing apparatus. An image processing unit that extracts a pupil and a corneal reflection image from the obtained image, an eyeball rotation angle calculation unit that calculates the rotation angle of the eyeball from the distance information and the position information of the pupil and the corneal reflection image on the screen, and A line-of-sight detection device comprising a line-of-sight detection unit that detects a line of sight from distance information and an eyeball rotation angle.
JP4033921A 1992-01-27 1992-01-27 Pupil photographing device and visual line detector Pending JPH05199995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033921A JPH05199995A (en) 1992-01-27 1992-01-27 Pupil photographing device and visual line detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033921A JPH05199995A (en) 1992-01-27 1992-01-27 Pupil photographing device and visual line detector

Publications (1)

Publication Number Publication Date
JPH05199995A true JPH05199995A (en) 1993-08-10

Family

ID=12399984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033921A Pending JPH05199995A (en) 1992-01-27 1992-01-27 Pupil photographing device and visual line detector

Country Status (1)

Country Link
JP (1) JPH05199995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077258A1 (en) * 2004-02-17 2005-08-25 National University Corporation Shizuoka University Eyeshot detection device using distance image sensor
JP2007195775A (en) * 2006-01-27 2007-08-09 Keio Gijuku Pupil detection method, pupil position detector, and transmission type eye-direction detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077258A1 (en) * 2004-02-17 2005-08-25 National University Corporation Shizuoka University Eyeshot detection device using distance image sensor
JP2005230049A (en) * 2004-02-17 2005-09-02 National Univ Corp Shizuoka Univ Visual axis detector using distance image sensor
US7533988B2 (en) 2004-02-17 2009-05-19 National University Corporation Shizuoka University Eyeshot detection device using distance image sensor
JP4604190B2 (en) * 2004-02-17 2010-12-22 国立大学法人静岡大学 Gaze detection device using distance image sensor
JP2007195775A (en) * 2006-01-27 2007-08-09 Keio Gijuku Pupil detection method, pupil position detector, and transmission type eye-direction detector

Similar Documents

Publication Publication Date Title
JP6873918B2 (en) Tilt shift iris imaging
JP4649319B2 (en) Gaze detection device, gaze detection method, and gaze detection program
US4974010A (en) Focus control system
WO2015014058A1 (en) System for detecting optical parameter of eye, and method for detecting optical parameter of eye
JP4492847B2 (en) Eye refractive power measuring device
US20220100268A1 (en) Eye tracking device and a method thereof
JP2004517359A (en) System and method for automatically adjusting lens performance by gaze tracking
WO2015051605A1 (en) Image collection and locating method, and image collection and locating device
JP2004234002A (en) Automatic focusing in digital camera using ocular focal measurement value
JP5092120B2 (en) Eye movement measurement device
JP2001116985A (en) Camera with subject recognizing function and subject recognizing method
US11054659B2 (en) Head mounted display apparatus and distance measurement device thereof
JP2009240551A (en) Sight line detector
WO2022085276A1 (en) Information processing system, eye state measurement system, information processing method, and non-transitory computer readable medium
JP6221249B2 (en) Eye refractive power measuring device
JPH05199995A (en) Pupil photographing device and visual line detector
JP5004099B2 (en) Cursor movement control method and cursor movement control apparatus
JPH06319701A (en) Glance recognizing device
JP2005018405A (en) Eye image pickup device
JP6843527B2 (en) Ophthalmic equipment and ophthalmic equipment control program
JP3004653B2 (en) Ophthalmic equipment
KR102183197B1 (en) Imaging apparatus for fundus and optical module location automatic adjusting method of the same
KR102504865B1 (en) Binocular fundus camera
TWI544897B (en) Image detecting apparatus and image detecting method
JP2000296109A (en) Optometer