JPH05199033A - Multi-beam antenna system - Google Patents

Multi-beam antenna system

Info

Publication number
JPH05199033A
JPH05199033A JP4006896A JP689692A JPH05199033A JP H05199033 A JPH05199033 A JP H05199033A JP 4006896 A JP4006896 A JP 4006896A JP 689692 A JP689692 A JP 689692A JP H05199033 A JPH05199033 A JP H05199033A
Authority
JP
Japan
Prior art keywords
distribution
aperture
axis
mirror
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4006896A
Other languages
Japanese (ja)
Inventor
Akira Kondo
彰 近藤
Toshikazu Hori
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4006896A priority Critical patent/JPH05199033A/en
Publication of JPH05199033A publication Critical patent/JPH05199033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To provide the multi-beam antenna with a high gain at defocus feeding by selecting an aperture face amplitude distribution on an axis of defocal point to be a tapered distribution and an aperture face amplitude distribution on an axis orthogonal to the defocal axis to be a distribution close to the uniformity. CONSTITUTION:(x, y) is a orthogonal coordinate system in which a center 10 of a main reflecting mirror aperture face 9 is taken as the origin 10. When a center of a beam radiating from each of primary radiators 3, 4 is resident on an x-axis or its vicinity, an amplitude distribution formed by an electric field radiating from primary radiators 3, 4 placed to focal points 5, 6 of the mirror face system at a main reflection mirror aperture face 9 is a distribution with a low level around the aperture face edge within a plane of y=0 deg.. Moreover, the mirror face is corrected so as to have almost uniform distribution within a plane of x=0 deg.. Thus, the multi-beam antenna with a high gain is formed at defocal feeding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射鏡アンテナ技術に
関し、特に複数の通信衛星に同時にアクセスするマルチ
ビーム地球局アンテナの構成技術に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflector antenna technique, and more particularly to a technique for constructing a multi-beam earth station antenna for simultaneously accessing a plurality of communication satellites.

【0002】[0002]

【従来の技術】従来の技術を図4を用いて説明する。図
4は従来のアンテナの構成と開口面における振幅分布の
例を示す図であって、(a)はアンテナの構成を示して
おり、(b)は開口面における振幅分布を示している。
同図に示すように、このアンテナは、主反射鏡1、副反
射鏡2、一次放射器3,4より構成されている。また、
5,6はそれぞれ一次放射器3,4の位相中心で、5を
本鏡面系の焦点とする。更に、7,8は一次放射器3,
4から放射される中心レイの進行方向を示しており、9
は主反射鏡開口面を、10はその開口中心を表わしてい
る。そして、レイ7は開口の中心10を通る。
2. Description of the Related Art A conventional technique will be described with reference to FIG. 4A and 4B are diagrams showing a configuration of a conventional antenna and an example of an amplitude distribution on an aperture plane, where FIG. 4A shows the configuration of the antenna and FIG. 4B shows an amplitude distribution on the aperture plane.
As shown in the figure, this antenna is composed of a main reflecting mirror 1, a sub-reflecting mirror 2, and primary radiators 3 and 4. Also,
Reference numerals 5 and 6 are the phase centers of the primary radiators 3 and 4, respectively, and 5 is the focal point of the mirror surface system. Furthermore, 7 and 8 are primary radiators 3,
4 shows the traveling direction of the central ray radiated from 4
Represents the aperture surface of the main reflecting mirror, and 10 represents the center of the aperture. Then, the ray 7 passes through the center 10 of the opening.

【0003】アンテナ設計において高利得のビームを得
るために、焦点に置かれた一次放射器3に着目して主反
射鏡1および副反射鏡2の修整を行なう。通常の鏡面修
整では、目標とする開口分布を(1−r2 p とする
と、以下に示す「数1」を用いる。
In order to obtain a high-gain beam in the antenna design, the primary reflector 3 and the sub-reflecting mirror 2 are modified by focusing on the focused primary radiator 3. In ordinary mirror surface modification, when the target aperture distribution is (1-r 2 ) p , the following “Equation 1” is used.

【0004】[0004]

【数1】 [Equation 1]

【0005】この式は、ある角度範囲0°からθでホー
ンで放射された電波の電力が、開口面の半径0からrま
での電力に等しいことを意味しており、鏡面修整の基本
式の1つである。ただし、rは開口面の正規化半径で、
0から1までの任意の値である。またpは任意の実数
で、たとえばp=0なら一様な分布で、pを大きくする
にしたがい開口面端でテーパーのついた分布となる。θ
は、ホーンから放射されるビームの中心軸からの角度、
θ0 は反射鏡を見込む角度、H(θ)はホーンの放射パ
ターンを表わす。
This expression means that the electric power of the radio wave radiated by the horn in a certain angle range of 0 ° to θ is equal to the electric power of the radius 0 to r of the opening surface, which is a basic expression for mirror surface modification. There is one. However, r is the normalized radius of the opening surface,
It is an arbitrary value from 0 to 1. Further, p is an arbitrary real number, for example, if p = 0, the distribution is uniform, and as p is increased, the distribution is tapered at the end of the opening surface. θ
Is the angle from the central axis of the beam emitted from the horn,
θ 0 represents the angle of view of the reflecting mirror, and H (θ) represents the radiation pattern of the horn.

【0006】上記「数1」は解析的あるいは数値的に解
くことができ、あるθに対してrがきまる。この式と反
射の法則および光路長一定の法則により、反射鏡面座標
が決定できる。鏡面修整の結果得られる開口面9におけ
る振幅分布の概念図を図4(b)に示す。等振幅曲線1
2が開口面の周辺ほど密になっており、一様に近い軸対
称な分布が実現されていることがわかる。
The above "Formula 1" can be solved analytically or numerically, and r is determined for a certain θ. With this formula, the law of reflection and the law of constant optical path length, the reflection mirror surface coordinates can be determined. FIG. 4B shows a conceptual diagram of the amplitude distribution on the aperture surface 9 obtained as a result of mirror surface modification. Equal amplitude curve 1
It can be seen that 2 is closer to the periphery of the opening surface, and a nearly uniform axisymmetric distribution is realized.

【0007】マルチビームアンテナとしての特性を評価
するために、離焦点給電時のピーク利得の計算結果の例
を特性図として図5に示す。同図において、横軸はz軸
方向を0°とした角度、縦軸はアンテナピーク絶対利得
値をdB単位で表わしている。また、放射ビームの中心
はx軸上にあるものとする。
In order to evaluate the characteristics of the multi-beam antenna, an example of the calculation result of the peak gain when feeding the defocused light is shown in FIG. 5 as a characteristic diagram. In the figure, the horizontal axis represents the angle with the z-axis direction being 0 °, and the vertical axis represents the antenna peak absolute gain value in dB. Also, assume that the center of the radiation beam is on the x-axis.

【0008】このような、ビーム配置は、たとえば、ほ
ぼ直線の衛星軌道上にある複数の静止衛星に同時にアク
セスするマルチビーム地球局アンテナの設計にみられ
る。曲線13は計算結果の一例で、実用に供されること
を前提に鏡面パラメータを決定している。おもな計算パ
ラメータを、主反射鏡開口径4.2m、周波数6GHz
とした。設計目標とする開口面分布を(1−r2 p
して、ここではP=0.4と与えた。
Such beam arrangements are found, for example, in the design of multi-beam earth station antennas that simultaneously access multiple geostationary satellites in substantially linear satellite orbits. The curve 13 is an example of the calculation result, and the mirror surface parameter is determined on the assumption that it is put to practical use. Main calculation parameters are: main reflector aperture diameter 4.2m, frequency 6GHz
And The aperture surface distribution which is the design target is (1-r 2 ) p , and P = 0.4 is given here.

【0009】図6に焦点給電時の開口面における振幅分
布の計算結果の例を特性図として示す。同図において、
横軸は正規化半径、縦軸は振幅レベルを示しており、開
口中心におけるレベルを0dBとしている。開口面エッ
ジでのレベルは開口中心に対して−10dB程度となっ
ている。焦点給電時の利得は開口能率で80%以上の値
を示す。
FIG. 6 is a characteristic diagram showing an example of the calculation result of the amplitude distribution on the aperture plane at the time of focus feeding. In the figure,
The horizontal axis represents the normalized radius and the vertical axis represents the amplitude level, and the level at the center of the aperture is 0 dB. The level at the edge of the opening surface is about -10 dB with respect to the center of the opening. The gain during focus feeding shows a value of 80% or more in aperture efficiency.

【0010】しかし、離焦点量が大きくなるにつれて、
利得は急激に低下する。たとえば、4.5°離れている
2衛星をアクセスする場合、利得は離焦点量0°のとき
に比べ2dB以上も劣化する。この理由は、図6をみて
もわかるとおり、主反射鏡開口面エッジ周辺の照射レベ
ルが高く、離焦点給電時に主反射鏡開口面の軸対称な分
布が歪み、鏡面エッジ周辺の電力が主反射鏡の外に漏れ
るためと考えられる。
However, as the defocus amount increases,
The gain drops sharply. For example, when accessing two satellites that are 4.5 ° apart, the gain deteriorates by 2 dB or more as compared with when the defocus amount is 0 °. The reason for this is that, as can be seen from FIG. 6, the irradiation level around the edge of the main reflecting mirror opening surface is high, the axially symmetrical distribution of the main reflecting mirror opening surface is distorted during defocus feeding, and the power around the mirror surface edge is mainly reflected. It is thought that it leaks out of the mirror.

【0011】[0011]

【発明が解決しようとする課題】以上の説明のように、
軸対称な高能率開口面振幅分布をもつアンテナでは離焦
点給電時の利得低下が大きいという問題点があった。本
発明はこの問題点を解決するため成されたもので、離焦
点給電時の利得低下を小さくすることを目的としてい
る。
[Problems to be Solved by the Invention] As described above,
An antenna with axisymmetric high efficiency aperture plane amplitude distribution has a problem that the gain drop is large when feeding defocused light. The present invention has been made to solve this problem, and an object thereof is to reduce the decrease in gain during defocusing power feeding.

【0012】[0012]

【課題を解決するための手段】本発明によれば上述の目
的は前記特許請求の範囲に記載した手段により達成され
る。すなわち、請求項1の発明は、主反射鏡と副反射鏡
と複数個の一次放射器からなるマルチビームアンテナに
おいて、主反射鏡開口面の中心Oを原点とする直交座標
系をx−yとし、各々の一次放射器から放射されたビー
ムの中心がx軸上あるいはその近傍にあるとき、鏡面系
の焦点に置いた一次放射器から放射された電界が主反射
鏡開口面につくる振幅分布を、y=0°面内で開口面エ
ッジ周辺のレベルが低い分布となり、x=0°面内でほ
ぼ一様な分布となるように鏡面修整したマルチビームア
ンテナ装置であり、また、請求項2の発明は上記構成の
アンテナにおいて、副反射鏡と一次放射器の間に複数の
鏡面を設けたマルチビームアンテナ装置である。以下、
本発明の作用等に関し実施例に基づいて説明する。
According to the invention, the above objects are achieved by the means recited in the claims. That is, according to the invention of claim 1, in a multi-beam antenna including a main reflecting mirror, a sub-reflecting mirror, and a plurality of primary radiators, an orthogonal coordinate system whose origin is the center O of the opening surface of the main reflecting mirror is defined as xy. , When the center of the beam radiated from each primary radiator is on or near the x-axis, the amplitude distribution created by the electric field radiated from the primary radiator placed at the focal point of the specular system on the aperture surface of the main reflector is , Y = 0 °, and the level around the edge of the aperture surface is low, and the mirror surface is modified to have a substantially uniform distribution in the x = 0 ° plane. The invention of (1) is a multi-beam antenna device in which a plurality of mirror surfaces are provided between the sub-reflecting mirror and the primary radiator in the antenna having the above-mentioned configuration. Less than,
The operation and the like of the present invention will be described based on examples.

【0013】[0013]

【実施例】図1は本発明の一実施例を示す図であって、
(a)はアンテナ構成、(b)は開口面における振幅分
布を示している。同図(b)に数字符号11で示すよう
に振幅分布はx軸上で疎、y軸上で密な非軸対称な分布
になっていることが特徴である。このような分布は、
「数1」において、目標開口分布(1−r2 p の代わ
りに (1−r2 P v cos2φ+(1−r2 Phsin2φ とすればよい。ただしφはy軸を0°とした偏角とす
る。これにより、φ=0°(垂直面内)では(1−
2 P v 、φ=90°(水平面内)では(1−r2
Phなる分布が得られる。
FIG. 1 is a diagram showing an embodiment of the present invention.
(A) shows the antenna configuration, and (b) shows the amplitude distribution on the aperture plane. A characteristic feature of the amplitude distribution is that it is sparse on the x axis and dense on the y axis, as indicated by numeral 11 in FIG. Such a distribution is
In (Equation 1), (1-r 2 ) P v cos 2 φ + (1-r 2 ) Ph sin 2 φ may be used instead of the target aperture distribution (1-r 2 ) p . However, φ is a deflection angle with the y axis set to 0 °. Therefore, at φ = 0 ° (in the vertical plane), (1-
r 2 ) P v , φ = 90 ° (in the horizontal plane) (1-r 2 )
A distribution of Ph is obtained.

【0014】本実施例の動作について以下に説明する。
図2に離焦点給電時の利得の計算結果の例を、図3に焦
点給電時の開口面振幅分布の計算結果の例を特性図とし
て示す。同計算においては、おもな計算パラメータを、
図4と同じく主反射鏡開口径4.2m、周波数6GH
z、Ph=2.0、Pv=0.4とした。
The operation of this embodiment will be described below.
FIG. 2 shows an example of the calculation result of the gain at the time of defocusing power feeding, and FIG. 3 shows an example of the calculation result of the amplitude distribution of the aperture plane at the time of focusing power feeding as a characteristic diagram. In the same calculation, the main calculation parameters are
Same as Fig. 4, main reflector aperture diameter 4.2m, frequency 6GH
z, Ph = 2.0 and Pv = 0.4.

【0015】水平面内の開口分布にテーパーをつけてい
ることにより、図5に比べ焦点給電時の利得は下がって
いる。しかし、図3(a)を見てもわかるように、水平
面内の焦点給電時の開口面における鏡面エッジレベルは
開口中心に比べ−30dBと小さいので、離焦点給電時
の開口面上の漏れ電力レベルは小さく、利得の劣化は小
さくなる。これによりたとえば、離焦点量2.25°で
の利得は図5に比べて高くなる。
Since the aperture distribution in the horizontal plane is tapered, the gain at the time of focus feeding is lower than that in FIG. However, as can be seen from FIG. 3 (a), since the specular edge level on the opening surface at the time of focus feeding in the horizontal plane is as small as −30 dB compared to the center of the opening, the leakage power on the opening surface at the time of defocusing feeding is high. The level is small and the gain deterioration is small. Thereby, for example, the gain at the defocus amount of 2.25 ° becomes higher than that in FIG.

【0016】以上の説明のように、離焦点の軸での(説
明ではx軸)開口面振幅分布をテーパーのついた分布、
それと直交する軸(説明ではy軸)での開口面振幅分布
を一様に近い分布とすれば、離焦点給電時に利得の高い
マルチビームアンテナが実現できる。
As described above, the aperture plane amplitude distribution along the axis of defocus (in the description, the x-axis) is tapered,
If the aperture plane amplitude distribution on the axis orthogonal to it (the y axis in the description) is made to be a nearly uniform distribution, a multi-beam antenna with high gain can be realized at the time of defocus feeding.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、離
焦点給電時に利得の高いマルチビームアンテナを実現で
きる利点がある。
As described above, according to the present invention, there is an advantage that a multi-beam antenna having high gain can be realized at the time of defocusing power feeding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】離焦点給電時の利得の計算結果の例を示す特性
図である。
FIG. 2 is a characteristic diagram showing an example of a result of calculation of gain when defocusing power is fed.

【図3】焦点給電時の開口面振幅分布の計算結果の例を
示す特性図である。
FIG. 3 is a characteristic diagram showing an example of a calculation result of an amplitude distribution of an aperture plane at the time of focus power feeding.

【図4】従来のアンテナの構成と開口面における振幅分
布の例を示す図である。
FIG. 4 is a diagram showing a configuration of a conventional antenna and an example of amplitude distribution on an aperture plane.

【図5】離焦点給電時のピーク利得の計算結果の例を示
す特性図である。
FIG. 5 is a characteristic diagram showing an example of a calculation result of peak gain during defocusing power feeding.

【図6】焦点給電時の開口面における振幅分布の計算結
果の例を示す特性図である。
FIG. 6 is a characteristic diagram showing an example of the calculation result of the amplitude distribution on the aperture surface at the time of focus power feeding.

【符号の説明】[Explanation of symbols]

1 主反射鏡 2 副反射鏡 3,4 一次放射器 5,6 一次放射器の位相中心 7,8 中心レイの進行方向 9 主反射鏡開口面 10 開口中心 11,12 等振幅曲線 13 計算による特性曲線 1 Main Reflector 2 Sub Reflector 3,4 Primary Radiator 5,6 Phase Center of Primary Radiator 7,8 Direction of Center Ray 9 Main Reflector Aperture Surface 10 Aperture Center 11,12 Equal Amplitude Curve 13 Calculated Characteristics curve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主反射鏡と副反射鏡と複数個の一次放射
器からなるマルチビームアンテナにおいて、 主反射鏡開口面の中心Oを原点とする直交座標系をx−
yとし、各々の一次放射器から放射されたビームの中心
がx軸上あるいはその近傍にあるとき、 鏡面系の焦点に置いた一次放射器から放射された電界が
主反射鏡開口面につくる振幅分布を、y=0°面内で開
口面エッジ周辺のレベルが低い分布、x=0°面内でほ
ぼ一様な分布となるように鏡面修整したことを特徴とす
るマルチビームアンテナ装置。
1. In a multi-beam antenna comprising a main reflecting mirror, a sub-reflecting mirror, and a plurality of primary radiators, an orthogonal coordinate system whose origin is the center O of the main reflecting mirror opening surface is x-
When y is the center of the beam emitted from each primary radiator and is on or near the x-axis, the amplitude of the electric field emitted from the primary radiator placed at the focal point of the specular system at the aperture of the main reflector. A multi-beam antenna device, wherein the distribution is mirror-modified so that the level around the edge of the aperture plane is low in the y = 0 ° plane and the distribution is almost uniform in the x = 0 ° plane.
【請求項2】 副反射鏡と一次放射器の間に複数の鏡面
を設けたことを特徴とする請求項1記載のマルチビーム
アンテナ装置。
2. The multi-beam antenna device according to claim 1, wherein a plurality of mirror surfaces are provided between the sub-reflecting mirror and the primary radiator.
JP4006896A 1992-01-17 1992-01-17 Multi-beam antenna system Pending JPH05199033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4006896A JPH05199033A (en) 1992-01-17 1992-01-17 Multi-beam antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006896A JPH05199033A (en) 1992-01-17 1992-01-17 Multi-beam antenna system

Publications (1)

Publication Number Publication Date
JPH05199033A true JPH05199033A (en) 1993-08-06

Family

ID=11650989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006896A Pending JPH05199033A (en) 1992-01-17 1992-01-17 Multi-beam antenna system

Country Status (1)

Country Link
JP (1) JPH05199033A (en)

Similar Documents

Publication Publication Date Title
US4145695A (en) Launcher reflectors for correcting for astigmatism in off-axis fed reflector antennas
US6184840B1 (en) Parabolic reflector antenna
Holt et al. A Gregorian corrector for spherical reflectors
KR860000332B1 (en) A antenna
US4855751A (en) High-efficiency multibeam antenna
Rusch et al. Determination of the maximum scan-gain contours of a beam-scanning paraboloid and their relation to the Petzval surface
US3696435A (en) Offset parabolic reflector antenna
da Silva Moreira et al. Classical axis-displaced dual-reflector antennas for omnidirectional coverage
US5175562A (en) High aperture-efficient, wide-angle scanning offset reflector antenna
US5459475A (en) Wide scanning spherical antenna
US4783664A (en) Shaped offset-fed dual reflector antenna
JPH05199033A (en) Multi-beam antenna system
Reutov et al. Focuser-based hybrid antennas for one-dimensional beam steering
EP0164466B1 (en) High-efficiency multibeam antenna
Mousavi et al. Feed-reflector design for large adaptive reflector antenna (LAR)
US10601143B2 (en) Antenna apparatus
US11909126B2 (en) Optical system for enhanced wide scan capability of array antennas
JP3314904B2 (en) Multi-beam antenna
Amanowicz et al. Highly effective asymmetric reflector antennas of Cassegrain type
US2653241A (en) Antenna
JP2889084B2 (en) Modification method of double reflector antenna device
Albertsen Shaped-beam antenna with low cross polarization
Aoki et al. A design method of an offset trireflector antenna whose main reflector is of an offset parabola type with high efficiency and low cross polarization characteristics
JP2019140506A (en) Beam forming method and antenna device
JPH0568124B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees