JPH051968A - Light heterodyne interference device - Google Patents

Light heterodyne interference device

Info

Publication number
JPH051968A
JPH051968A JP18025891A JP18025891A JPH051968A JP H051968 A JPH051968 A JP H051968A JP 18025891 A JP18025891 A JP 18025891A JP 18025891 A JP18025891 A JP 18025891A JP H051968 A JPH051968 A JP H051968A
Authority
JP
Japan
Prior art keywords
light wave
light
polarization
measurement
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18025891A
Other languages
Japanese (ja)
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18025891A priority Critical patent/JPH051968A/en
Publication of JPH051968A publication Critical patent/JPH051968A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the shape of a measured object with high precision by splitting the synthesized measurement light wave and reference light wave into two with a polarizing optical element, detecting the signals obtained by interference as the measurement signal and reference signal respectively, and detecting the phase change of the measurement light wave. CONSTITUTION:The first light wave and the second light wave emitted from a light source means 1 pass through a beam expander 3 and are fed to a beam splitter 4. The first light wave passes through a lambda/4-plate 5b and a lens 7 and is reflected by a measured object 8 and returned to the splitter 4 as the reference light wave to be synthesized with the measurement light wave. The synthesized light wave is vectorially decomposed with the vibration plane via a polarizing optical element 9 and sent out as the interference light wave, and the beam signal can be extracted. These signals are detected by detecting means 11, 13 respectively, and the phase difference is detected by a phase measuring circuit 14. The two-dimensional distribution is obtained by the above work, and the shape of the measured object 8 can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ヘテロダイン干渉装置
に関し、例えば光学レンズやミラー等の被測定物の形状
を、該形状に伴う入射光波の光学的位相変化を検出する
ことにより、測定するようにした光ヘテロダイン干渉装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical heterodyne interferometer for measuring the shape of an object to be measured such as an optical lens or a mirror by detecting an optical phase change of an incident light wave associated with the shape. The present invention relates to an optical heterodyne interferometer.

【0002】[0002]

【従来の技術】従来よりレンズ、ミラー等の光学部材の
形状を光波干渉を利用して比較的高精度に測定すること
ができる装置として光ヘテロダイン干渉装置が知られて
いる。例えば米国特許第4188122号やApplied Op
tics Vol.19.No.1(1980)P.154〜P.160 等に紹介されて
いる。
2. Description of the Related Art Conventionally, an optical heterodyne interferometer is known as an apparatus capable of relatively accurately measuring the shape of optical members such as lenses and mirrors by utilizing light wave interference. For example, U.S. Pat. No. 4,188,122 and Applied Op.
tics Vol.19.No.1 (1980) P.154-P.160.

【0003】図4は従来の光ヘテロダイン干渉装置の光
学系の要部概略図である。
FIG. 4 is a schematic view of a main part of an optical system of a conventional optical heterodyne interferometer.

【0004】同図ではKrイオンレーザ等のレーザ10
1から出射した光波はミラーM1で反射し、ビームスプ
リッター102で反射光と透過光に2分割している。こ
のうち透過光(第1光波)はブラックセル105a、ミ
ラーM2そしてλ/2板104を介した後、反射光(第
2光波)はブラックセル105b、ミラーM3を介した
後、ビームスプリッター103で合波している。
A laser 10 such as a Kr ion laser is shown in FIG.
The light wave emitted from the beam No. 1 is reflected by the mirror M1 and is split into two by the beam splitter 102 into reflected light and transmitted light. Of these, the transmitted light (first light wave) passes through the black cell 105a, the mirror M2, and the λ / 2 plate 104, and the reflected light (second light wave) passes through the black cell 105b and the mirror M3, and then at the beam splitter 103. The waves are being combined.

【0005】このときブラックセル105aを通った第
1光波は周波数f1の周波数シフトを受け、λ/2板1
04を通り偏光面が90度回転されている。又ブラック
セル105bを通った第2光波は周波数f2の周波数シ
フトを受けている。
At this time, the first light wave that has passed through the black cell 105a undergoes a frequency shift of frequency f1, and the λ / 2 plate 1
The polarization plane is rotated through 90 degrees through 04. The second light wave that has passed through the black cell 105b has undergone a frequency shift of frequency f2.

【0006】そして、これらの光波はビームスプリッタ
ー103で合波した後、ビームエキスパンダー106に
より光束径を拡大し偏光ビームスプリッター107に入
射している。このうち周波数f1の第1光波は偏光ビー
ムスプリッター107を通過し、λ/4板108bで円
偏光となり、コリメータレンズ110を通って被測定物
111に入射する。そして被測定物111で反射した被
検波面(測定光波)は元の光路を戻る。このときλ/4
板108bに再入射するときの光波は入射時に比べて被
測定物111で反射した為に逆回りの円偏光となってい
るので、λ/4板108bを通過したときの偏光方向
(偏光面)は入射時に比べて90度変位している。この
為、今度は偏光ビームスプリッター107で反射する。
Then, these light waves are combined by a beam splitter 103, then expanded in beam diameter by a beam expander 106, and are incident on a polarization beam splitter 107. Of these, the first light wave of frequency f1 passes through the polarization beam splitter 107, becomes circularly polarized by the λ / 4 plate 108b, and enters the DUT 111 through the collimator lens 110. The test wavefront (measurement light wave) reflected by the DUT 111 returns to the original optical path. At this time λ / 4
Since the light wave when re-incident on the plate 108b is reflected by the DUT 111 as compared with the time of incidence and thus becomes circularly polarized light in the reverse direction, the polarization direction (polarization plane) when passing through the λ / 4 plate 108b. Is displaced by 90 degrees compared to the time of incidence. For this reason, this time it is reflected by the polarization beam splitter 107.

【0007】一方、周波数f2の第2光波は偏光ビーム
スプリッター107で反射してλ/4板108aで円偏
光となり、参照平面ミラー109で反射した参照波面
(参照光波)は逆回りの円偏光となり元の光路を戻る。
そしてλ/4板108aを通り、入射時とは偏光方向
(偏光面)が90度変位した直線偏光となり、今度は偏
光ビームスプリッター107を通過し、先の被検波面と
合波(合成)している。
On the other hand, the second light wave having the frequency f2 is reflected by the polarization beam splitter 107 and becomes circularly polarized by the λ / 4 plate 108a, and the reference wavefront (reference light wave) reflected by the reference plane mirror 109 becomes reverse circularly polarized light. Return to the original optical path.
Then, after passing through the λ / 4 plate 108a, it becomes a linearly polarized light having a polarization direction (polarization plane) displaced by 90 degrees from that at the time of incidence, and this time it passes through the polarization beam splitter 107 and is combined (combined) with the previous wavefront to be detected. ing.

【0008】ここで再び合波した被検波面と参照波面の
2つの光波は直線偏光素子より成る偏光板112を介す
ることにより互いに干渉可能の波面として干渉させてい
る。このときの干渉光波を周波数シフト差f1−f2の
ヘテロダイン信号(ビート信号)として光検出器(フォ
トディテクター)15及び像検出カメラ(イメージディ
セクターカメラ)116によって各々検出している。
Here, the two light waves of the test wave surface and the reference wave surface, which are recombined, are caused to interfere with each other as a wave surface capable of interfering with each other through the polarizing plate 112 formed of a linear polarization element. The interference light wave at this time is detected as a heterodyne signal (beat signal) having a frequency shift difference f1-f2 by a photodetector (photodetector) 15 and an image detection camera (image dissector camera) 116, respectively.

【0009】尚、像検出カメラ116はコンピュータ1
18の指令により2次元像の任意の一点を選択し、その
点に入射してくる光の強度信号をリアルタイムで検出可
能なカメラである。
The image detection camera 116 is the computer 1
The camera is capable of selecting an arbitrary one point of a two-dimensional image according to a command from 18 and detecting the intensity signal of light incident on that point in real time.

【0010】同図におけるヘテロダイン信号f1−f2
の位相分布は参照平面ミラー109を仮に理想平面とす
ればコリメータレンズ110によって作られる球面波か
らの被測定物111の形状の誤差を直接表わしている。
The heterodyne signals f1-f2 in FIG.
If the reference plane mirror 109 is assumed to be an ideal plane, the phase distribution of 1 directly represents the error in the shape of the DUT 111 from the spherical wave created by the collimator lens 110.

【0011】即ち、このときの被測定物11の形状に基
づく位相分布φ(x,y)は被測定物111の形状誤差
分布ε(x,y)を表わしており、その関係は次式で表
わされる。
That is, the phase distribution φ (x, y) based on the shape of the object to be measured 11 at this time represents the shape error distribution ε (x, y) of the object to be measured 111, and the relationship is as follows. Represented.

【0012】 ε(x,y)=φ(x,y)・λ/4π ‥‥‥‥(1) ただし λは測定光の波長 そこで光検出器115で得られるヘテロダイン信号を参
照信号Rとし、像検出カメラ116からの各信号を測定
信号Sとして位相計117にて参照信号Rと測定信号S
との位相差φを検出する。更に像検出カメラ116の各
測定点をコンピュータ118からの指令により2次元的
走査し、各測定点での測定信号Sと参照信号Rとの位相
差φ(x,y)の2次元分布を求める。これにより被測
定物111の形状に基づく位相分布ε(x,y)を検出
している。例えば(1)式において電気的な位相測定を
1度程度の精度で行なえばnm以下の精度で形状誤差の
分布を検出することができる。
Ε (x, y) = φ (x, y) · λ / 4π (1) where λ is the wavelength of the measurement light, where the heterodyne signal obtained by the photodetector 115 is the reference signal R, Each signal from the image detection camera 116 is used as a measurement signal S and the reference signal R and the measurement signal S are measured by the phase meter 117.
And the phase difference φ between Further, each measurement point of the image detection camera 116 is two-dimensionally scanned by a command from the computer 118, and a two-dimensional distribution of the phase difference φ (x, y) between the measurement signal S and the reference signal R at each measurement point is obtained. . Thereby, the phase distribution ε (x, y) based on the shape of the DUT 111 is detected. For example, in the equation (1), if the electrical phase measurement is performed with an accuracy of about 1 degree, the distribution of the shape error can be detected with an accuracy of nm or less.

【0013】[0013]

【発明が解決しようとする課題】一般に光ヘテロダイン
干渉装置では、検出面上における干渉縞が非常に速い速
度で振動している。このためCCDカメラのような光子
蓄積型の受光手段は使えず、応答の早い光子非蓄積型の
受光手段が必要となり、かつ参照光波と測定光波という
2つの信号を取り出すことが必要となる。
Generally, in an optical heterodyne interferometer, the interference fringes on the detection surface oscillate at a very high speed. For this reason, a photon storage type light receiving means such as a CCD camera cannot be used, a photon non-storage type light receiving means with a quick response is required, and two signals of a reference light wave and a measurement light wave must be extracted.

【0014】一般的に光子非蓄積型の受光手段は感度が
低いために、被測定物の反射率が低い場合には、参照信
号と測定信号の双方共にS/N比が悪化してきて測定精
度が低下してくるという問題点がある。
Generally, since the photon non-accumulation type light receiving means has low sensitivity, when the reflectance of the object to be measured is low, the S / N ratios of both the reference signal and the measurement signal are deteriorated and the measurement accuracy becomes low. However, there is a problem that

【0015】しかしながら図4で示す従来の光ヘテロダ
イン干渉装置では測定光波を得る測定系と参照光波を得
る参照系を往復して偏光ビームスプリッター107で再
び合成された光束を45度方向に偏光軸を回転させた偏
光板である直線偏光素子112によって同じベクトル成
分だけを取り出して干渉させてビート信号を取り出して
いる。そしてビート信号を更に2つに分割して一方をフ
ォトディテクター115で受光し、他方をイメージディ
セクタカメラ116で受光している。
However, in the conventional optical heterodyne interferometer shown in FIG. 4, the light beam reciprocated by the polarization beam splitter 107 back and forth between the measurement system for obtaining the measurement light wave and the reference system for obtaining the reference light wave has its polarization axis in the direction of 45 degrees. A linear polarization element 112, which is a rotated polarizing plate, extracts only the same vector component and causes it to interfere with each other to extract a beat signal. The beat signal is further divided into two, one of which is received by the photo detector 115 and the other of which is received by the image dissector camera 116.

【0016】一般に直線偏光素子の透過率は良いもので
も40%程度であり、それを更に2分割しているために
従来の光ヘテロダイン干渉装置では受光手段に達する光
量は偏光ビームスプリッター7を出射した光の20%程
度しか利用することができず、被測定物の反射率が低い
場合には高精度な測定が困難であったり、又必要以上に
大きなパワーを有する光源を用いなければならないとい
う問題点があった。
Generally, the linear polarizing element has a good transmittance of about 40%, and since it is further divided into two, in the conventional optical heterodyne interference device, the amount of light reaching the light receiving means is emitted from the polarizing beam splitter 7. Since only about 20% of the light can be used, high accuracy measurement is difficult when the reflectance of the object to be measured is low, and a light source having an unnecessarily large power must be used. There was a point.

【0017】本発明は偏光ビームスプリッターで合成し
た測定光波と参照光波の干渉光束の有効利用を図ること
により、強出力の光源を用いずに被測定物の形状を高精
度に測定することができる光ヘテロダイン干渉装置の提
供を目的とする。
According to the present invention, the shape of the object to be measured can be measured with high accuracy by effectively utilizing the interference light flux of the measurement light wave and the reference light wave synthesized by the polarization beam splitter without using a light source of strong output. An object is to provide an optical heterodyne interference device.

【0018】[0018]

【課題を解決するための手段】本発明の光ヘテロダイン
干渉装置は、周波数の異なる第1光波と第2光波のうち
偏光ビームスプリッターを介して一方の光波を被測定物
に入射させて測定光波を得、他方の光波を参照面を介し
て参照光波を得た後、該偏光ビームスプリッターで双方
の光波を合成し、該合成した互いに直交する直線偏光の
測定光波と参照光波を入射光の偏光方位により異った角
度で出射して分離する偏光光学素子を介して2つに分割
すると共に同じベクトル成分を干渉させてビート信号を
得て、このうち一方のビート信号を参照信号として第1
検出手段で検出し、他方のビート信号を測定信号として
第2検出手段で検出し、該第1、第2検出手段で得られ
る信号を利用して、該測定光波の光学的位相変化を検出
するようにしたことを特徴としている。
The optical heterodyne interferometer of the present invention makes one of the first light wave and the second light wave having different frequencies incident on the object to be measured through the polarization beam splitter and outputs the measured light wave. After obtaining the reference light wave from the other light wave via the reference surface, the two light waves are combined by the polarization beam splitter, and the combined measurement light waves of linearly polarized light and the reference light wave orthogonal to each other are polarized in the incident light. Is divided into two via a polarization optical element that emits and separates at a different angle, and the same vector component is interfered to obtain a beat signal. One of these beat signals is used as a reference signal.
Detected by the detecting means, the other beat signal is detected as the measuring signal by the second detecting means, and the optical phase change of the measuring light wave is detected by utilizing the signals obtained by the first and second detecting means. It is characterized by doing so.

【0019】特に本発明では、前記偏光光学素子は前記
偏光ビームスプリッターからの直線偏光の偏光方位に対
して偏光軸を45度回転させた偏光ビームスプリッター
又はウォラストンプリズムであることを特徴としてい
る。
In particular, the present invention is characterized in that the polarization optical element is a polarization beam splitter or a Wollaston prism whose polarization axis is rotated by 45 degrees with respect to the polarization direction of the linearly polarized light from the polarization beam splitter.

【0020】[0020]

【実施例】図1は本発明の実施例1の要部概略図、図2
は図1の一部分の拡大斜視図である。図2において矢印
は矢印の方向に振動する直線偏光を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of the essential portions of a first embodiment of the present invention, and FIG.
FIG. 2 is an enlarged perspective view of a part of FIG. 1. In FIG. 2, the arrow indicates linearly polarized light vibrating in the direction of the arrow.

【0021】本実施例は図4の従来の光ヘテロダイン干
渉装置に比べて偏光ビームスプリッター4と検出手段
(11,13)との間に入射光の偏光方位により異なっ
た角度で分離して出射する偏光光学素子9を配置してい
る点が異なっており、その他の構成は実質的に同じであ
る。
In the present embodiment, compared with the conventional optical heterodyne interferometer of FIG. 4, the incident light is separated and emitted between the polarization beam splitter 4 and the detecting means (11, 13) at different angles depending on the polarization direction. The polarization optical element 9 is arranged differently, and the other configurations are substantially the same.

【0022】次に図4の説明と一部重複するが本発明の
特徴について図1と図2を用いて説明する。
Next, although partially overlapping the description of FIG. 4, the features of the present invention will be described with reference to FIGS. 1 and 2.

【0023】1は光源手段であり、例えば2周波レーザ
等から成り、互いに直交する直線偏光の周波数が僅かに
異なるコヒーレントな第1光波(周波数f1)と第2光
波(周波数f2)を出射している。2はNDフィルター
であり、通過光量を調整している。
Reference numeral 1 denotes a light source means, which is composed of, for example, a two-frequency laser and emits coherent first light waves (frequency f1) and second light waves (frequency f2) in which the frequencies of linearly polarized light orthogonal to each other are slightly different. There is. Reference numeral 2 is an ND filter, which adjusts the amount of passing light.

【0024】3はビームエキスパンダであり、入射光束
径を拡大し射出させている。4は偏光ビームスプリッタ
ーであり、入射光束の偏光状態に応じて反射又は透過さ
せ光の進行方向を変えている。5a,5bはλ/4板で
あり、入射光束の偏光面を45度回転させて出射させて
いる。6は参照平面ミラーで参照波面を形成している。
7はコリメータレンズであり、入射光束を集光し、後述
する被測定物8に入射させている。被測定物8はミラー
やレンズ等から成り、それらの3次元形状や材質の均一
性等を検出するものである。
A beam expander 3 expands the diameter of the incident light beam and emits it. Reference numeral 4 denotes a polarization beam splitter, which reflects or transmits the incident light beam according to the polarization state of the incident light beam to change the traveling direction of the light beam. Reference numerals 5a and 5b denote λ / 4 plates, which rotate the polarization plane of the incident light beam by 45 degrees and emit it. The reference plane mirror 6 forms a reference wavefront.
A collimator lens 7 collects an incident light beam and makes it incident on an object 8 to be measured which will be described later. The object to be measured 8 is composed of a mirror, a lens, and the like, and detects the three-dimensional shape of them, the uniformity of the material, and the like.

【0025】9は偏光光学素子であり、入射光の偏光方
位により異なった角度で出射して分離させる光学作用を
有している。この偏光光学素子9は互いに直交する2つ
の直線偏光成分を有する光波から特定の偏光成分の光波
を分割し、干渉させている。本実施例では偏光光学素子
9として入射直線偏光の偏光方位に対して反射面を45
度傾けて配置した偏光ビームスプリッターより構成して
いる。
Reference numeral 9 denotes a polarizing optical element, which has an optical function of emitting the incident light at different angles and separating the incident light according to the polarization direction. The polarization optical element 9 splits a light wave having a specific polarization component from a light wave having two linearly polarized light components orthogonal to each other and causes the light waves to interfere with each other. In this embodiment, the polarizing optical element 9 has a reflection surface of 45 with respect to the polarization direction of the incident linearly polarized light.
It is composed of polarization beam splitters that are tilted.

【0026】10はピンホール板であり、特定の位置に
入射してきた光束を通過させるピンホール10aを有し
ている。11は第1検出手段であり、フォトディテクタ
ーより成り、偏光光学素子9からの干渉光波に基づくビ
ート信号のうちから参照信号を得ている。12は集光レ
ンズであり、偏光光学素子9からの干渉光波を第2検出
手段13に集光(結像)している。第2検出手段13は
イメージディセクタカメラ(像検出カメラ)より成り、
コンピュータ15によってアドレス指定された位置の光
信号をリアルタイムで読み出している。14は位相検出
手段(位相測定回路)であり、第1検出手段11と第2
検出手段13から入力されてくる2つの信号の位相差を
検出している。コンピュータ15は位相測定回路14か
らの信号に基づいて被測定物8の形状を演算し求めてい
る。
Reference numeral 10 denotes a pinhole plate, which has a pinhole 10a for passing a light beam incident on a specific position. Reference numeral 11 is a first detection means, which is composed of a photodetector, and obtains a reference signal from the beat signals based on the interference light wave from the polarization optical element 9. A condenser lens 12 condenses (images) the interference light wave from the polarization optical element 9 onto the second detection means 13. The second detection means 13 comprises an image dissector camera (image detection camera),
The optical signal at the position addressed by the computer 15 is read out in real time. Reference numeral 14 denotes a phase detecting means (phase measuring circuit), which includes the first detecting means 11 and the second detecting means 11.
The phase difference between the two signals input from the detection means 13 is detected. The computer 15 calculates and calculates the shape of the DUT 8 based on the signal from the phase measuring circuit 14.

【0027】本実施例では光源手段1から出射した周波
数の異なる偏光方向が互いに直交する直線偏光の第1光
波(周波数f1)と第2光波(周波数f2)の2つの光
束をNDフィルター2を介して光量調整をした後、ビー
ムエキスパンダ3に入射させている。
In this embodiment, two light beams of a linearly polarized first light wave (frequency f1) and second light wave (frequency f2) emitted from the light source means 1 and having different polarization directions orthogonal to each other are passed through the ND filter 2. After adjusting the light amount by the light, the light is incident on the beam expander 3.

【0028】そしてビームエキスパンダ3により光束径
を拡大して偏光ビームスプリッター4に入射させてい
る。このうち周波数f1の第1光波は偏光ビームスプリ
ッター4を通過し、λ/4板5bで円偏光とし、コリメ
ータレンズ7を通って被測定物8に入射している。そし
て被測定物8で反射した被検波面は元の光路を戻る。こ
のときλ/4板5bに再入射するときの光波は入射時に
比べて被測定物8で反射した為に逆回りの円偏光となっ
ているので、λ/4板5bを通過したときの偏光方向
(偏光面)は入射時に比べて90度変位している。この
為今度は偏光ビームスプリッター4で反射する。
The beam expander 3 expands the light beam diameter and makes it enter the polarization beam splitter 4. Of these, the first light wave of frequency f1 passes through the polarization beam splitter 4, is circularly polarized by the λ / 4 plate 5b, and is incident on the DUT 8 through the collimator lens 7. Then, the wavefront to be detected reflected by the DUT 8 returns to the original optical path. At this time, the light wave when re-incident on the λ / 4 plate 5b is reflected by the object to be measured 8 as compared with the time of incidence, and thus is circularly polarized in the reverse direction. The direction (plane of polarization) is displaced by 90 degrees compared with the time of incidence. Therefore, it is reflected by the polarization beam splitter 4 this time.

【0029】一方、周波数f2の第2光波は偏光ビーム
スプリッター4で反射してλ/4板5aで円偏光とな
り、参照平面ミラー6で反射した参照波面は逆回りの円
偏光となり元の光路を戻る。そしてλ/4板5aを通
り、入射時とは偏光方向(偏光面)が90度変位した直
線偏光となり、今度は偏光ビームスプリッター4を通過
し、先の被検波面と合波(合成)している。
On the other hand, the second light wave having the frequency f2 is reflected by the polarization beam splitter 4 and becomes circularly polarized by the λ / 4 plate 5a, and the reference wavefront reflected by the reference plane mirror 6 becomes circularly polarized light in the reverse direction and the original optical path is changed. Return. Then, it passes through the λ / 4 plate 5a and becomes linearly polarized light whose polarization direction (polarization plane) is displaced by 90 degrees from that at the time of incidence. This time, it passes through the polarization beam splitter 4 and is combined (combined) with the previous wavefront to be detected. ing.

【0030】ここで再び合波した被検波面と参照波面の
2つの光波は偏光光学素子9を介することにより互いに
干渉可能の波面として干渉させている。
Here, the two light waves of the test wave surface and the reference wave surface, which are recombined, are caused to interfere with each other through the polarization optical element 9 as wavefronts capable of interfering with each other.

【0031】本実施例における偏光光学素子9としての
偏光ビームスプリッターは図2に示すように入射直線偏
光に対して偏光軸(反射面)を45度傾けて配置し、こ
れにより2つの光波を同じベクトル成分が選択された透
過光と90度折り曲げられた反射光との干渉光波とに分
割している。これにより偏光光学素子9に入射し、射出
する際の光束の損失を偏光板を用いた場合に比べて少な
くし、光束の有効利用を図っている。そしてこのときの
2つの干渉光波は周波数シフト差f1−f2のヘテロダ
イン信号(ビート信号)として第1検出手段11と第2
検出手段13によって各々検出している。
As shown in FIG. 2, the polarization beam splitter as the polarization optical element 9 in this embodiment is arranged with the polarization axis (reflection surface) inclined by 45 degrees with respect to the incident linearly polarized light, whereby two light waves are the same. The vector component is split into the interference light wave of the selected transmitted light and the reflected light bent at 90 degrees. As a result, the loss of the light flux when entering and exiting the polarization optical element 9 is reduced as compared with the case where a polarizing plate is used, and the light flux is effectively used. Then, the two interference light waves at this time are the first detection means 11 and the second detection means as a heterodyne signal (beat signal) having a frequency shift difference f1-f2.
Each is detected by the detection means 13.

【0032】本実施例におけるヘテロダイン信号f1−
f2の位相分布は参照平面ミラー6を仮りに理想平面と
すればコリメータレンズ7によって作られる球面波から
の被測定物8の形状の誤差を直接表わしている。
The heterodyne signal f1- in this embodiment.
The phase distribution of f2 directly represents an error in the shape of the DUT 8 from the spherical wave generated by the collimator lens 7 if the reference plane mirror 6 is an ideal plane.

【0033】そこで例えば第1検出手段11で得られる
ヘテロダイン信号を参照信号Rとし第2検出手段13か
らの各信号を測定信号Sとして位相測定回路14にて参
照信号Rと測定信号Sとの位相差φa を検出している。
Therefore, for example, the heterodyne signal obtained by the first detecting means 11 is used as the reference signal R, each signal from the second detecting means 13 is used as the measurement signal S, and the position of the reference signal R and the measurement signal S is calculated by the phase measuring circuit 14. The phase difference φa is detected.

【0034】更に第2検出手段13の各測定点をコンピ
ュータ15からの指令により2次元走査し、各測定点で
の測定信号Sと参照信号Rとの位相差φx,y の2次元分
布を求める。これにより被測定物8全体の形状誤差を測
定している。
Further, each measuring point of the second detecting means 13 is two-dimensionally scanned by a command from the computer 15 , and a two-dimensional distribution of the phase difference φ x, y between the measuring signal S and the reference signal R at each measuring point is obtained. Ask. Thereby, the shape error of the entire measured object 8 is measured.

【0035】図3は本発明の実施例2の一部分の拡大斜
視図である。本実施例では図1、図2の実施例1に比べ
て入射光の偏光方位により異なった角度で出射し分離す
る偏光光学素子として偏光ビームスプリッターの代わり
にウォラストンプリズム21を用いている点が異なって
おり、その他の構成は実質的に実施例1と同じである。
FIG. 3 is an enlarged perspective view of a part of the second embodiment of the present invention. In this embodiment, a Wollaston prism 21 is used instead of the polarization beam splitter as a polarization optical element for emitting and separating the incident light at different angles depending on the polarization direction of the incident light, as compared with the first embodiment of FIGS. 1 and 2. They are different, and the other configurations are substantially the same as those in the first embodiment.

【0036】図3においては偏光光学素子21によりベ
クトル的に振動面を分解して出射させた干渉光波のうち
参照光波をピンホール板10を介して第1検出手段11
で検出し、測定光波を集光レンズ12を介して第2検出
手段13で検出している。
In FIG. 3, the reference light wave among the interference light waves emitted by decomposing the vibrating surface in a vector manner by the polarization optical element 21 passes through the pinhole plate 10 and the first detecting means 11
And the measurement light wave is detected by the second detection means 13 via the condenser lens 12.

【0037】本実施例では偏光光学素子としてウォラス
トンプリズム21を用いることにより実施例1と同様に
偏光板を用いた場合に比べて入射光束の損失を少なく
し、光束の有効利用を図っている。
In this embodiment, by using the Wollaston prism 21 as the polarization optical element, the loss of the incident light flux is reduced as compared with the case where the polarizing plate is used as in the first embodiment, and the light flux is effectively used. .

【0038】[0038]

【発明の効果】本発明によれば僅かに周波数の異なる2
つの光を用いる光ヘテロダイン干渉装置により、被測定
物の光路差分布又は3次元形状を求める際、互いに偏光
方向が直交した直線偏光の測定光波と参照光波とを偏光
ビームスプリッターで合波し射出させた後、前述した構
成の偏光光学素子によりベクトル的に振動面を分解し干
渉光波として出射してビート信号が取り出せるようにす
ると共に、一方を参照信号、他方を測定信号として位相
検出に利用することにより光のロスを最小限に抑えるこ
とができ、極めて反射率の低い被測定物に対しても高い
S/N比で高精度に形状誤差を測定することができる光
ヘテロダイン干渉装置を達成することができる。
According to the present invention, the frequency difference of 2 is slightly different.
When obtaining the optical path difference distribution or the three-dimensional shape of the object to be measured by the optical heterodyne interferometer using two lights, the linearly polarized measurement light wave and the reference light wave whose polarization directions are orthogonal to each other are combined by the polarization beam splitter and emitted. After that, using the polarization optical element with the above-mentioned configuration, the vibrating surface is decomposed in vector and emitted as an interference light wave so that a beat signal can be taken out, and one is used as a reference signal and the other is used as a measurement signal for phase detection. To achieve an optical heterodyne interferometer capable of minimizing a loss of light and measuring a shape error with a high S / N ratio even for an object to be measured having an extremely low reflectance. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の一部分の拡大斜視図FIG. 2 is an enlarged perspective view of a part of FIG.

【図3】 本発明の実施例2の要部概略図FIG. 3 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【図4】 従来の光ヘテロダイン干渉装置の要部概略図FIG. 4 is a schematic view of a main part of a conventional optical heterodyne interferometer.

【符号の説明】[Explanation of symbols]

1 光源手段 2 NDフィルター 3 ビームエキスパンダ 4 偏光ビームスプリッター 5a,5b λ/4板 6 参照平面ミラー 7 コリメーターレンズ 8 被測定物 9 偏光光学素子 10 ピンホール板 11 第1検出手段 12 集光レンズ 13 第2検出手段 14 位相測定回路 15 コンピュータ 21 ウォラストンプリズム 1 light source means 2 ND filter 3 beam expander 4 Polarizing beam splitter 5a, 5b λ / 4 plate 6 reference plane mirror 7 Collimator lens 8 DUT 9 Polarizing optical element 10 pinhole plate 11 First detecting means 12 Condensing lens 13 Second detection means 14 Phase measurement circuit 15 Computer 21 Wollaston Prism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 周波数の異なる第1光波と第2光波のう
ち偏光ビームスプリッターを介して一方の光波を被測定
物に入射させて測定光波を得、他方の光波を参照面を介
して参照光波を得た後、該偏光ビームスプリッターで双
方の光波を合成し、該合成した互いに直交する直線偏光
の測定光波と参照光波を入射光の偏光方位により異った
角度で出射して分離する偏光光学素子を介して2つに分
割すると共に同じベクトル成分を干渉させてビート信号
を得て、このうち一方のビート信号を参照信号として第
1検出手段で検出し、他方のビート信号を測定信号とし
て第2検出手段で検出し、該第1、第2検出手段で得ら
れる信号を利用して、該測定光波の光学的位相変化を検
出するようにしたことを特徴とする光ヘテロダイン干渉
装置。
1. A first light wave of a different frequency and a second light wave of which one light wave is incident on an object to be measured via a polarization beam splitter to obtain a measurement light wave, and the other light wave is a reference light wave via a reference surface. After obtaining the above, the polarization optics that combine both light waves with the polarization beam splitter, and emit the separated measurement light waves of linearly polarized light and reference light waves that are emitted at different angles depending on the polarization direction of the incident light and separate A beat signal is obtained by dividing the same into two via an element and interfering the same vector component, one of these beat signals is detected as a reference signal by the first detection means, and the other beat signal is measured as a measurement signal. An optical heterodyne interferometer characterized in that the optical phase change of the measurement light wave is detected by using the signals detected by the second detecting means and obtained by the first and second detecting means.
【請求項2】 前記偏光光学素子は前記偏光ビームスプ
リッターからの直線偏光の偏光方位に対して偏光軸を4
5度回転させた偏光ビームスプリッター又はウォラスト
ンプリズムであることを特徴とする請求項1の光ヘテロ
ダイン干渉装置。
2. The polarization optical element has a polarization axis of 4 with respect to a polarization direction of linearly polarized light from the polarization beam splitter.
The optical heterodyne interferometer according to claim 1, which is a polarization beam splitter or a Wollaston prism rotated by 5 degrees.
JP18025891A 1991-06-25 1991-06-25 Light heterodyne interference device Pending JPH051968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18025891A JPH051968A (en) 1991-06-25 1991-06-25 Light heterodyne interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18025891A JPH051968A (en) 1991-06-25 1991-06-25 Light heterodyne interference device

Publications (1)

Publication Number Publication Date
JPH051968A true JPH051968A (en) 1993-01-08

Family

ID=16080115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18025891A Pending JPH051968A (en) 1991-06-25 1991-06-25 Light heterodyne interference device

Country Status (1)

Country Link
JP (1) JPH051968A (en)

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US4470696A (en) Laser doppler velocimeter
US7973939B2 (en) Differential-phase polarization-sensitive optical coherence tomography system
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
US20070041022A1 (en) Interferometer for measuring perpendicular translations
US4842408A (en) Phase shift measuring apparatus utilizing optical meterodyne techniques
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
US4707135A (en) Apparatus and method for the recording and readout of multiple exposure holograms
JP4286460B2 (en) Laser length measuring instrument and laser length measuring method
JPH0339605A (en) Optical surface shape measuring instrument
US20230062525A1 (en) Heterodyne light source for use in metrology system
US4346999A (en) Digital heterodyne wavefront analyzer
JPH11183116A (en) Method and device for light wave interference measurement
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP3293666B2 (en) Non-contact optical type distance measuring device between two surfaces
JPH051968A (en) Light heterodyne interference device
US20230069087A1 (en) Digital holography metrology system
JP3421309B2 (en) Surface shape measuring method and surface shape measuring instrument
EP0467343A2 (en) Optical heterodyne interferometer
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JP3174985B2 (en) Differential heterodyne interferometer using optical fiber array
JPH0763507A (en) Interference measuring device
JPH051969A (en) Light heterodyne interference device
Tiziani Heterodyne interferometry using two wavelengths for dimensional measurements
JPH055610A (en) Measuring apparatus