JPH05196949A - Photoprocessing method for fine pattern - Google Patents

Photoprocessing method for fine pattern

Info

Publication number
JPH05196949A
JPH05196949A JP4193006A JP19300692A JPH05196949A JP H05196949 A JPH05196949 A JP H05196949A JP 4193006 A JP4193006 A JP 4193006A JP 19300692 A JP19300692 A JP 19300692A JP H05196949 A JPH05196949 A JP H05196949A
Authority
JP
Japan
Prior art keywords
substrate
wavelength
mask
selectively
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4193006A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Susumu Nagayama
進 永山
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4193006A priority Critical patent/JPH05196949A/en
Publication of JPH05196949A publication Critical patent/JPH05196949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable selective processing of fine patterns without using a resist by emitting pulse lasers of a specific wavelength and irradiating a substrate through a glass mask constituted by selectively forming non-sublimatable metal or org. films on quartz, more preferably synthetic quartz which shields this wavelength. CONSTITUTION:The mask 5 of the fine patterns provided in tight contact with the synthetic quartz 4 is formed. The pulse laser beams of <=400nm wavelength are selectively transmitted by this mask 5. These pulse laser beams are transmitted through the one main surface of the substrate 1 in a vacuum to transfer the fine patterns on this one main surface, by which the substrate is selectively removed or deteriorated in properties. For example, CFT 2 of tin oxide added with fluorine or antimony is formed atop the glass substrate as the substrate. A laser beam source for light emission of <=400nm wavelength is used for the substrate 1 having the surface 2 to be worked. The mask constituted by selectively forming nickel 5 at 1500Angstrom thickness on the synthetic quartz 4 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池、液晶表示パネ
ル等に用いられる透光性導電膜の光による選択加工法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively processing a transparent conductive film used in a solar cell, a liquid crystal display panel or the like with light.

【0002】[0002]

【従来技術】透光性導電膜の光加工に関しては、レ−ザ
加工技術としてYAGレーザ光(波長1.05μ) が主
として用いられている。この波長によるレーザ加工方法
においては、その光学的エネルギが1.23eVである
ため、透光性導電膜(以下CTFという) である一般な
3〜4eVの光学的エネルギバンド巾を有する酸化ス
ズ、酸化インジューム(ITOを含む)に対して十分な
光吸収性を有していない。このためレーザ加工の際、Q
スイッチパルス光は平均0.5〜1W(光径50μ、焦
点距離40nm、パルス周波数3KHz、パルス巾60
n秒の場合)の強い光エネルギを加えて加工しなければ
ならない。その結果、このレーザ光によりCTFの加工
は行い得るが、同時にその下側に設けられた基板例えば
ガラス基板に対してマイクロクラックを発生させてしま
った。
2. Description of the Related Art Regarding optical processing of a transparent conductive film, YAG laser light (wavelength 1.05 .mu.) Is mainly used as a laser processing technique. In the laser processing method using this wavelength, since its optical energy is 1.23 eV, tin oxide, which has a general optical energy band width of 3 to 4 eV, which is a transparent conductive film (hereinafter referred to as CTF), and oxide It does not have sufficient light absorption for indium (including ITO). Therefore, when laser processing,
The switch pulse light has an average of 0.5 to 1 W (light diameter 50 μ, focal length 40 nm, pulse frequency 3 KHz, pulse width 60
It must be processed by applying strong light energy (for n seconds). As a result, the CTF can be processed by this laser beam, but at the same time, microcracks are generated in the substrate provided below the CTF, for example, the glass substrate.

【0003】[0003]

【発明の解決しようとする問題】このYAGレーザを用
いた加工での下地基板の微小クラックは、レーザ光の円
周と類似の形状を有し、「鱗」状に作られてしまった。
更に、1〜5μ巾の微細パターンを多数同一平面に選択
的に形成させることがまったく不可能であった。さらに
照射後、加工部のCTF材料が十分に微粉末化していな
いため、CTFのエッチング溶液(弗化水素系溶液)に
よりエッチングを行わなければならなかった。
The fine cracks in the underlying substrate in the processing using the YAG laser have a shape similar to the circumference of the laser beam and are formed in a "scale" shape.
Furthermore, it has been completely impossible to selectively form a large number of fine patterns having a width of 1 to 5 μm on the same plane. Further, after the irradiation, the CTF material in the processed portion was not sufficiently pulverized, so that etching had to be performed with a CTF etching solution (hydrogen fluoride-based solution).

【0004】[0004]

【問題を解決するための手段】本発明は、上記の問題を
解決するものであり、その照射光として、400nm以
下(エネルギ的には3.1eV以上)の波長のパルスレ
ーザを照射し、それをこの波長を透光する石英好ましく
は合成石英に非昇華性金属または有機被膜を選択的に形
成したガラスマスクを透過して照射することにより1〜
5μ巾の微細パターンをレジストを用いることなく選択
加工することが可能となった。
The present invention is to solve the above-mentioned problems, and as its irradiation light, a pulse laser having a wavelength of 400 nm or less (energy is 3.1 eV or more) is irradiated, By irradiating quartz through a glass mask in which a non-sublimable metal or an organic film is selectively formed on quartz, preferably synthetic quartz, which transmits this wavelength,
It became possible to selectively process a fine pattern with a width of 5 μm without using a resist.

【0005】[0005]

【作用】結果として下地のガラス板に対し何等の損傷な
しにCTFの微細パターンの選択除去が可能となり、さ
らにアルコール、アセトン等の洗浄液による超音波洗浄
で十分となった。
As a result, the CTF fine pattern can be selectively removed without damaging the underlying glass plate, and ultrasonic cleaning with a cleaning liquid such as alcohol or acetone is sufficient.

【0006】[0006]

【実施例】【Example】

『実施例1』 基板として厚さ1.1mmのガラス基板
(1)を用いて、この上面に弗素またはアンチモンが添
加されている酸化スズのCTF(2)を0.3μの厚さ
に図1(A)に示す如く形成させた。かかる被加工面を
有する基板に対し、400nm以下の波長の発光用のレ
ーザ光源としてエキシマレーザ(Questec Inc.製)を用
いた。パルス光はKrFを用いた248mmとした。マ
スクは合成石英(4)にニッケル(5)を1500Åの
厚さに選択的に形成したものを用いた。パルス巾20n
秒、繰り返し周波数50Hz、平均出力17W/16×
20mmとした。これ以上の面積においては、この大き
さを繰り返し移動させつつ照射した。するとこの酸化ス
ズは1つのパルス光の照射で被照射面(3)が完全に白
濁化し、CTFが微粉末になった。これをアセトン水溶
液にて超音波洗浄(周波数29KHz)を約1〜10分
し、このCTFを除去した。下地のソーダガラスはまっ
たく損傷を受けていなかった。パターンとして3μ巾の
パターンをぬくことが可能であった。
Example 1 A glass substrate (1) having a thickness of 1.1 mm was used as a substrate, and a CTF (2) of tin oxide having fluorine or antimony added to its upper surface was formed to a thickness of 0.3 μ. It was formed as shown in FIG. An excimer laser (manufactured by Questec Inc.) was used as a laser light source for emitting light having a wavelength of 400 nm or less on the substrate having the surface to be processed. The pulsed light was 248 mm using KrF. The mask used was a synthetic quartz (4) with nickel (5) selectively formed to a thickness of 1500 Å. Pulse width 20n
Second, repetition frequency 50Hz, average output 17W / 16 ×
It was set to 20 mm. In an area larger than this, irradiation was performed while repeatedly moving this size. Then, with this tin oxide, the irradiated surface (3) became completely clouded by the irradiation of one pulsed light, and the CTF became fine powder. This was subjected to ultrasonic cleaning (frequency: 29 KHz) with an aqueous acetone solution for about 1 to 10 minutes to remove the CTF. The underlying soda glass was not damaged at all. It was possible to remove a 3 μ wide pattern as a pattern.

【0007】『実施例2』 水素または弗素が添加され
た非単結晶半導体(主成分珪素)(図1(A)(1)上
にITO(酸化スズが5重量%添加された酸化インジュ
ーム)(2)を1000Åの厚さに電子ビーム蒸着法に
よって形成し被加工面とした。さらにこの面上に図1
(B)に示す如く、マスクを合成石英にポリイミドの有
機樹脂(5)を選択的に形成してマスクを配設した。こ
のマスクと基板とは1〜10μの間隔をあけた。さらに
ここを真空下(真空度10-1torr以下)として400n
m以下の波長のパルス光を加えた。波長は351nm
(XeF)とした。パルス巾20n秒、平均出力20W
/16×20mm2 とした。すると被加工面のITOは
昇華し下地の半導体は損傷することなく微細パターンを
形成せしめ残ったITO間を絶縁化することができた。
かかるパターンは液晶表示装置における電極形成にきわ
めて好都合であった。
Example 2 Non-single crystal semiconductor (main component silicon) to which hydrogen or fluorine was added (ITO (indium oxide containing 5% by weight of tin oxide) on (1) of FIG. 1A) (2) was formed to a thickness of 1000 Å by an electron beam vapor deposition method as a surface to be processed.
As shown in (B), a mask was provided by selectively forming a polyimide organic resin (5) on synthetic quartz. The mask and the substrate were spaced apart from each other by 1 to 10 μm. Furthermore, this is under vacuum (vacuum degree of 10 -1 torr or less) and 400n
Pulsed light having a wavelength of m or less was added. Wavelength is 351 nm
(XeF). Pulse width 20nsec, average output 20W
/ 16 × 20 mm 2 . Then, the ITO on the surface to be processed was sublimated and the underlying semiconductor was not damaged, so that a fine pattern was formed and the remaining ITO could be insulated.
Such a pattern has been very convenient for forming electrodes in a liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の作製方法を示す。FIG. 1 shows a manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合成石英に密接して形成された微細パタ
ーンのマスクを形成し、該マスクにより400nm以下
の波長のパルスレーザ光を選択的に透過させ、該パルス
レーザ光を基板の一主面に真空中で透過させて、該一主
面に前記微細パターンを転写して選択的に除去もしくは
変質させることを特徴とする微細パターンの光加工方
法。
1. A mask having a fine pattern formed in close contact with synthetic quartz is formed, and a pulse laser beam having a wavelength of 400 nm or less is selectively transmitted by the mask, and the pulse laser beam is applied to one main surface of a substrate. A method for optical processing of a fine pattern, characterized in that the fine pattern is transferred to the first main surface and transferred to the one main surface to selectively remove or alter the quality.
JP4193006A 1992-06-26 1992-06-26 Photoprocessing method for fine pattern Pending JPH05196949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193006A JPH05196949A (en) 1992-06-26 1992-06-26 Photoprocessing method for fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193006A JPH05196949A (en) 1992-06-26 1992-06-26 Photoprocessing method for fine pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59117539A Division JPS60260393A (en) 1984-06-08 1984-06-08 Optical processing of light-transmitting conductive film

Publications (1)

Publication Number Publication Date
JPH05196949A true JPH05196949A (en) 1993-08-06

Family

ID=16300639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193006A Pending JPH05196949A (en) 1992-06-26 1992-06-26 Photoprocessing method for fine pattern

Country Status (1)

Country Link
JP (1) JPH05196949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011589A1 (en) * 1995-09-21 1997-03-27 Fa. Lpkf Cad/Cam Systeme Gmbh Coating for the structured production of conductors on the surface of electrically insulating substrates
KR20020032883A (en) * 2000-10-27 2002-05-04 한기관 Transparent ITO Pattern-Cutting Process Using Laser Marker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260393A (en) * 1984-06-08 1985-12-23 Semiconductor Energy Lab Co Ltd Optical processing of light-transmitting conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260393A (en) * 1984-06-08 1985-12-23 Semiconductor Energy Lab Co Ltd Optical processing of light-transmitting conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011589A1 (en) * 1995-09-21 1997-03-27 Fa. Lpkf Cad/Cam Systeme Gmbh Coating for the structured production of conductors on the surface of electrically insulating substrates
KR20020032883A (en) * 2000-10-27 2002-05-04 한기관 Transparent ITO Pattern-Cutting Process Using Laser Marker

Similar Documents

Publication Publication Date Title
JPS6384789A (en) Light working method
EP0324550B1 (en) Thin film pattern structure
TWI424479B (en) Method for patterning crystalline indium tin oxide by using femtosecond laser
JPH10242489A (en) Fabrication of thin film solar cell
JPH08512147A (en) Laser etching method
JPH05218472A (en) Laser beam machining method of thin-film structure
JPS6189636A (en) Optical processing
EP0322258A2 (en) Method for producing thin film patterns on substrates
JPS60260393A (en) Optical processing of light-transmitting conductive film
JPH05196949A (en) Photoprocessing method for fine pattern
JPS63215390A (en) Light machining method
JP2807809B2 (en) Light processing method
JP2808220B2 (en) Light irradiation device
JPH02317A (en) Thin film working method
JP2616767B2 (en) Light treatment method
JP2706716B2 (en) Film processing apparatus and film processing method
JP2003133283A (en) Method for patterning circuit board
Kamimura et al. Stripping of the Positive-tone Diazonaphthoquinone/Novolak Resist using Laser Irradiation from Visible to Near Infrared Wavelength
JPH0626207B2 (en) Light processing method
US3837855A (en) Pattern delineation method and product so produced
JPH11216578A (en) Glass substrate laser processing method, diffraction grating and microlens array obtained therefrom
JPH0356556B2 (en)
JP3374889B2 (en) Thin film processing method
JPS6384073A (en) Optical processing method of translucent conductive film
JPH0652727B2 (en) Light processing method