JPH0519832A - Control method for nc machine tool - Google Patents

Control method for nc machine tool

Info

Publication number
JPH0519832A
JPH0519832A JP3197424A JP19742491A JPH0519832A JP H0519832 A JPH0519832 A JP H0519832A JP 3197424 A JP3197424 A JP 3197424A JP 19742491 A JP19742491 A JP 19742491A JP H0519832 A JPH0519832 A JP H0519832A
Authority
JP
Japan
Prior art keywords
tool
signal
reciprocating
machine tool
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197424A
Other languages
Japanese (ja)
Inventor
Takashi Matsuda
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP3197424A priority Critical patent/JPH0519832A/en
Publication of JPH0519832A publication Critical patent/JPH0519832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To provide highly precise control at low cost only by an NC device for three-axis control without requiring programming which requires a long time and much labor for NC over the each-time reciprocation of a table and the fine feeding of a tool when machining is carried out while the reciprocation of the table and the fine feeding of the tool in each reciprocating operation are alternated synchronously with the control shaft of the NC machine tool. CONSTITUTION:The NC device 6 which has an each-time rotary feeding function provided in a speed command part 14, a tool diameter offset function provided in a program decoding and execution part 13, and a position comparing and position signal output function provided in a position comparison and position signal output part 11 is provided with a synchronizing signal generation part 12; and a signal generated by deciding that the table is positioned at either end of a reciprocal motion range is inputted to output a synchronizing signal signal to that when a main shaft makes one turn by the position detection part 10 of the NC device 6 and only the target position of the tool is inputted to the input operation part 7 of the NC device 6 to divide the movement quantity of the tool into fine feed of each reciprocating operation of the table, thereby performing a series of machining operation for a discontinuous shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工作機械の本体にテーブ
ルと、前記テーブルの移動方向に対して直角な平面にお
いて移動可能な工具を有する主軸と、を有するNC工作
機械の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an NC machine tool having a table in a main body of a machine tool and a spindle having a tool movable in a plane perpendicular to the moving direction of the table.

【0002】[0002]

【従来の技術】従来、NC工作機械の制御軸でテーブル
の往復動とテーブルの往復動毎の工具の微小送りを交互
に同期して加工を行う場合、毎回のテーブルの往復動と
工具の微小送りをNC装置にプログラミングする必要が
あり、この方法ではプログラミングに多大な時間と労力
を費やし、また不連続な形状の加工において砥石径補正
が使用できないため実用的でなく、外部の自動プログラ
ミング装置でプログラミングを行う必要があった。他の
方法としてテーブルの往復動を、往復動の範囲や速度制
御を行う事が困難であり複雑な機構を必要とする、NC
制御軸でない油圧シリンダもしくはカム機構による方法
もあった。又、そのための特別な機械的・電気的機構が
必要とする、シーケンサを用いてサーボモーターを制御
する方法も用いられていた。
2. Description of the Related Art Conventionally, when machining is performed by alternately synchronizing the reciprocating motion of a table and the micro-feed of the tool for each reciprocating motion of the table with the control axis of an NC machine tool, the reciprocating motion of the table and the micro-movement of the tool are performed every time. It is necessary to program the feed to the NC device, this method consumes a great deal of time and labor for programming, and it is not practical because grinding wheel diameter correction cannot be used in machining of discontinuous shapes, and it is not possible to use an external automatic programming device. I had to do some programming. As another method, it is difficult to control the reciprocating range and speed of the reciprocating motion of the table, and a complicated mechanism is required.
There was also a method using a hydraulic cylinder or a cam mechanism that was not the control axis. Further, a method of controlling a servomotor using a sequencer, which requires a special mechanical / electrical mechanism for that purpose, has also been used.

【0003】[0003]

【発明が解決しようとする課題】図1に示すような、一
連の不連続形状の断面を持つ2.5次元のワーク1の加
工を行う場合は、図2のような砥石先端Rを有する円板
状の砥石2を工具とし、図3に示すように、P1からP
5へ工具オフセット経路に沿った、テーブルの往復動と
工具の微小送りとを交互に繰り返す加工を行い、その工
具の移動軌跡は図4に示すものとなった。この加工を実
現する方法はいくつかあるが、次にそれらの問題点につ
いて述べる。 1.全てのテーブルの往復動と工具の微小送り位置への
移動指令をNCにプログラミングする方法。 この方法では図3に示すワーク加工形状から工具オフセ
ット経路を作成し各微小送り位置を算出し、それらの位
置への毎回のテーブル往復動と微小送りのNCプログラ
ムを作成しなければならない。一般的に工具の微小送り
は工具先端Rの値の数十分の1であり、工具オフセット
経路の算出にNCの工具径オフセット機能を使用する事
ができない点と、プログラムが膨大になることから、コ
ンピューターによる自動プログラミングシステムを導入
する必要があった。
When processing a 2.5-dimensional work 1 having a series of discontinuous cross sections as shown in FIG. 1, a circle having a grindstone tip R as shown in FIG. Using the plate-shaped grindstone 2 as a tool, as shown in FIG.
In step 5, the reciprocating motion of the table and the micro-feed of the tool were alternately repeated along the tool offset path, and the movement trajectory of the tool was as shown in FIG. There are several methods to realize this processing, but the problems will be described next. 1. A method of programming reciprocating motions of all tables and movement commands to tool micro feed positions in the NC. In this method, it is necessary to create a tool offset path from the workpiece machining shape shown in FIG. 3, calculate each minute feed position, and create an NC program for reciprocating the table and minute feed to each of those positions. In general, the minute feed of the tool is one tenths of the value of the tool tip R, and the tool radius offset function of NC cannot be used to calculate the tool offset path, and the program becomes huge. , It was necessary to introduce an automatic computer programming system.

【0004】2.テーブルの往復動を油圧シリンダもし
くははカム機構でおこなう方法。この方法ではテーブル
往復動の範囲や速度は可変である必要があるがこれらの
ものはその変更に対する制御を行う事が困難であり、油
圧回路やカム機構に複雑な機構を必要とする。また、テ
ーブルの往復動中の位置と工具位置間での補間を行う加
工はできなかった。 3.シーケンサを用いてサーボモーターを制御する方
法。この方法ではテーブル往復動の範囲や速度はその設
定値に対して高精度に制御を行う事が可能であるがシー
ケンサーにサーボモーターを制御するためのモジュール
を追加する必要があった。又、この方法でもテーブルの
往復動中の位置と工具位置間での補間を行う加工はでき
なかった。
2. A method of reciprocating the table with a hydraulic cylinder or cam mechanism. In this method, the range and speed of the reciprocating motion of the table need to be variable, but it is difficult to control these changes, and a complicated mechanism is required for the hydraulic circuit and the cam mechanism. In addition, it was not possible to perform machining to interpolate between the position of the table during reciprocating motion and the tool position. 3. A method of controlling a servo motor using a sequencer. With this method, the range and speed of the table reciprocation can be controlled with high precision with respect to the set values, but it was necessary to add a module for controlling the servo motor to the sequencer. Further, even with this method, it is not possible to perform processing for performing interpolation between the reciprocating position of the table and the tool position.

【0005】そこで本発明の課題は、NC工作機械の制
御軸でテーブルの往復動とテーブルの往復動毎の工具の
微小送りを交互に同期して加工を行う場合において、毎
回のテーブルの往復動と工具の微小送りをNCに多大な
時間と労力を要するプログラミングを必要としない、か
つテーブルの往復動を、NC制御軸でない油圧シリンダ
もしくはカム機構によることなく、又、そのための特別
な機械的・電気的機構が必要とするシーケンサを用いて
サーボモーターを制御することもなく、3軸制御のNC
装置のみにより、高精度の制御を安価な費用で提供で
き、かつ作成すべき加工プログラムを非常に小さく簡易
にして、トレーニング及び日常の加工での準備時間と労
力を省力化するようなNC工作機械の制御方法を提供す
ることにある。
Therefore, an object of the present invention is to reciprocate the table every time when machining is performed by alternately synchronizing the reciprocating motion of the table and the minute feed of the tool for each reciprocating motion of the table by the control axis of the NC machine tool. And the minute feed of the tool does not require NC time-consuming programming, and the reciprocating motion of the table does not depend on the hydraulic cylinder or cam mechanism that is not the NC control axis, and there is no special mechanical NC of 3-axis control without controlling the servo motor using the sequencer required by the electric mechanism
An NC machine tool that can provide high-precision control at a low cost by using only the device, and that makes the machining program to be created extremely small and simple to save the preparation time and labor for training and daily machining. It is to provide a control method of.

【0006】[0006]

【課題を解決するための手段】このため本発明は、特許
請求の範囲記載のNC工作機械の制御方法を提供するこ
とによって、上述した課題を解決した。
Therefore, the present invention has solved the above-mentioned problems by providing a control method for an NC machine tool as set forth in the claims.

【0007】[0007]

【実施例】以下添付した図5及び図6に基づきこの発明
を詳細に説明する。図5は本発明の一実施例NC工作機
械の制御方法に使用されるNC工作機械の構成を示すブ
ロック図で、NC工作機械は、本体5と、テーブル3
と、テーブルの移動方向に対して直角な平面において移
動可能な工具2を有する主軸4と、を有する。図6は本
発明の一実施例NC工作機械の制御方法に使用されるN
C装置の構成を示すブロック図である。一連の不連続形
状の加工を行うテーブル往復動軸及び工具移動軸は全て
NC装置6により制御されるサーボモーターMZ、M
Y、MXと図示しない送りネジにより駆動される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIGS. FIG. 5 is a block diagram showing a configuration of an NC machine tool used in an NC machine tool control method according to an embodiment of the present invention. The NC machine tool includes a main body 5 and a table 3.
And a spindle 4 having a tool 2 movable in a plane perpendicular to the direction of movement of the table. FIG. 6 shows an N used in a method for controlling a NC machine tool according to an embodiment of the present invention.
It is a block diagram which shows the structure of C apparatus. The table reciprocating shaft and the tool moving shaft for machining a series of discontinuous shapes are all servo motors MZ, M controlled by the NC device 6.
It is driven by Y, MX and a feed screw (not shown).

【0008】テーブル3往複動と工具2の微小移動を交
互に繰り返し行うように、NC装置6の入力操作部7に
は、テーブル3往復動に関して、それを行うか否か、そ
の範囲、その速度、テーブル往復動毎の工具2の微小送
り量、工具の砥石先端Rの値、及びテーブル往復動を行
わない場合の工具の移動速度等が入力される。これらは
該装置のデータ記憶部8に記憶される。加工用NCプロ
グラム(以下加工プログラムという)はテーブル往復動
及び工具の微小送りがない場合の工具の目標位置に対す
る直線補間もしくは円弧補間指令に工具径オフセットの
指令を付加したものを入力することで、NC装置6のプ
ログラム記憶部9に記憶される。
The table 3 reciprocating motion is determined by the input operation unit 7 of the NC device 6 so that the double motion of the table 3 and the small movement of the tool 2 are alternately repeated. The minute feed amount of the tool 2 for each reciprocating table, the value of the tool tip R of the tool, the moving speed of the tool when the reciprocating table is not performed, and the like are input. These are stored in the data storage unit 8 of the device. The NC program for machining (hereinafter referred to as machining program) is a linear interpolation or circular interpolation command for the target position of the tool when there is no reciprocating motion of the table and micro feed of the tool. It is stored in the program storage unit 9 of the NC device 6.

【0009】テーブル3の位置は、位置検出機EXから
の移動信号により、NC装置6内の位置検出部10で監
視されており、さらにテーブル位置はNC装置内の位置
比較及び位置信号出力部11でデータ記憶部8のテーブ
ル往復動範囲と常時比較されており、テーブル位置が往
復動範囲の両端に達すると直ちにそれが同期信号作成部
12に通知される。同期信号作成部12ではこの通知に
より位置検出部10の主軸入力に主軸が1回転した場合
と同様の信号を入力する。13はプログラムの解読及び
実行部、14は速度司令部である。
The position of the table 3 is monitored by the position detection unit 10 in the NC device 6 by a movement signal from the position detector EX, and the table position is compared with the position and position signal output unit 11 in the NC device. Are constantly compared with the table reciprocating range of the data storage section 8, and the synchronization signal creating section 12 is notified immediately when the table position reaches both ends of the reciprocating range. In response to this notification, the synchronization signal creation unit 12 inputs the same signal as when the main shaft makes one rotation to the main shaft input of the position detection unit 10. Reference numeral 13 is a program decoding and execution unit, and 14 is a speed command unit.

【0010】本発明の一実施例NC工作機械の制御方法
を説明すると、速度指令部14内に設けられた、入力さ
れた工具の目標位置から主軸1回転当たりの工具の微小
移動指令を指令する、毎回転送り機能、プログラム解読
及び実行部13内に設けられた、工具径オフセット機
能、及び、位置比較及び位置信号出力部11内に設けら
れた、テーブル往復動中の位置がテーブル3が往復動範
囲の両端に位置したことを判別し信号を出力する、位置
比較及び位置信号出力機能、を有するNC装置6を使用
し、NC装置6に同期信号作成部12を設けて、位置比
較及び位置信号出力部11からの前記テーブルが往復動
範囲の両端に位置したことを判別した信号を入力して、
主軸が1回転したと同様の同期信号をNC装置6の位置
検出部10に出力させ、工具の目標位置のみをNC装置
6の入力操作部7に入力することにより、前記工具移動
量を、前記テーブルの往復動毎の微小送りに分割し、前
記テーブルの往復動と工具の微小送りとを交互に繰り返
し行わせ、一連の不連続形状の加工を行うことを特徴と
するNC工作機械の制御方法としたものである。
A control method for an NC machine tool according to an embodiment of the present invention will be described. A minute movement command of the tool per one rotation of the spindle is commanded from the input target position of the tool provided in the speed command section 14. , The rotary feed function, the tool diameter offset function provided in the program decoding and execution unit 13, and the position during the table reciprocating motion provided in the position comparison and position signal output unit 11, the table 3 reciprocates The NC device 6 having a position comparison and position signal output function for determining that the position is located at both ends of the moving range and outputting a signal is used. By inputting a signal from the signal output unit 11 that determines that the table is located at both ends of the reciprocating range,
By causing the position detection unit 10 of the NC device 6 to output the same synchronization signal as when the main shaft makes one revolution and inputting only the target position of the tool to the input operation unit 7 of the NC device 6, the tool movement amount is A method for controlling an NC machine tool, characterized in that the table is divided into minute feeds for each reciprocating movement, and the reciprocating movement of the table and the minute feeding of a tool are alternately repeated to perform a series of discontinuous shape machining. It is what

【0011】即ち工具移動が起動された場合に工具移動
量をテーブルの往複動毎の微小送りに分割し、機械の起
動を行うと予め用意された初期化プログラムが切削送り
モータを主軸毎回転送りモードに設定後、データ記憶部
8に記憶されているデータをもとにテーブル3の往復動
の繰り返しを起動し、以後テーブル3の往復動は加工終
了時にテーブル往復動停止指令が実行されるまで往復動
を繰り返す。その後初期化プログラムは加工プログラム
を呼び出し工具の移動が実行されるが、毎回転送りモー
ドのため主軸4の回転信号が入力されるまでは移動しな
い。
That is, when the tool movement is started, the amount of tool movement is divided into minute feeds for each forward and backward movement of the table, and when the machine is started, an initialization program prepared in advance causes the cutting feed motor to rotate feed for each spindle. After the mode is set, the reciprocating motion of the table 3 is started based on the data stored in the data storage unit 8. After that, the reciprocating motion of the table 3 is continued until the table reciprocating motion stop command is executed at the end of machining. Repeats reciprocating motion. After that, the initialization program calls the machining program and the movement of the tool is executed, but it does not move until the rotation signal of the main spindle 4 is input because of the every rotation feed mode.

【0012】一方テーブルの位置は位置検出機EXから
の移動信号により装置内の位置検出部10で監視されて
おり、さらにテーブル位置はNC装置6内の位置比較及
び位置信号出力部11でデータ記憶部8のテーブル往復
動範囲と常時比較されており、テーブル位置が往復動範
囲の両端に達すると直ちにそれが同期信号作成部12に
通知される。同期信号作成部12ではこの通知により位
置検出部10の主軸入力に主軸4が1回転した場合と同
様の信号を入力する。その結果速度司令部14ではデー
タ記憶部8内のテーブル往復動毎の工具の微小送り量を
主軸1回転当たりの移動量として工具オフセット経路上
での移動を指令する。これによりテーブルの往復動と工
具の微小送りが実行ブロックの工具オフセット経路の目
標位置に到達するまで行われ、目標位置に到達すると次
のブロックが実行され加工プログラムの終了まで繰り返
される。
On the other hand, the position of the table is monitored by the position detection unit 10 in the apparatus by a movement signal from the position detector EX, and the table position is stored in the position comparison and position signal output unit 11 in the NC device 6 as data storage. The table reciprocating range of the unit 8 is constantly compared, and the synchronization signal creating unit 12 is notified immediately when the table position reaches both ends of the reciprocating range. In response to this notification, the synchronization signal generator 12 inputs the same signal as when the main spindle 4 makes one revolution to the main spindle input of the position detector 10. As a result, the speed command unit 14 commands the movement on the tool offset path by using the minute feed amount of the tool for each reciprocating motion of the table in the data storage unit 8 as the movement amount per one rotation of the spindle. As a result, the reciprocating motion of the table and the minute feed of the tool are performed until the target position of the tool offset path of the execution block is reached, and when the target position is reached, the next block is executed and repeated until the end of the machining program.

【0013】加工プログラムが終了すると初期化プログ
ラムに戻りテーブル往復動停止指令が発せられるとテー
ブルは往復動開始位置へ復帰後停止し、切削送りモード
を毎分送りモードに設定しテーブル往復動無しで工具を
初期の位置へ復帰させ、機械は停止する。NC装置6の
入力操作部7より、テーブル往復動を行わないよう設定
すると、テーブル往復動を行わない場合の工具の移動速
度を使用した、テーブル往復動を伴わない毎分送りの切
削モードの加工を先の加工プログラムと単一のプログラ
ムで行う事が可能である。
When the machining program ends, the initialization program is returned to, and when the table reciprocating motion stop command is issued, the table is stopped after returning to the reciprocating motion start position, and the cutting feed mode is set to the feed mode per minute without the table reciprocating motion. Return the tool to its initial position and stop the machine. When the table reciprocation is set not to be performed from the input operation unit 7 of the NC device 6, the cutting speed of the tool is used when the table reciprocation is not performed, and the machining is performed in the cutting mode of the feed per minute without the table reciprocation. It is possible to do with a single program with the previous machining program.

【0014】精密金型及びチップ等の2.5次元加工用
の図5に示すようなプロファイル平面研削盤において、
図3のようなワーク1の形状を加工する場合の加工プロ
グラムの内容の一例を次に示す。( )内は指令内容で
ある。 01 (プログラム番号) G41 G01 YP1y ZP1z (砥石径オフセット右指令及びP1 への切削指令) YP2y ZP2z (P2への切削指令) G02 YP3y ZP3z RP3r(P3への切削指令) G03 YP4y ZP4z RP4r(P4への切削指令) G01 YP5y ZP5z (P5への切削指令) M99 (プログラムの終了)
In a profile surface grinding machine as shown in FIG. 5 for 2.5-dimensional processing of precision molds and chips,
An example of the contents of the machining program for machining the shape of the work 1 as shown in FIG. 3 is shown below. The content in () is the instruction content. 01 (Program number) G41 G01 YP1y ZP1z (Whetstone diameter offset right command and cutting command to P1) YP2y ZP2z (Cutting command to P2) G02 YP3y ZP3z RP3r (Cutting command to P3) G03 YP4y To ZP4z RP4 Cutting command) G01 YP5y ZP5z (Cutting command to P5) M99 (End of program)

【0015】[0015]

【発明の効果】以上説明したように、本発明のによる
と、NC工作機械の制御軸でテーブルの往復動とテーブ
ルの往復動毎の工具の微小送りを交互に同期して加工を
行う場合において、毎回のテーブルの往復動と工具の微
小送りをNCに多大な時間と労力を要するプログラミン
グを必要としない、かつテーブルの往復動をNC制御軸
でない油圧シリンダもしくはカム機構によることなく、
又、シーケンサを用いてサーボモーターを制御すること
もなく、3軸制御のNCのみにより、高精度の制御を安
価な費用で提供でき、かつ作成すべき加工プログラムは
非常に小さく簡易にして、トレーニング及び日常の加工
での準備時間と労力を省力化するようなNC工作機械の
制御方法を提供するものとなった。
As described above, according to the present invention, when machining is performed by alternately reciprocating the table and minute feed of the tool for each reciprocating motion of the table by the control axis of the NC machine tool. Each time the table reciprocates and the minute feed of the tool does not require a lot of time and labor for the NC programming, and the table reciprocation does not depend on the hydraulic cylinder or the cam mechanism which is not the NC control axis,
In addition, without controlling the servo motor using a sequencer, high-precision control can be provided at a low cost by using only NC with three-axis control, and the machining program to be created is very small and simple, and training is possible. Also, it is possible to provide a control method for an NC machine tool that saves preparation time and labor in daily machining.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例NC工作機械の制御方法を使
用して加工される一連の不連続形状の断面を持つ2.5
次元のワークの斜視図。
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 2.5 of a series of discontinuous shaped cross-sections machined using the NC machine tool control method of one embodiment of the present invention.
The perspective view of the three-dimensional work.

【図2】図1のワークに使用される工具である砥石先端
Rを有する円板状の砥石の側面図及び砥石先端R部分の
拡大図。
2 is a side view of a disk-shaped grindstone having a grindstone tip R which is a tool used for the work of FIG. 1 and an enlarged view of a grindstone tip R portion.

【図3】図1のワークを加工する工具の、P1からP5
へテーブルの往復動と工具の微小送りとを交互に繰り返
す加工を行うような工具のオフセット経路を示す説明
図。
3 is a tool for machining the work of FIG. 1, P1 to P5
Explanatory drawing which shows the offset path | route of the tool which performs the process which repeats the reciprocating motion of a table | table and the micro feed of a tool alternately.

【図4】図1のワークを加工する工具の、P1からP5
へテーブルの往復動と工具の微小送りとを交互に繰り返
す加工を行う工具の移動軌跡を示す説明図。
4] P1 to P5 of a tool for machining the work of FIG.
Explanatory drawing which shows the movement locus | trajectory of the tool which performs the process which repeats the reciprocating motion of a table | table and the micro feed of a tool alternately.

【図5】本発明の一実施例NC工作機械の制御方法に使
用されるNC工作機械の構成を示すブロック図。
FIG. 5 is a block diagram showing a configuration of an NC machine tool used in an NC machine tool control method according to an embodiment of the present invention.

【図6】本発明の一実施例NC工作機械の制御方法に使
用されるNC装置の構成を示すブロック図。
FIG. 6 is a block diagram showing the configuration of an NC device used in a method for controlling an NC machine tool according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1..ワーク 2..工具 3..テーブル 4..主軸 5..本体 6..NC装置 7..入力操作部 10..位置検出部 11..位置比較及び位置信号出力部 12..同期信号作成部 13..プログラム解読及び実行部 14..速度指令部 1. . Work 2. . Tool 3. . Table 4. . Spindle 5. . Main body 6. . NC device 7. . Input operation unit 10. . Position detection unit 11. . Position comparison and position signal output unit 12. . Synchronization signal creation unit 13. . Program decoding and execution unit 14. . Speed command section

Claims (1)

【特許請求の範囲】 【請求項1】 工作機械の本体にテーブルと、前記テー
ブルの移動方向に対して直角な平面において移動可能な
工具を有する主軸と、を有するNC工作機械において、 ア.速度指令部内に設けられた、入力された工具の目標
位置から主軸1回転当たりの工具の微小移動指令を指令
する、毎回転送り機能、 イ.プログラム解読及び実行部内に設けられた、工具径
オフセット機能、及び ウ.位置比較及び位置信号出力部内に設けられた、テー
ブル往復動中の位置が前記テーブルが往復動範囲の両端
に位置したことを判別し信号を出力する、位置比較及び
位置信号出力機能、を有するNC装置を使用し、 エ.前記NC装置に同期信号作成部を設けて、前記位置
比較及び位置信号出力部からの前記テーブルが往復動範
囲の両端に位置したことを判別した信号を入力して、主
軸が1回転したと同様の同期信号を前記NC装置の位置
検出部に出力させ、 オ.前記工具の目標位置のみを前記NC装置の入力操作
部に入力することにより、前記工具移動量を、前記テー
ブルの往復動毎の微小送りに分割し、前記テーブルの往
復動と工具の微小送りとを交互に繰り返し行わせ、一連
の不連続形状の加工を行うことを特徴とするNC工作機
械の制御方法。
Claim: What is claimed is: 1. An NC machine tool having a table in a main body of a machine tool and a spindle having a tool movable in a plane perpendicular to a moving direction of the table. A per-revolution feed function, which is provided in the speed command section, for issuing a command for minute movement of the tool per one rotation of the spindle from the input target position of the tool. Tool diameter offset function provided in the program decoding and execution unit, and c. An NC having a position comparison and position signal output function, which is provided in the position comparison and position signal output unit, and which outputs a signal by determining that the position of the table during reciprocating motion is located at both ends of the reciprocating range. Using the device, d. The synchronization signal generating section is provided in the NC device, and a signal from the position comparing and position signal outputting section that determines that the table is located at both ends of the reciprocating range is input, and the spindle rotates once. Of the sync signal of the NC device to the position detection unit of the NC device, and By inputting only the target position of the tool to the input operation unit of the NC device, the tool movement amount is divided into minute feeds for each reciprocating movement of the table, and reciprocating movement of the table and minute feeding of the tool are performed. A method for controlling an NC machine tool, characterized in that a series of discontinuous shapes are machined by alternately repeating the above.
JP3197424A 1991-07-12 1991-07-12 Control method for nc machine tool Pending JPH0519832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197424A JPH0519832A (en) 1991-07-12 1991-07-12 Control method for nc machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197424A JPH0519832A (en) 1991-07-12 1991-07-12 Control method for nc machine tool

Publications (1)

Publication Number Publication Date
JPH0519832A true JPH0519832A (en) 1993-01-29

Family

ID=16374294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197424A Pending JPH0519832A (en) 1991-07-12 1991-07-12 Control method for nc machine tool

Country Status (1)

Country Link
JP (1) JPH0519832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909938B2 (en) 2000-12-28 2005-06-21 Fanuc Ltd. Method of and apparatus for synchronous control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909938B2 (en) 2000-12-28 2005-06-21 Fanuc Ltd. Method of and apparatus for synchronous control

Similar Documents

Publication Publication Date Title
KR970005561B1 (en) Numerical control apparatus for machining non-circular workpieces
JP2661422B2 (en) Processing device and processing method
JP6259412B2 (en) A numerical controller that performs reciprocating turning in a combined fixed cycle.
JP6661823B1 (en) Machine tool and thread cutting method using the same
JP4987214B2 (en) Automatic lathe and its control method and control device
EP2868411B1 (en) Control device for machine tool and machine tool
US6909938B2 (en) Method of and apparatus for synchronous control
WO1988010171A1 (en) Acceleration/deceleration controller
JP3413954B2 (en) Motion controller
JP7214568B2 (en) Machine tools and controllers for these machine tools
KR880001305B1 (en) Numerically controlled working method
JPH11245118A (en) Screw processing controller
JPS6384845A (en) Method of machining non-true circular workpiece
JPH0519832A (en) Control method for nc machine tool
JP3572113B2 (en) Control method of NC machine tool
JPH0615547A (en) Method and device for control of one or more axial lines in machine tool
KR20010082624A (en) Machine tool and method for controlling the same
US9964940B2 (en) Numerical controller for performing axis control of two parallel axes
JPH0751989A (en) Free-form surface machining device
Hosoi et al. A five axis computer controlled twist drill grinder
JPH05261602A (en) Gear rolling unit for numerically controlleed lathe
JP3120597B2 (en) Numerical controller for machining non-round workpieces
JPS62224520A (en) Tap machining control system
JP2669641B2 (en) Numerical controller for machining non-round workpieces
JP2796624B2 (en) Gear processing machine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000425