JPH0519887B2 - - Google Patents

Info

Publication number
JPH0519887B2
JPH0519887B2 JP1058186A JP1058186A JPH0519887B2 JP H0519887 B2 JPH0519887 B2 JP H0519887B2 JP 1058186 A JP1058186 A JP 1058186A JP 1058186 A JP1058186 A JP 1058186A JP H0519887 B2 JPH0519887 B2 JP H0519887B2
Authority
JP
Japan
Prior art keywords
polyamide elastomer
acid
compression
polyamide
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1058186A
Other languages
Japanese (ja)
Other versions
JPS62169610A (en
Inventor
Makoto Kondo
Keiji Kayaba
Yoshuki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1058186A priority Critical patent/JPS62169610A/en
Publication of JPS62169610A publication Critical patent/JPS62169610A/en
Publication of JPH0519887B2 publication Critical patent/JPH0519887B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は圧瞮氞久歪性ず摩耗性に優れたポリア
ミド゚ラストマ圧瞮成圢品の補造方法に関する。
曎に詳しくは圧瞮氞久歪性が改善され、圧瞮バネ
や圧瞮クツシペン材などに䜿甚された堎合には、
優れた匟性回埩性ず摩耗性を瀺すポリアミド゚ラ
ストマ圧瞮成圢品の補造方法に関する。 埓来の技術 ポリマ䞻鎖䞭にポリアミド繰り返し単䜍、ポリ
゚ヌテル繰り返し単䜍及び゚ステル結合を有する
ポリ゚ヌテル゚ステルアミド系のポリアミド゚ラ
ストマはゎム状匟性を瀺すポリマずしお知られ、
スポヌツ噚具、粟密機械郚品、機械機構郚品、電
気・電子郚品、自動車郚品、繊維、フむルルなど
皮々の甚途に拡倧し぀぀ある。 䞀方これらの甚途の䞭で、衝撃吞収甚のクツシ
ペン材や圧瞮バネのような甚途に䜿甚される堎合
には䞀般に化孊的、物理的諞特性のバランス以倖
に圧瞮氞久歪や摩耗性が優れた材料が芁求されお
いる。 埓来から゚ラストマは圧瞮バネずしお広く䜿甚
されおいる。特に特開昭55−51542号公報には、
ポリ゚ステル゚ラストマを予備圧瞮するこずによ
぀お倧倉圢での圧瞮氞久歪性が改善された圧瞮バ
ネを補造する方法が提案されおいる。 発明が解決しようずする問題点 前蚘特開昭55−51542号公報においお䜿甚され
おいるポリ゚ステル゚ラストマは比范的高高融点
であり耐熱性に優れおいるが、摩耗性が悪く、金
属ず接觊する倧倉圢のバネずしお䜿甚された堎合
には異音を発したり、偏心しお察称性を損な぀た
バネずなる問題がある。 䞀方ポリアミド゚ラストマは匟性回埩性、軜量
性、透明性、䜎枩衝撃性に優れ、たた成圢時にバ
リ、ヒケ等が生じにくいため前述の甚途に有甚さ
れおいるが、10以䞊の圧瞮倉圢を受けるず倧き
な氞久歪が生じ、バネ䜜甚が必芁な甚途では䜿甚
が制限されおいる状況にある。 よ぀お本発明の目的は摩耗性に優れ、バネ䜜甚
の倧きなポリアミド゚ラストマ圧瞮成圢品の補造
方法を提䟛するこずにある。 問題点を解決するための手段 本発明者らはポリアミド゚ラストマの前蚘問題
点を改良すべく鋭意怜蚎の結果、ポリアミド゚ラ
ストマブロツクを予備圧瞮するこずによ぀お、埓
来のポリ゚ステル゚ラストマの問題点を解決され
た摩耗性ず圧瞮氞久歪性に優れたポリアミド゚ラ
ストマ成圢品が埗られるこずを芋出し本発明に到
達した。 すなわち本発明はポリアミド゚ラストマブロツ
クを所定の軞線方向の長さが20以䞊圧瞮倉圢さ
せるに十分な軞線方向応力を加え、次いでこの軞
線方向応力を陀去するこずを特城ずするポリアミ
ド゚ラストマ圧瞮成圢品の補造方法を提䟛するも
のである。 本発明で䜿甚されるポリアミド゚ラストマは炭
玠原子数以䞊のアミノカルボン酞たたはラクタ
ム、もしくは炭玠原子数以䞊のゞアミンずゞカ
ルボン酞の塩(a)、数平均分子量300〜600のポリ
アルキレンオキシドグリコヌル(b)、及び炭玠
原子数〜20のゞカルボン酞(c)から構成されるポ
リ゚ヌテル゚ステルアミドが奜たしい。 このポリ゚ヌテル゚ステルアミドを構成する䞊
蚘(a)成分の炭玠原子数が以䞊のアミノカルボン
酞たたはラクタム、もしくは炭玠原子数以䞊の
ゞアミンずゞカルボン酞の塩ずしおは、ω−アミ
ノカプロン酞、ω−アミノ゚ナント酞、ω−アミ
ノカプリル酞、ω−アミノペラルゎン酞、ω−ア
ミノカプリン酞、11−アミノりンデカン酞、12−
アミノドデカン酞などのアミノカルボン酞あるい
はカプロラクタム、゚ナントラクタム、カプリル
ラクタム、ラクロラクタムなどのラクタム及びヘ
キサメチレンゞアミン−アゞピン酞塩、ヘキサメ
チレンゞアミン−セバシン酞塩、ヘキサメチレン
ゞアミン−む゜フタル酞塩、りンデカメチレンゞ
アミン−アゞピン酞塩などのゞアミンずゞカルボ
ン酞の塩が挙げられる。この䞭で11−アミノりン
デカン酞、12−アミノドデカン酞がポリ゚−テル
゚ステルアミドのゎム特性などの性胜が優れるた
め奜たしく甚いられる。 たた本発明のポリ゚ヌテル゚ステルアミドを構
成する(b)成分の数平均分子量が300〜6000のポリ
アルキレンオキシドグリコヌルずしおは、ポ
リ゚チレンオキシドグリコヌル、ポリ
−及び−プロピレンオキシドグリコヌ
ル、ポリテトラメチレンオキシドグリコヌ
ル、ポリヘキサメチレンオキシドグリコヌ
ル、゚チレンオキシドずプロピレンオキシドのブ
ロツク又はランダム共重合䜓、゚チレンオキシド
ずテトラヒドロフランのブロツク又はランダム共
重合䜓などが䜿甚できるが、ポリ゚ヌテル゚ステ
ルアミドの耐氎性、機械的匷床、匟性回埩性など
の特性からポリテトラメチレンオキシドグリ
コヌルが特に奜たしく䜿甚される。ポリアルキ
レンオキシドグリコヌルの数平均分子量は300
〜6000の範囲で甚いうるが、特に粗倧な盞分離を
起こさず、䜎枩特性や機械的性質が優れる分子量
領域が遞択される。この最適分子量領域はポリ
アルキレンオキシドグリコヌルの皮類によ぀
お異なる。䟋えばポリテトラメチレンオキシ
ドグリコヌルの堎合500〜3000、特に奜たしく
は500〜2500の分子量領域のものが䜿甚される。 䞊蚘ポリ゚ヌテル゚ステルアミドを構成する(c)
成分の炭玠原子数〜20のゞカルボン酞ずしお
は、テレフタル酞、む゜フタル酞、ナフタレン−
−ゞカルボン酞、ナフタレン−−ゞ
カルボン酞、ゞプニル−4′−ゞカルボン
酞、ゞプノキシ゚タンゞカルボン酞、−スル
ホむ゜フタル酞のような芳銙族ゞカルボン酞、コ
ハク酞、シナり酞、アゞピン酞、セバシン酞、ド
デカンゞ酞デカンゞカルボン酞のごずき脂肪
族ゞカルボン酞、及び−シクロヘキサンゞ
カルボン酞、−シクロヘキサンゞカルボン
酞、ゞシクロヘキシル−4′−ゞカルボン酞の
ごずき脂環族ゞカルボン酞を挙げるこずができ
る。 本発明の効果が最も顕著に瀺されるためには、
ポリ゚ヌテル゚ステルアミド䞭のポリアルキレ
ンオキシドグリコヌル成分の共重合量が〜90
重量ずなるこずが奜たしい。共重合量が以
䞋では柔軟性、匟性回埩性が倱われ、逆に90重量
以䞊では高湿特性、機械的性質が十分でないた
め奜たしくない。 ポリ゚ヌテル゚ステルアミドの重合方法は特に
限定されず公知の方法を䜿甚するこずができる。
䟋えば、アミノカルボン酞たたはラクタム成
分ずゞカルボン酞成分を反応させお䞡末
端基がカルボキシル基のポリアミドプレポリマを
぀くり、これにポリアルキレンオキシドグリ
コヌル成分を枛圧䞋に重合させる方法、あ
るいは䞊蚘(a)、(b)、(c)の各成分を反応槜に仕蟌
み、氎の存圚䞋たたは䞍存圚䞋に高枩で反応させ
るこずによりカルボキシル末端基のポリアミドプ
レポリマを生成させ、その埌垞圧たたは枛圧䞋に
重合させる方法、たた䞊蚘(a)、(b)、(c)の各成分を
同時に反応槜に仕蟌み、予備反応埌、枛圧䞋で䞀
挙に重合を進める方法などが採甚される。 本発明のポリアミド゚ラストマ圧瞮成圢品は、
前述のポリ゚ヌテル゚ステルアミドからなるポリ
アミド゚ラストマブロツクを所定の軞線方向に少
なくずも20以䞊圧瞮し、次いでこの軞線方向を
応力を陀去しお埗られたブロツクをバネ、クツシ
ペン材、バツドや衝撃吞収材などの甚途にそのた
たの圢状で䜿甚される成圢品、ないしはバネ、ク
ツシペン材、パツドや衝撃吞収材などの目的ずす
る圢状に切削加工された成圢品を意味する。 たずポリアミド゚ラストマブロツクの補造は、
ポリアミド゚ラストマを射出成圢しおブロツク状
䜓ずする方法、ポリアミド゚ラストマを抌出成圢
しお埗られる棒状䜓を切断しおブロツク状䜓ずす
る方法、鋳型に溶融したポリアミド゚ラストマポ
リマを泚入埌冷华しおブロツク状䜓ずする方法、
ないしは金属補の鋳型にポリアミド゚ラストマペ
レツトを入れ、鋳型を加熱加圧しおポリマを溶融
埌冷华しおブロツク状䜓ずする方法などが採甚さ
れるが、生産性の面から射出成圢による方法、抌
出成圢品を切断する方法が奜たしく䜿甚される。
䞊蚘のようにしお埗られたポリアミド゚ラストマ
ブロツクを、所定の軞線方向に20以䞊圧瞮する
方法は、特に限定されずポリアミド゚ラストマブ
ロツクの軞線にほが垂盎で互いにほが平行な面
を蚭け、この面の党面にわたり軞線方向に応力
を加え圧瞮する方法、䞀方の面の䞭心郚に軞線方
向応力を加え圧瞮する方法、ないしは䞀方の面の
倖呚郚に軞線方向応力を加え圧瞮する方法、たた
溶融したポリアミド゚ラストマポリマを鋳型に流
し蟌んでブロツクを補造する際に、ポリマの固化
過皋でその倖郚に倖圧を加え圧瞮する方法などの
方法が採甚される。 本発明においおはポリアミド゚ラストマブロツ
クを圧瞮に先立ち熱凊理を行うこずにより、本発
明の効果は曎に向䞊する。即ち熱凊理を行うこず
によりポリアミド゚ラストマブロツクに残存する
成圢時の歪が緩和され、たたポリアミド゚ラスト
マを構成するポリアミドハヌドブロツクの結晶化
床が高くなり、ポリアミド゚ラストマの物理的架
橋が匷化されるため圧瞮氞久歪に代衚されるゎム
特性が向䞊するものず考えられる。 このポリアミド゚ラストマブロツクの熱凊理は
空気䞭、䞍掻性ガス䞭、真空䞭のいずれの雰囲気
でなされおもよいが、採甚する枩床ず時間は䜿甚
されるポリアミド゚ラストマによ぀お異なる。 本発明のポリアミド゚ラストマである前蚘ポリ
゚ヌテル゚ステルアミドを構成する(a)成分のポリ
アミド成分を比范的倚量に含有する。䟋えば50重
量以䞊含有するポリアミド゚ラストマにおいお
は60〜180℃の枩床範囲で任意の枩床、〜200時
間の任意の時間の熱凊理が採甚され又(a)成分のポ
リアミド成分が50重量以䞋の含有量のポリアミ
ド゚ラストマにおいおは、50〜160℃の枩床範囲
の任意の枩床、〜150時間の任意の時間の熱凊
理が採甚される。 本発明のアミド゚ラストマには、本発明の目的
を損なわない範囲でヒンダヌドプノヌル化合
物、ホスフアむト化合物、チオ゚ヌテル化合物な
どの酞化防止剀、ベンゟプノン系光吞収剀、ヒ
ンダヌドアミン系光安定剀などの玫倖線安定剀、
耐加氎分解改良剀、顔料及び染料などの着色剀、
垯電防止剀、導電剀、難燃剀、ガラス繊維、炭玠
繊維、アラミド繊維、チタン酞カリ繊維、ワラス
テナむト、アスベストなどの繊維状匷化剀、炭酞
カルシりム、硫酞バリりム、クレヌ、酞化チタ
ン、酞化ケむ玠、ガラスビヌズなどの充填剀、ス
テアリン酞金属塩、モンタン酞系ワツクス、゚チ
レンビスステアリルアミドのような滑剀、離圢
剀、タルク、マむカ粉末、カルボン酞金属塩など
の栞剀、可塑剀、粘着剀などを含有するこずがで
きる。 本発明のポリアミド゚ラストマ圧瞮成圢品は、
摩擊・摩耗性、圧瞮氞久歪性に優れおいるので、
バネ、クツシペン材、パツドや衝撃吞収材などの
甚途に䜿甚されるが、目的に応じおポリアミド゚
ラストマ圧瞮成圢品単独で䜿甚しおもよいが、耇
数個組み合わせお䜿甚しおもよく特に限定される
ものではない。 実斜䟋 以䞋に実斜䟋により本発明の効果を説明する。
なお、実斜䟋䞭のおよび郚はすべお重量基準で
ある。たた盞察粘床ずは、−クロルプノヌル
を溶媒ずし0.5のポリマ溶液を25℃で枬定した
倀である。 参考䟋 ポリアミド゚ラストマ−の重合 ω−アミノドデカン酞81.9郚、ドデカンゞ酞
6.8郚および数平均分子量650のポリテトラメチ
レンオキシドグリコヌル19.3郚をむルガノツク
ス1098チバガむギヌ瀟補ヒンダヌドプノヌル
系酞化防止剀0.5郚ず共にヘリカルリボン攪拌
翌を備えた反応容噚に仕蟌み、窒玠パヌゞしお垞
圧䞋260℃で時間加熱攪拌しお均質透明溶液ず
した埌、䞉酞化アンチモン觊媒0.015郚、モノブ
チルモノヒドロキシ錫オキサむド觊媒0.015郚、
および着色防止剀ずしおリン酞0.005郚を添加し、
枛圧プログラムに埓぀お時間で0.6mmHgの圧力
ずした。この条件で3.0時間反応を行぀た埌、反
応容噚を窒玠ガスで加圧䞋、ガツト状で氎䞭に吐
出カツテむングしおペレツトを埗た。 埗られたポリアミド゚ラストマ−の盞
察粘床は2.01であり、差動走査熱量蚈DSCに
よる結晶融点は167℃であ぀た。 ポリアミド゚ラストマ−の重合 ω−アミノドデカン酞49.1郚、テレフタレ酞
7.9郚、数平均分子量が1020のポリテトラメチ
レンオキシドグリコヌル48.8郚、むルガノツク
ス1098 0.5郚、䞉酞化アンチモン0.015郚、モノ
ブチルモノヒドロキシ錫オキサむド0.015郚およ
びリン酞0.005郚からポリアミド゚ラストマ
−ず同様の条件で重合し、盞察粘床2.11、結
晶融点154℃のポリアミド゚ラストマ−
を埗た。 ポリアミド゚ラストマ−の重合 ω−アミノドデカン酞27.3郚、テレフタル酞
5.7郚、数平均分子量が2060のポリテトラメチ
レンオキシドグリコヌル70.5郚、むルガノツク
ス1098 0.5郚、䞉酞化アンチモン0.015郚、モノ
ブチルモノヒドロキシ錫オキサむド0.015郚およ
びリン酞0.005郚からポリアミド゚ラストマ
−ず同様の条件で重合し、盞察粘床2.10、結
晶融点145℃のポリアミド゚ラストマ−
を埗た。 ポリアミド゚ラストマ−の重合 りンデカメチレンゞアミン−アゞピン酞塩44.9
郚、テレフタル酞12.8郚、数平均分子量が650の
ポリテトラメチレンオキシドグリコヌル50.0
郚、むルガノツクス1098、0.5郚、䞉酞化アンチ
モン0.015郚、モノブチルモノヒドロキシ錫オキ
サむド0.015郚およびリン酞0.005郚からポリアミ
ド゚ラストマ−ず同様の条件で重合し、
盞察粘床1.98、結晶融点209℃のポリアミド゚ラ
ストマ−を埗た。 実斜䟋  参考䟋で埗られたポリアミド゚ラストマ−
、−、−、−をオンスの射出胜
力を有する射出成圢機を甚いお、成圢枩床を各ア
ミド゚ラストマの結晶融点25℃、金型枩床40
℃、射出冷华時間2030秒に蚭定し、ASTM
D395法に蚘茉されおいる圧瞮氞久歪枬定甚詊隓
片を成圢した。 埗られた各アミド゚ラストマの圧瞮氞久歪枬定
詊隓片を空気䞭、100℃の枩床で60時間熱凊理を
行぀た。この熱凊理を行぀た圧瞮氞久歪枬定詊隓
片を、プレス装眮を甚いお30圧瞮し、分間保
持した埌、応力を陀去した。次いで埗られた各ア
ミド゚ラストマ圧瞮成圢品に぀いお、ASTM
D395法に埓぀お圧瞮氞久歪を、たた鈎朚匏摩耗
詊隓機により䞋蚘条件での比摩耗量を枬定した。 荷重10Kg 面圧10Kgcm2 しゆう動速床27分 しゆう動距離1.6Km 盞手材鋌材−45C 呚距離6.8cm 接觊面積cm2 比摩耗量摩耗量mg荷重Kg摩耗距離
Km たた各詊隓片の硬床をASTM D2240に埓぀お枬
定した。 結果を衚に瀺すが、衚には比范のため圧瞮
操䜜を斜さない詊料の枬定結果も合わせお瀺し
た。 衚から本発明の圧瞮成圢品が優れた圧瞮氞久
歪性ず耐摩耗性を有するこずが明らかである。
<Industrial Application Field> The present invention relates to a method for manufacturing a polyamide elastomer compression molded article having excellent compression set properties and abrasion resistance.
More specifically, when the compression set property is improved and it is used for compression springs and compression cushion materials,
The present invention relates to a method for producing a compression molded polyamide elastomer product that exhibits excellent elastic recovery and wear resistance. <Prior Art> Polyether ester amide-based polyamide elastomers having polyamide repeating units, polyether repeating units, and ester bonds in the polymer main chain are known as polymers that exhibit rubber-like elasticity.
Applications are expanding to include sports equipment, precision machinery parts, mechanical mechanism parts, electrical/electronic parts, automobile parts, textiles, and foils. On the other hand, when used in applications such as cushioning materials for shock absorption or compression springs, materials with excellent compression set and abrasion resistance are generally used in addition to the balance of chemical and physical properties. is required. Elastomers have traditionally been widely used as compression springs. In particular, in Japanese Patent Application Laid-open No. 55-51542,
A method has been proposed for producing a compression spring with improved compression set properties under large deformations by pre-compressing a polyester elastomer. <Problems to be Solved by the Invention> The polyester elastomer used in the above-mentioned Japanese Patent Application Laid-Open No. 55-51542 has a relatively high melting point and excellent heat resistance, but has poor abrasion resistance and does not come into contact with metal. When used as a spring with a large deformation, there are problems such as making an abnormal noise or causing the spring to become eccentric and lose its symmetry. On the other hand, polyamide elastomer has excellent elastic recovery properties, light weight, transparency, and low-temperature impact resistance, and is also useful for the above-mentioned applications because it does not easily cause burrs, sink marks, etc. during molding. Large permanent deformation occurs, which limits its use in applications that require spring action. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a compression molded polyamide elastomer product that has excellent abrasion resistance and a large spring action. <Means for Solving the Problems> As a result of intensive studies to improve the above-mentioned problems of polyamide elastomers, the present inventors have found that by pre-compressing polyamide elastomer blocks, the problems of conventional polyester elastomers can be solved. The inventors have discovered that it is possible to obtain a polyamide elastomer molded article with excellent abrasion resistance and compression set, and have arrived at the present invention. That is, the present invention provides a polyamide elastomer compression molded product characterized by applying sufficient axial stress to compressively deform a polyamide elastomer block by 20% or more in a predetermined axial length, and then removing this axial stress. A manufacturing method is provided. The polyamide elastomer used in the present invention is an aminocarboxylic acid or lactam having 6 or more carbon atoms, or a salt of diamine and dicarboxylic acid having 6 or more carbon atoms (a), poly(alkylene oxide) having a number average molecular weight of 300 to 600. Preferred are polyetheresteramides composed of glycol (b) and dicarboxylic acid (c) having 4 to 20 carbon atoms. The aminocarboxylic acids or lactams having 6 or more carbon atoms, or the salts of diamines and dicarboxylic acids having 6 or more carbon atoms, which are the component (a) that constitutes this polyether ester amide, include ω-aminocaproic acid, ω- Aminoenanthic acid, ω-aminocaprylic acid, ω-aminopelargonic acid, ω-aminocapric acid, 11-aminoundecanoic acid, 12-
Aminocarboxylic acids such as aminododecanoic acid or lactams such as caprolactam, enantholactam, capryllactam, lacloractam, and hexamethylenediamine-adipate, hexamethylenediamine-sebacate, hexamethylenediamine-isophthalate, undecamethylene Examples include salts of diamines and dicarboxylic acids such as diamine-adipate salts. Among these, 11-aminoundecanoic acid and 12-aminododecanoic acid are preferably used because they have excellent properties such as the rubber properties of polyether esteramide. Further, as the poly(alkylene oxide) glycol having a number average molecular weight of 300 to 6,000, which is the component (b) constituting the polyether ester amide of the present invention, poly(ethylene oxide) glycol, poly(1,
2- and 1,3-propylene oxide) glycol, poly(tetramethylene oxide) glycol, poly(hexamethylene oxide) glycol, block or random copolymers of ethylene oxide and propylene oxide, block or random copolymers of ethylene oxide and tetrahydrofuran. Poly(tetramethylene oxide) glycol is particularly preferably used because of the properties of polyether ester amide, such as water resistance, mechanical strength, and elastic recovery. The number average molecular weight of poly(alkylene oxide) glycol is 300
-6000, but a molecular weight range that does not cause coarse phase separation and has excellent low-temperature properties and mechanical properties is selected. This optimum molecular weight range differs depending on the type of poly(alkylene oxide) glycol. For example, in the case of poly(tetramethylene oxide) glycol, those having a molecular weight in the range of 500 to 3,000, particularly preferably 500 to 2,500 are used. (c) Constituting the above polyether ester amide
The component dicarboxylic acids having 4 to 20 carbon atoms include terephthalic acid, isophthalic acid, and naphthalene.
Aromatic dicarboxylic acids such as 2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 3-sulfoisophthalic acid, succinic acid, sulfuric acid, etc. acids, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dodecanedioic acid (decanedicarboxylic acid), and 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, dicyclohexyl-4,4'-dicarboxylic acid. Alicyclic dicarboxylic acids can be mentioned. In order for the effects of the present invention to be most clearly demonstrated,
The amount of copolymerization of poly(alkylene oxide) glycol component in polyether ester amide is 5 to 90.
Preferably, it is expressed as % by weight. If the copolymerization amount is less than 5%, flexibility and elastic recovery properties will be lost, and if it is more than 90% by weight, the high-humidity properties and mechanical properties will not be sufficient. The method for polymerizing polyether ester amide is not particularly limited, and any known method can be used.
For example, an aminocarboxylic acid or lactam (component a) and a dicarboxylic acid (component c) are reacted to create a polyamide prepolymer having carboxyl groups at both end groups, and poly(alkylene oxide) glycol (component b) is added to this under reduced pressure. Alternatively, each of the components (a), (b), and (c) above is charged into a reaction tank and reacted at high temperature in the presence or absence of water to produce a polyamide prepolymer with carboxyl terminal groups. A method in which the above components (a), (b), and (c) are simultaneously charged into a reaction tank and, after a preliminary reaction, the polymerization is proceeded all at once under reduced pressure. etc. will be adopted. The polyamide elastomer compression molded product of the present invention is
The polyamide elastomer block made of the aforementioned polyether ester amide is compressed by at least 20% or more in a predetermined axial direction, and then the stress is removed in this axial direction, and the resulting block is used as a spring, cushion material, batt, shock absorbing material, etc. This refers to molded products that are used in their original form for applications, or molded products that have been cut into the desired shape, such as springs, cushion materials, pads, and shock absorbing materials. First, the production of polyamide elastomer blocks is
A method of injection molding polyamide elastomer to form a block-like object, a method of extruding polyamide elastomer and cutting a rod-like object to form a block-like object, a method of injecting molten polyamide elastomer into a mold and then cooling it to form a block. method of making it into a shape,
Alternatively, a method is adopted in which polyamide elastomer pellets are placed in a metal mold, the mold is heated and pressurized, the polymer is melted, and then cooled to form a block-like body.However, from the viewpoint of productivity, injection molding, extrusion, etc. A method of cutting the molded article is preferably used.
The method of compressing the polyamide elastomer block obtained as described above by 20% or more in a predetermined axial direction is not particularly limited. A method of compressing the entire surface by applying stress in the axial direction, a method of applying stress in the axial direction to the center of one surface and compressing it, a method of applying stress in the axial direction to the outer periphery of one surface and compressing it. When polyamide elastomer polymer is poured into a mold to manufacture a block, methods such as applying external pressure to the outside of the polymer during the solidification process to compress it are employed. In the present invention, the effects of the present invention are further improved by heat-treating the polyamide elastomer block prior to compression. That is, heat treatment alleviates the distortion remaining in the polyamide elastomer block during molding, increases the degree of crystallinity of the polyamide hard block that makes up the polyamide elastomer, and strengthens the physical crosslinking of the polyamide elastomer, making it compression permanent. It is thought that the rubber properties, typified by strain, are improved. This heat treatment of the polyamide elastomer block may be carried out in any atmosphere such as air, inert gas or vacuum, but the temperature and time employed will vary depending on the polyamide elastomer used. It contains a relatively large amount of the polyamide component (a) that constitutes the polyether ester amide that is the polyamide elastomer of the present invention. For example, for polyamide elastomers containing 50% by weight or more, heat treatment at any temperature in the temperature range of 60 to 180°C for any period of time from 5 to 200 hours is adopted; For the content of polyamide elastomer, heat treatment at any temperature in the temperature range of 50 to 160° C. and for any period of time from 5 to 150 hours is employed. The amide elastomer of the present invention includes antioxidants such as hindered phenol compounds, phosphite compounds, and thioether compounds, and ultraviolet stabilizers such as benzophenone light absorbers and hindered amine light stabilizers, as long as they do not impair the purpose of the present invention.
Hydrolysis resistance improvers, colorants such as pigments and dyes,
Antistatic agents, conductive agents, flame retardants, glass fibers, carbon fibers, aramid fibers, potassium titanate fibers, wollastenite, fibrous reinforcing agents such as asbestos, calcium carbonate, barium sulfate, clay, titanium oxide, silicon oxide, glass Fillers such as beads, metal stearates, montanic acid waxes, lubricants such as ethylene bis stearylamide, mold release agents, nucleating agents such as talc, mica powder, metal carboxylates, plasticizers, adhesives, etc. It can contain. The polyamide elastomer compression molded product of the present invention is
It has excellent friction/abrasion resistance and compression set, so
It is used for applications such as springs, cushion materials, pads, and shock absorbing materials. Depending on the purpose, polyamide elastomer compression molded products may be used alone or in combination, but there are no particular limitations. It's not a thing. <Example> The effects of the present invention will be explained below with reference to Examples.
Note that all percentages and parts in the examples are based on weight. Moreover, relative viscosity is a value measured at 25° C. of a 0.5% polymer solution using o-chlorophenol as a solvent. Reference example Polymerization of polyamide elastomer (A-1) ω-aminododecanoic acid 81.9 parts, dodecanedioic acid
6.8 parts and 19.3 parts of poly(tetramethylene oxide) glycol with a number average molecular weight of 650 were charged together with 0.5 parts of Irganox 1098 (hindered phenolic antioxidant manufactured by Ciba Geigy) into a reaction vessel equipped with a helical ribbon stirring blade, and the mixture was purged with nitrogen. After heating and stirring for 1 hour at 260°C under normal pressure to obtain a homogeneous transparent solution, 0.015 parts of antimony trioxide catalyst, 0.015 parts of monobutyl monohydroxytin oxide catalyst,
and 0.005 part of phosphoric acid as a coloring inhibitor,
A pressure of 0.6 mmHg was achieved in 1 hour according to the vacuum program. After the reaction was carried out under these conditions for 3.0 hours, the reaction vessel was discharged and cut into water in a gut shape under pressure with nitrogen gas to obtain pellets. The relative viscosity of the obtained polyamide elastomer (A-1) was 2.01, and the crystal melting point was 167°C as measured by differential scanning calorimetry (DSC). Polymerization of polyamide elastomer (A-2) 49.1 parts of ω-aminododecanoic acid, terephthalic acid
Polyamide elastomer (A
Polyamide elastomer (A-2) polymerized under the same conditions as -1), with a relative viscosity of 2.11 and a crystalline melting point of 154°C.
I got it. Polymerization of polyamide elastomer (A-3) 27.3 parts of ω-aminododecanoic acid, terephthalic acid
Polyamide elastomer (A
Polyamide elastomer (A-3) polymerized under the same conditions as -1), with a relative viscosity of 2.10 and a crystal melting point of 145°C.
I got it. Polymerization of polyamide elastomer (A-4) Undecamethylenediamine-adipate 44.9
12.8 parts of terephthalic acid, 50.0 parts of poly(tetramethylene oxide) glycol with a number average molecular weight of 650.
part, Irganox 1098, 0.5 part, antimony trioxide 0.015 part, monobutyl monohydroxytin oxide 0.015 part and phosphoric acid 0.005 part under the same conditions as polyamide elastomer (A-1),
A polyamide elastomer (A-4) having a relative viscosity of 1.98 and a crystal melting point of 209°C was obtained. Example 1 Polyamide elastomer A obtained in Reference Example
1. A-2, A-3, and A-4 were molded using an injection molding machine with an injection capacity of 5 ounces, and the molding temperature was set to the crystal melting point of each amide elastomer +25°C and the mold temperature to 40°C.
°C, injection/cooling time set to 20/30 seconds, ASTM
A test piece for compression set measurement as described in the D395 method was molded. The compression set measurement test pieces of each of the obtained amide elastomers were heat treated in air at a temperature of 100°C for 60 hours. The compression set measurement test piece subjected to this heat treatment was compressed by 30% using a press machine, held for 2 minutes, and then the stress was removed. Each of the resulting amide elastomer compression molded articles was then tested according to the ASTM
The compression set was measured according to the D395 method, and the specific wear amount was measured using a Suzuki abrasion tester under the following conditions. Load: 10Kg Surface pressure: 10Kg/ cm 2Sliding speed: 27m/2 minutes Swivel distance: 1.6Km Mating material: Steel S-45C Circumferential distance: 6.8cm Contact area: 1cm 2 Specific wear amount = Wear amount ( mg)/load (Kg) x wear distance (
Km) The hardness of each test piece was also measured according to ASTM D2240. The results are shown in Table 1, which also shows the measurement results of samples that were not subjected to compression for comparison. It is clear from Table 1 that the compression molded products of the present invention have excellent compression set properties and wear resistance.

【衚】 実斜䟋  実斜䟋で埗られたポリアミド゚ラストマ−
の圧瞮氞久歪枬定甚詊隓片の熱凊理品を、実斜
䟋ず同様に、10、20、40、60それぞれ圧瞮
した詊料を調敎し、実斜䟋ず同様に圧瞮氞久歪
ず比摩耗量を枬定した。 結果を衚に瀺す。 衚から本発明の圧瞮成圢品が優れた圧瞮氞久
歪性ず耐摩耗性を有するこずが明らかである。
[Table] Example 2 Polyamide elastomer A- obtained in Example 1
Samples were prepared by compressing the heat-treated test piece for compression set measurement in Example 1 by 5, 10, 20, 40, and 60% in the same manner as in Example 1, and the compression set and specific wear were measured in the same manner as in Example 1. The amount was measured. The results are shown in Table 2. It is clear from Table 2 that the compression molded products of the present invention have excellent compression set properties and abrasion resistance.

【衚】 実斜䟋  実斜䟋で埗られたポリアミド゚ラストマ−
の圧瞮氞久歪枬定甚詊隓片を120℃のオヌブン
に入れ、空気䞭で10、30、80、150時間熱凊理を
行぀た埌、実斜䟋ず同様に30圧瞮し、圧瞮氞
久歪ず比摩耗量を枬定した。結果を衚に瀺す。 衚から熱凊理により本発明の効果が䞀局向䞊
するこずが明らかである。
[Table] Example 3 Polyamide elastomer A- obtained in Example 1
The test piece for compression set measurement in Example 2 was placed in an oven at 120°C, heat treated in air for 10, 30, 80, and 150 hours, and then compressed by 30% in the same manner as in Example 1. The amount of wear was measured. The results are shown in Table 3. It is clear from Table 3 that the effects of the present invention are further improved by heat treatment.

【衚】 実斜䟋  40mmφのスクリナヌを有する抌出成圢機を䜿甚
しお、150℃の枩床でポリアミド゚ラストマ−
を抌出成圢し、盎埄40mmφの䞞棒を成圢した。
この䞞棒を長さcmに切断しお、円板状の詊隓片
を䜜成した。 埗られた詊隓片を80℃に蚭定されたAirオヌブ
ン䞭で50時間熱凊理を行぀た埌、実斜䟋ず同様
に圧瞮しお圧瞮成圢品ずし、圧瞮氞久歪性ず比摩
耗量を枬定した結果、圧瞮氞久歪25倉圢、70
℃x22時間26、比摩耗量1.7mgKm・Kgず良奜
な倀を瀺した。 実斜䟋  アルミブロツヒヌタで200℃に加熱された内埄
100mmφの円筒に、ポリアミド゚ラストマ−
を玄320入れ、この円筒の䞡偎から倖埄100mmφ
の円板に200Kgcm2の圧力により圧瞮埌、冷华し
お100mmφx4cmの円板を鋳造した。 埗られた円板を実斜䟋ず同様に熱凊理埌、圧
瞮した成圢品の圧瞮氞久歪25倉圢、70℃x22
時間は25、比摩耗量2.4mgKm・Kgず良奜な
結果を瀺した。 比范䟋  デナポン瀟から販売されおいるポリ゚ステル゚
ラストマ“ハむトレル”4056を成圢枩床を200℃
ず倉曎しただけで、実斜䟋ず同様に成圢し、熱
凊理埌、圧瞮した成圢品の圧瞮氞久歪25倉
圢、70℃x22時間は39、比摩耗量9.1mg
Km・Kgずなり、同じ硬床の本発明のポリアミド
゚ラストマ−ず比范しお衚参照、圧瞮
氞久歪、比摩耗量共に劣る結果が埗られた。 発明の効果 実斜䟋〜でみられるように、本発明のポリ
アミド゚ラストマ圧瞮成圢品は優れた匟性回埩性
ず耐摩耗性を瀺すこずが明癜である。
[Table] Example 4 Using an extrusion molding machine with a screw of 40 mmφ, polyamide elastomer A-
3 was extrusion molded to form a round bar with a diameter of 40 mmφ.
This round bar was cut into a length of 3 cm to create a disk-shaped test piece. The obtained test piece was heat treated in an air oven set at 80°C for 50 hours, and then compressed into a compression molded product in the same manner as in Example 1. Results of measurement of compression set and specific wear amount. , compression set (25% deformation, 70
℃ x 22 hours) 26%, and the specific wear amount was 1.7 mg/Km・Kg, which were good values. Example 5 Inner diameter heated to 200℃ with an aluminum heater
Polyamide elastomer A-2 in a 100mmφ cylinder
Put about 320g of this cylinder, and the outer diameter is 100mmφ from both sides of this cylinder.
The mixture was compressed into a disc with a pressure of 200 kg/cm 2 , and then cooled and cast into a disc of 100 mmφ x 4 cmt. The obtained disk was heat treated in the same manner as in Example 1, and the compression set of the compressed molded product (25% deformation, 70℃ x 22
time) was 25% and the specific wear amount was 2.4mg/Km・Kg, showing good results. Comparative Example 1 Polyester elastomer “Hytrel” 4056 sold by DuPont was molded at a temperature of 200°C.
However, the compression set (25% deformation, 70℃ x 22 hours) of the molded product that was molded in the same manner as in Example 1, heat treated, and compressed was 39%, and the specific wear amount was 9.1 mg/
Km·Kg, and compared with the polyamide elastomer A-2 of the present invention having the same hardness (see Table 1), results were obtained that were inferior in both compression set and specific wear amount. <Effects of the Invention> As seen in Examples 1 to 5, it is clear that the polyamide elastomer compression molded product of the present invention exhibits excellent elastic recovery properties and abrasion resistance.

Claims (1)

【特蚱請求の範囲】[Claims]  ポリアミド゚ラストマブロツクを所定の軞線
方向の長さが20以䞊圧瞮倉圢させるに十分な軞
線方向応力を加え、次いでこの軞線方向応力を陀
去するこずを特城ずするポリアミド゚ラストマ圧
瞮成圢品の補造方法。
1. A method for producing a polyamide elastomer compression molded product, which comprises applying sufficient axial stress to compressively deform a polyamide elastomer block by 20% or more in a predetermined axial length, and then removing this axial stress.
JP1058186A 1986-01-21 1986-01-21 Manufacture of polyamide elastomer compression-molded form Granted JPS62169610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058186A JPS62169610A (en) 1986-01-21 1986-01-21 Manufacture of polyamide elastomer compression-molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058186A JPS62169610A (en) 1986-01-21 1986-01-21 Manufacture of polyamide elastomer compression-molded form

Publications (2)

Publication Number Publication Date
JPS62169610A JPS62169610A (en) 1987-07-25
JPH0519887B2 true JPH0519887B2 (en) 1993-03-18

Family

ID=11754209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058186A Granted JPS62169610A (en) 1986-01-21 1986-01-21 Manufacture of polyamide elastomer compression-molded form

Country Status (1)

Country Link
JP (1) JPS62169610A (en)

Also Published As

Publication number Publication date
JPS62169610A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
KR100355649B1 (en) Process for preparing polyamide and said polyamide and composition containing said polyamide
JPS646223B2 (en)
EP2726537B1 (en) Branched polyamide with different blocks
JPS6250495B2 (en)
JP6796353B2 (en) Flexible polyamide
EP3068820B1 (en) Polyamide composition
EP2920237B1 (en) Method for increasing fatigue resistance of polyamides
US20120175817A1 (en) Hydrolytically stable polyamide
US20170015786A1 (en) Modified polyamides having enhanced flowability/mechanical properties and molding compositions comprised thereof
KR940006854B1 (en) Polyamide and polyamide resin composition
WO2019121823A1 (en) Piperidine-containing semi-aromatic polyamide
JPS61200123A (en) Manufacture of cocondensated polyamide
US3036988A (en) Homogeneous blend of a polyamide and a polyvinyl lactam and process for producing
JP2557348B2 (en) Polyamide for molding material and polyamide composition for molding material
US20090264588A1 (en) Modified Polyamides Having Enchanced Flowability/Mechanical Properties and Molding Compositions Comprised Thereof
US4567226A (en) Elastomeric block copolyamides
JPS62218445A (en) Glass fiber-reinforced polyamide composition
JPH0519887B2 (en)
CN116157472A (en) Terminal-modified polyamide resin, process for producing the same, composition and molded article
CA1293582C (en) Molding compositions consisting of aliphatic/aromatic copolyamides
US3840635A (en) Process for producing shaped articles of polyamides
GB2063279A (en) New Thermoplastic Elastomers Based on Aliphatic Copolyetheresteramide Blocks of High Molecular Weight
JPH0623310B2 (en) Polyester ester amide resin composition
JPH0228255A (en) Polyamide resin composition
KR900002830B1 (en) Process for the preparation of impact-resistant polyamide