JPH05196343A - Method and device for starting defrosting operation in refrigerant evaporator - Google Patents

Method and device for starting defrosting operation in refrigerant evaporator

Info

Publication number
JPH05196343A
JPH05196343A JP4049020A JP4902092A JPH05196343A JP H05196343 A JPH05196343 A JP H05196343A JP 4049020 A JP4049020 A JP 4049020A JP 4902092 A JP4902092 A JP 4902092A JP H05196343 A JPH05196343 A JP H05196343A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
evaporator
defrost
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4049020A
Other languages
Japanese (ja)
Other versions
JP2694885B2 (en
Inventor
Shigetoshi Iwakiri
重俊 岩切
Morihiro Yasusato
守弘 安里
Toshiaki Hamazaki
敏明 浜崎
Masatoshi Doi
正敏 土井
Hironosuke Umada
昿之亮 馬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP4049020A priority Critical patent/JP2694885B2/en
Priority to KR1019920016712A priority patent/KR930016736A/en
Priority to EP9393300302A priority patent/EP0552906A3/en
Publication of JPH05196343A publication Critical patent/JPH05196343A/en
Application granted granted Critical
Publication of JP2694885B2 publication Critical patent/JP2694885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

PURPOSE:To prevent operator's individual differences from having an influence on the commencement of defrosting operation, and defrosting operation from being periodically started regardless of the amount of frost by a method wherein an expansion valve is controlled by an expansion valve control computer and defrosting operation is automatically started when the maximum valve capacity drops below the set value. CONSTITUTION:A low temperature air cooling apparatus using an ordinal refrigerating cycle is equipped with an expansion valve control computer 1 to control an electronic expansion valve 4, and a pressure sensor 2 and a temperature sensor 3 are mounted on the downstream side of a refrigerant evaporator 9 and connected to the computer 1 by signal wires 12 and 13. A low temperature air cooling apparatus control board 10 which controls the refrigerant evaporator 9 and a defrosting device is connected to the computer 1 by a defrosting signal wire 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低温空気を循環させて被
冷却物の冷却、保冷を行う低温空気冷却装置において、
空気中の水分が冷媒蒸発器表面に霜となって付着し、低
温空気冷却装置の冷却効率を著しく低下するので、冷却
運転中に該冷却効率の低下を感知し、デフロストを開始
する冷媒蒸発器におけるデフロスト開始方法およびその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature air cooling device for cooling and keeping an object to be cooled by circulating low temperature air,
Moisture in the air adheres to the surface of the refrigerant evaporator as frost and significantly reduces the cooling efficiency of the low temperature air cooling device.Therefore, during cooling operation, the cooling efficiency is sensed and defrosting is started. The present invention relates to a defrost starting method and apparatus therefor.

【0002】[0002]

【従来の技術】従来、冷媒蒸発器のデフロスト装置には
散水、冷媒ホットガス等を使用してそれらの顕熱や潜熱
を利用したものがあり、低温空気冷却装置における自動
デフロスト開始方法および装置には、(1)冷媒蒸発器
に付着した霜の厚さを直接計るもの、(2)冷媒蒸発器
を通過する空気の圧力損失を計るもの、(3)送風機消
費電流の増加を計るもの、(4)設定時刻に定期的に行
うもの等がある。
2. Description of the Related Art Conventionally, there are defrosters for refrigerant evaporators that utilize sensible heat or latent heat of sprinkling water, refrigerant hot gas, etc. (1) directly measuring the thickness of frost attached to the refrigerant evaporator, (2) measuring the pressure loss of air passing through the refrigerant evaporator, (3) measuring the increase in blower current consumption, ( 4) There are things such as regularly performed at the set time.

【0003】[0003]

【発明が解決しようとする課題】従来のような冷媒蒸発
器のデフロスト開始方法および装置の内、前記(1),
(2),(3)により行う場合、実際の霜付き状態を目
視で確認して或いは経験により開始時期の設定を行って
おり、デフロスト開始時期の設定にデフロストを行う人
の個人差が介在し、最適デフロスト開始時期の検出が曖
昧となり、不用意に蒸発器の冷却効率が低下していない
状態で該時期より早期にデフロストが開始されたり、過
多な着霜により蒸発器の冷却効率が低下した状態にもか
かわらず該時期より遅延してデフロストが開始され、無
闇に冷却室の温度を上昇させたり、圧縮機の低効率長期
運転を行うことになり、低温貯蔵品の品質を低下させる
ばかりか省エネルギーにはならないという欠点がある。
Among the conventional defrosting method and apparatus for the refrigerant evaporator, the above-mentioned (1),
In the case of (2) and (3), the start time is set by visually confirming the actual frosted state or by experience, and there is an individual difference in the defrosting person in the setting of the defrost start time. The detection of the optimum defrost start time becomes ambiguous, and defrost is started earlier than the time when the cooling efficiency of the evaporator is not carelessly decreased, or the cooling efficiency of the evaporator is decreased due to excessive frost formation. Notwithstanding the state, defrost started later than that time, and the temperature of the cooling room was raised unnecessarily, and low efficiency long-term operation of the compressor was performed, which not only deteriorates the quality of cold-stored products. There is a drawback that it does not save energy.

【0004】また(4)により行う場合は、冷媒蒸発器
の低温区画扉の開閉度合、被冷却物の入出庫量の状況に
よって被冷却空気の温度、湿度状態により冷媒蒸発器に
一定量の霜が付着する時間にばらつきがあるが、霜付着
量に関係なく所定時刻に定期的にデフロストを行うた
め、ある時は早くまたある時は遅くデフロストを行うお
それがあり、デフロストの早期開始と遅れた開始は前記
同様の欠点を有し、圧縮機運転時間を長期化することに
なり、その寿命を短縮し、省エネルギーにはならないと
いう欠点がある。
In the case of (4), depending on the opening / closing degree of the low temperature compartment door of the refrigerant evaporator, the temperature of the air to be cooled and the humidity of the object to be cooled depending on the amount of storage and removal of the object to be cooled, a certain amount of frost will be present on the refrigerant evaporator. Although there is a variation in the time of defrosting, there is a possibility that defrosting will be performed earlier at some times and later at other times because defrosting is performed regularly at a predetermined time regardless of the amount of frost adhesion, and there is a delay in starting defrosting early. The start-up has the same drawbacks as described above, which means that the compressor operating time is lengthened, its life is shortened, and energy is not saved.

【0005】本発明は膨張弁制御コンピュータにより冷
媒蒸発器に連結した膨張弁を制御し、冷媒蒸発器への着
霜を検知して最適デフロスト開始時期を検出し、デフロ
ストが必要なときに自動的にデフロストを開始し、デフ
ロスト開始時期の設定にデフロストを行う人の個人差が
介在したり、霜付着量に関係なく設定時刻に定期的にデ
フロストを開始したりすることのない冷媒蒸発器におけ
るデフロスト開始方法およびその装置を提供することを
目的とする。
According to the present invention, an expansion valve control computer controls an expansion valve connected to a refrigerant evaporator, detects frost formation on the refrigerant evaporator, detects an optimum defrost start time, and automatically detects when defrost is necessary. Defrosting in a refrigerant evaporator that does not start defrosting at the set time, regardless of individual differences in defrosting person setting the defrosting start time, and regardless of the amount of frost adhesion It is an object to provide a starting method and an apparatus thereof.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明は冷媒蒸発器に冷媒を供給するための膨張弁
の制御を該蒸発器下流に付設した温度センサと圧力セン
サとをそれぞれの信号線で結線した膨張弁制御コンピュ
ータを使用して、該膨張弁が蒸発器の冷凍能力に適応し
た最大弁能力を常に自己検索して記憶するようにする。
In order to achieve the above-mentioned object, the present invention provides a temperature sensor and a pressure sensor, each of which is provided with a control of an expansion valve for supplying a refrigerant to a refrigerant evaporator downstream of the evaporator. The expansion valve control computer connected by the signal line is used so that the expansion valve always self-searches and stores the maximum valve capacity adapted to the refrigerating capacity of the evaporator.

【0007】次に冷媒蒸発器に霜付きが多くなると、冷
媒蒸発器の冷凍能力が減少することを冷媒蒸発器下流に
付設した温度センサと圧力センサとで温度と圧力を検出
して膨張弁制御コンピュータで最大弁能力値を減少さ
せ、該最大弁能力値が予め設定した設定値以下になった
ときを最適デフロスト開始時期としてデフロストを開始
するようにする。
Next, when the refrigerant evaporator becomes more frosty, the refrigerating capacity of the refrigerant evaporator decreases. The temperature sensor and pressure sensor attached downstream of the refrigerant evaporator detect the temperature and pressure to control the expansion valve. The maximum valve capacity value is reduced by a computer, and when the maximum valve capacity value becomes equal to or less than a preset set value, defrosting is started as the optimum defrosting start time.

【0008】また、同一の圧縮機、凝縮器に複数の冷媒
循環回路を設け、それぞれの該回路の冷媒蒸発器下流の
温度センサと圧力センサとにより、複数の膨張弁のそれ
ぞれの最大弁能力の最大値、最小値または平均値のいず
れかを使用して公知のデフロスト装置を作動してデフロ
ストを開始するようにしたものである。
Further, a plurality of refrigerant circulation circuits are provided in the same compressor and condenser, and a temperature sensor and a pressure sensor downstream of the refrigerant evaporator in each of the circuits are used to determine the maximum valve capacity of each of the plurality of expansion valves. Either the maximum value, the minimum value or the average value is used to activate the known defrosting device to start the defrosting.

【0009】[0009]

【作用】冷媒蒸発器9に冷媒を供給するための電子式膨
張弁4の制御には、該蒸発器9下流に付設した冷媒蒸発
圧力を検出する圧力センサ2と冷媒温度を検出する温度
センサ3とを結線した膨張弁制御コンピュータ1を使用
するから、該コンピュータ1で冷媒蒸発圧力センサ2で
検出した圧力を蒸発温度に換算した値と、蒸発器下流即
ち蒸発器冷媒出口側に付設した温度センサ3が検出した
温度との差即ち過熱度を計算して電子膨張弁4の液冷媒
通過量の比例制御を行うことができる。
The electronic expansion valve 4 for supplying the refrigerant to the refrigerant evaporator 9 is controlled by the pressure sensor 2 attached downstream of the evaporator 9 for detecting the refrigerant evaporation pressure and the temperature sensor 3 for detecting the refrigerant temperature. Since the expansion valve control computer 1 connected with is used, a value obtained by converting the pressure detected by the refrigerant evaporation pressure sensor 2 in the computer 1 into an evaporation temperature and a temperature sensor attached downstream of the evaporator, that is, on the evaporator refrigerant outlet side It is possible to perform a proportional control of the liquid refrigerant passage amount of the electronic expansion valve 4 by calculating the difference from the temperature detected by 3, ie, the degree of superheat.

【0010】冷媒蒸発器9に着霜が多くなると、温度セ
ンサ3部の温度は該比例制御の範囲を越えて度々低くな
り、膨張弁制御コンピュータ1は電子膨張弁4の最大弁
能力を減少し、該蒸発器9の冷凍能力と電子膨張弁4の
能力が釣り合うように電子膨張弁4の能力を調整する。
When frost forms on the refrigerant evaporator 9, the temperature of the temperature sensor 3 is often lowered beyond the range of the proportional control, and the expansion valve control computer 1 decreases the maximum valve capacity of the electronic expansion valve 4. The capacity of the electronic expansion valve 4 is adjusted so that the refrigerating capacity of the evaporator 9 and the capacity of the electronic expansion valve 4 are balanced.

【0011】冷媒蒸発器9にさらに多くの着霜がある
と、膨張弁制御コンピュータ1は電子膨張弁4の最大弁
能力をさらに減少させ、膨張弁制御コンピュータ1に記
憶したデフロスト開始用設定最大弁能力と比較し、該最
大弁能力がデフロスト開始用設定最大弁能力と同じか、
または下回ったときを最適デフロスト開始時期として膨
張弁制御コンピュータ1は低温空気冷却装置制御盤10
にデフロスト開始信号を送り、デフロストを開始する。
When there is more frost on the refrigerant evaporator 9, the expansion valve control computer 1 further reduces the maximum valve capacity of the electronic expansion valve 4, and the expansion valve control computer 1 stores the set maximum valve for defrost start. Compared with the capacity, whether the maximum valve capacity is the same as the set maximum valve capacity for defrost start,
Alternatively, the expansion valve control computer 1 sets the low temperature air cooling device control panel 10 as the optimum defrost start time when it falls below
Send a defrost start signal to and start defrost.

【0012】[0012]

【実施例】本発明実施に使用する冷媒蒸発器におけるデ
フロスト開始装置の一例を示した添付図面について詳細
に説明する。図1は単一の冷却室に単一の冷媒蒸発器を
設備した場合の配管・配線図で、図2は単一の冷却室に
複数の冷媒蒸発器を設備した場合の配管・配線図で、図
3は複数の冷却室にそれぞれ複数の冷媒蒸発器を設備し
た場合の配管・配線図で、図4は温度センサ部の過熱度
に対する実際弁能力と最大弁能力の関係を示すものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A detailed description will be given of the accompanying drawings showing an example of a defrost initiation device in a refrigerant evaporator used for carrying out the present invention. Figure 1 is a piping / wiring diagram when a single refrigerant evaporator is installed in a single cooling chamber, and Figure 2 is a piping / wiring diagram when multiple refrigerant evaporators are installed in a single cooling chamber. 3 is a piping / wiring diagram in the case where a plurality of refrigerant evaporators are installed in a plurality of cooling chambers, and FIG. 4 shows the relationship between the actual valve capacity and the maximum valve capacity with respect to the degree of superheat of the temperature sensor unit. .

【0013】1は膨張弁制御コンピュータで、圧縮機5
からの高圧ガス管15を経て凝縮器7で高圧冷媒液とな
り、高圧液管16を経て電子膨張弁4で減圧し、冷却室
17内の蒸発器9で送風機8よりの空気と熱交換し、低
圧ガス管14を経て圧縮機5に戻る冷凍サイクルにおい
て、冷媒蒸発器9下流の低圧ガス管14に設けた冷媒蒸
発圧力を検出する圧力センサ2、冷媒蒸発温度を検出す
る温度センサ3および電子膨張弁4とをそれぞれ信号線
12,13および6で結線したもので、圧力センサ2で
検知した冷媒蒸発圧力を蒸発温度に該コンピュータ1で
換算した値と温度センサ3が検知した温度との差即ち過
熱度を計算し、電子膨張弁4での液冷媒通過量の比例制
御をするものである。
Reference numeral 1 is an expansion valve control computer, which is a compressor 5
To a high pressure refrigerant liquid in the condenser 7 via the high pressure gas pipe 15, and the pressure is reduced by the electronic expansion valve 4 via the high pressure liquid pipe 16 and heat is exchanged with the air from the blower 8 in the evaporator 9 in the cooling chamber 17, In the refrigeration cycle that returns to the compressor 5 via the low-pressure gas pipe 14, the pressure sensor 2 that detects the refrigerant evaporation pressure provided in the low-pressure gas pipe 14 downstream of the refrigerant evaporator 9, the temperature sensor 3 that detects the refrigerant evaporation temperature, and the electronic expansion The valve 4 is connected by signal lines 12, 13 and 6, respectively. The difference between the value obtained by converting the refrigerant evaporation pressure detected by the pressure sensor 2 into the evaporation temperature by the computer 1 and the temperature detected by the temperature sensor 3, that is, The degree of superheat is calculated and the amount of liquid refrigerant passing through the electronic expansion valve 4 is proportionally controlled.

【0014】10は公知のデフロスト装置(図示せず)
等を制御する低温空気冷却装置制御盤で、前記膨張弁制
御コンピュータ1とデフロスト信号線11で結線したも
ので、蒸発器9での着霜が多くなると、温度センサ3で
検知する温度は度々低くなり、比例制御の範囲を越え、
膨張弁制御コンピュータ1は冷媒蒸発器9の冷却能力が
減少したことを感知し、電子膨張弁4の最大弁能力を減
少し、該コンピュータ1に記憶したデフロスト開始用設
定最大弁能力と比較し、該減少した最大弁能力が該デフ
ロスト開始用設定最大弁能力以下になったときに、最適
デフロスト開始時期として該コンピュータ1からのデフ
ロスト開始信号をデフロスト信号線11を介して受けて
デフロストを開始するものである。
Reference numeral 10 is a known defrosting device (not shown).
A low-temperature air-cooling device control panel for controlling the above, which is connected to the expansion valve control computer 1 by the defrost signal line 11, and when the frost on the evaporator 9 increases, the temperature detected by the temperature sensor 3 is often low. , Exceeding the range of proportional control,
The expansion valve control computer 1 senses that the cooling capacity of the refrigerant evaporator 9 has decreased, decreases the maximum valve capacity of the electronic expansion valve 4, and compares it with the set maximum valve capacity for starting defrost stored in the computer 1, When the reduced maximum valve capacity becomes equal to or less than the set maximum valve capacity for starting defrost, the defrost start signal from the computer 1 is received via the defrost signal line 11 as the optimum defrost start time to start defrost. Is.

【0015】図3において18,19はそれぞれ送風機
8a,8bを備えた冷却室で、それぞれ複数の電子膨張
弁4a,4bを高圧液管16を分岐して連結し、冷媒蒸
発器9a,9bを設備したもので、3a,3bは低圧ガ
ス管14への合岐部手前の該それぞれ複数の冷媒蒸発器
9a,9bの下流に設備した前記同様の温度センサであ
る。
In FIG. 3, reference numerals 18 and 19 are cooling chambers equipped with blowers 8a and 8b, respectively, and a plurality of electronic expansion valves 4a and 4b are connected to each other by branching a high pressure liquid pipe 16 and connecting refrigerant evaporators 9a and 9b. The installed temperature sensors 3a and 3b are similar to the above temperature sensors installed downstream of the plurality of refrigerant evaporators 9a and 9b, respectively, before the branching portion to the low pressure gas pipe 14.

【0016】6a,6bはそれぞれ複数の電子膨張弁4
a,4bと膨張弁制御コンピュータ1とを結線する膨張
弁制御信号線で、12は前記同様の低圧ガス管14に設
備した圧力センサ2と該コンピュータ1とを結線する圧
力センサ信号線で、13a,13bはそれぞれ複数の温
度センサ3a,3bと該コンピュータ1とを結線する温
度センサ信号線で、前記同様に該コンピュータ1とそれ
ぞれ冷却室18,19の複数の蒸発器9a,9bのデフ
ロスト装置を制御する低温空気冷却装置制御盤10とを
デフロスト信号線11a,11bで結線したものであ
る。
Reference numerals 6a and 6b respectively denote a plurality of electronic expansion valves 4
a and 4b are expansion valve control signal lines for connecting the expansion valve control computer 1, 12 is a pressure sensor signal line for connecting the pressure sensor 2 installed in the same low-pressure gas pipe 14 and the computer 1, and 13a , 13b are temperature sensor signal lines for connecting the plurality of temperature sensors 3a, 3b and the computer 1, respectively. Similarly to the above, the computer 1 and the defrosting devices of the plurality of evaporators 9a, 9b of the cooling chambers 18, 19 are connected. The low temperature air cooling device control panel 10 to be controlled is connected by the defrost signal lines 11a and 11b.

【0017】図4においてA点は初期設定の膨張弁の最
大弁能力で、温度センサ3,3a,3bの過熱度は比例
帯の範囲1(膨張弁開き始めの温度センサ部過熱度)〜
II(膨張弁が最大能力になる温度センサ部過熱度)に
なるように熱負荷変動に対する実弁能力は直線IA,I
B,IC上において遂次調整され、冷媒蒸発器9,9
a,9bに霜付きが多くなると、温度センサ3,3a,
3b部の過熱度が低下し、膨張弁開き始めの温度センサ
部過熱度I以下になると、最大弁能力はA点→B点→C
点と低下し、D点以下に達すると、或いは複数個の膨張
弁4a、4bの弁最大能力の最大植、最小値または平均
値がD点以下に達すると、最通デフロスト開始時期とし
て低温空気冷却装置制御盤10にデフロスト信号線1
1,11a,11bを介して膨張弁制御コンピュータ1
よりデフロスト開始信号を送りデフロストを開始する。
In FIG. 4, point A is the maximum valve capacity of the initially set expansion valve, and the degree of superheat of the temperature sensors 3, 3a, 3b is in the proportional band range 1 (the degree of superheat of the temperature sensor when the expansion valve starts to open).
The actual valve capacity with respect to the heat load fluctuation is linear IA, I so that it becomes II (the temperature sensor superheat degree at which the expansion valve has the maximum capacity).
Refrigerant evaporators 9 and 9 are successively adjusted on B and IC
When the frost on a, 9b increases, the temperature sensors 3, 3a,
When the degree of superheat of part 3b decreases and becomes less than or equal to the degree of superheat I of the temperature sensor at the beginning of opening the expansion valve, the maximum valve capacity is point A → point B → C
If the maximum planting, minimum value or average value of the valve maximum capacity of the plurality of expansion valves 4a, 4b reaches the D point or lower, the low temperature air is set as the most common defrost start time. Defrost signal line 1 on the cooling device control panel 10
Expansion valve control computer 1 via 1, 11a, 11b
A defrost start signal is sent to start defrost.

【0018】[0018]

【発明の効果】本発明は以上のような構成を有するか
ら、低温空気冷却装置の低温空気冷却器の部分的な霜付
き状態であっても、冷媒蒸発器9,9a,9bの霜付き
による膨張弁4,4a,4bの最大弁能力の減少を捕ら
えて最適デフロスト開始時期としデフロストを開始する
ため、冷却空気の状態(湿度)の変化、圧縮機の冷凍能
力変化、他の外乱等があっても、膨張弁最大弁能力の減
少が冷媒蒸発器の着霜量を示すことになるので、最適デ
フロスト開始時期を確実に把握できるから、冷媒蒸発器
9,9a,9bのデフロストを着実に開始することによ
り、圧縮機の運転時間を短縮し、その寿命を長寿命と
し、省エネルギー化はもとより、低温貯蔵品の品質を損
うことがない。
Since the present invention has the above-described structure, even if the low temperature air cooler of the low temperature air cooler is partially frosted, the refrigerant evaporators 9, 9a and 9b are frosted. Since the defrosting is started at the optimum defrost start time by catching the decrease in the maximum valve capacity of the expansion valves 4, 4a, 4b, there is a change in the state of the cooling air (humidity), a change in the refrigerating capacity of the compressor, and other disturbances. However, the decrease in the expansion valve maximum valve capacity indicates the amount of frost formed on the refrigerant evaporator, and therefore the optimum defrost start time can be grasped with certainty, so that defrosting of the refrigerant evaporators 9, 9a, 9b is started steadily. By doing so, the operating time of the compressor is shortened, the life of the compressor is extended, energy is saved, and the quality of low-temperature stored products is not impaired.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単一の冷却室に単一の冷媒蒸発器を設
備した場合の概略を示す配管・配線図である。
FIG. 1 is a piping / wiring diagram schematically showing a case where a single refrigerant evaporator is installed in a single cooling chamber of the present invention.

【図2】単一の冷却室に複数の冷媒蒸発器を設備した場
合の概略を示す配管・配線図である。
FIG. 2 is a piping / wiring diagram schematically showing a case where a plurality of refrigerant evaporators are installed in a single cooling chamber.

【図3】複数の冷却室にそれぞれ複数の冷媒蒸発器を設
備した場合の概略を示す配管・配線図である。
FIG. 3 is a piping / wiring diagram schematically showing a case where a plurality of refrigerant evaporators are installed in a plurality of cooling chambers.

【図4】膨張弁の温度センサ部の過熱度に対する実際弁
能力と最大弁能力との関係を示す図表である。
FIG. 4 is a chart showing the relationship between the actual valve capacity and the maximum valve capacity with respect to the degree of superheat of the temperature sensor unit of the expansion valve.

【符号の説明】[Explanation of symbols]

1 膨張弁制御コンピュータ 2 圧力センサ 3,3a,3b 温度センサ 4,4a,4b 電子膨張弁 5 圧縮機 6 膨張弁制御信号線 7 凝縮器 8,8a,8b 送風機 9,9a,9b 冷媒蒸発器 10 低温空気冷却装置制御盤 11,11a,11b デフロスト信号線 12 圧力センサ信号線 13 温度センサ信号線 14 低圧ガス管 15 高圧ガス管 16 高圧液管 17,18,19 冷却室 A 初期設定最大弁能力 B,C 調整後最大弁能力 D デフロスト開始用設定最大弁能力 I 膨張弁開き始めの温度センサ部過熱度 II 膨張弁が最大弁能力になるときの温度センサ部過
熱度
1 Expansion valve control computer 2 Pressure sensor 3,3a, 3b Temperature sensor 4,4a, 4b Electronic expansion valve 5 Compressor 6 Expansion valve control signal line 7 Condenser 8, 8a, 8b Blower 9, 9a, 9b Refrigerant evaporator 10 Low-temperature air cooler control panel 11, 11a, 11b Defrost signal line 12 Pressure sensor signal line 13 Temperature sensor signal line 14 Low pressure gas pipe 15 High pressure gas pipe 16 High pressure liquid pipe 17, 18, 19 Cooling chamber A Initial setting maximum valve capacity B , C Maximum valve capacity after adjustment D Set maximum valve capacity for defrost start I Superheat degree of temperature sensor when expansion valve starts opening II Superheat degree of temperature sensor when expansion valve reaches maximum valve capacity

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬田 昿之亮 大阪府箕面市粟生間谷西1丁目6番地7− 703 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Yoshiyuki Mada 1-6, 7-703, Ayumagaya Nishi, Minoh City, Osaka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒蒸発器に連結した膨張弁から冷媒を
供給し、冷媒の蒸発潜熱を利用して空気を冷却する低温
空気冷却装置において、該膨張弁を膨張弁制御コンピュ
ータにより制御して冷媒蒸発器表面に生成する霜のデフ
ロストを該コンピュータが冷媒蒸発器下流の温度と圧力
とを検出することにより検索した膨張弁最大能力の設定
値以下への低下を検知して公知のデフロスト装置を使っ
て開始することを特徴とする冷媒蒸発器におけるデフロ
スト開始方法。
1. A low temperature air cooling apparatus for supplying a refrigerant from an expansion valve connected to a refrigerant evaporator and cooling air by utilizing latent heat of vaporization of the refrigerant, wherein the expansion valve is controlled by an expansion valve control computer. The defrost of the frost generated on the evaporator surface was searched by the computer by detecting the temperature and pressure of the refrigerant evaporator downstream, and the decrease in the maximum capacity of the expansion valve to below the set value was detected and a known defrost device was used. A method for starting defrost in a refrigerant evaporator, comprising:
【請求項2】 一台の圧縮機、凝縮器にそれぞれ複数の
膨張弁、冷媒蒸発器を使用し、各冷媒蒸発器に連結した
それぞれの膨張弁から冷媒を供給し、冷媒の蒸発潜熱を
利用して空気を冷却する低温空気冷却装置において、該
複数の膨張弁を膨張弁制御コンピュータにより制御して
複数の冷媒蒸発器表面に生成する霜のデフロストを該コ
ンピュータが冷媒蒸発器下流の温度と圧力とを検出する
ことにより検索した複数個の膨張弁能力の最大値、最小
値または平均値のいずれかを使用して公知のデフロスト
装置を使って開始することを特徴とする冷媒蒸発器にお
けるデフロスト開始方法。
2. A plurality of expansion valves and a refrigerant evaporator are used for one compressor and a condenser, and the refrigerant is supplied from each expansion valve connected to each refrigerant evaporator to utilize latent heat of vaporization of the refrigerant. In the low temperature air cooling device for cooling air by controlling the expansion valves by the expansion valve control computer, the computer controls the defrosting of frost generated on the surfaces of the refrigerant evaporators. Defrost start in a refrigerant evaporator characterized by starting using a known defrost device using any of the maximum, minimum or average values of the expansion valve capacities retrieved by detecting Method.
【請求項3】 圧縮機、凝縮器、膨張弁および冷媒蒸発
器を順次管路で連結して冷媒を流し、再び圧縮機に戻し
循環する低温空気冷却装置において、該膨張弁を制御す
る膨張弁制御コンピュータを設けて該蒸発器下流の管路
にそれぞれの信号線を該コンピュータと結線した温度セ
ンサと圧力センサとを設け、該コンピュータに蒸発器の
デフロストを制御する低温空気冷却装置制御盤をデフロ
スト信号線で結線して設け、該コンピュータが冷媒蒸発
器下流の温度と圧力とを検出することにより検索した膨
張弁最大能力の設定値以下への低下を検知して発するデ
フロスト開始信号を制御盤に入力し、公知のデフロスト
装置を用いてデフロストを開始することを特徴とする冷
媒蒸発器におけるデフロスト開始装置。
3. A low-temperature air cooling device in which a compressor, a condenser, an expansion valve and a refrigerant evaporator are sequentially connected by a pipeline to flow a refrigerant and then circulates back to the compressor to control the expansion valve. A control computer is provided, and a temperature sensor and a pressure sensor in which each signal line is connected to the computer are provided in a pipeline downstream of the evaporator, and a defrosting low-temperature air cooling device control panel for controlling the defrosting of the evaporator is provided in the computer. A defrost start signal is sent to the control panel by detecting the decrease of the maximum capacity of the expansion valve, which is found by the computer detecting the temperature and pressure downstream of the refrigerant evaporator, provided by connecting the signal line. A defrost starting device in a refrigerant evaporator, characterized by inputting and starting defrosting using a known defrosting device.
【請求項4】 単一の圧縮機および凝縮器に複数の膨張
弁および冷媒蒸発器を順次管路で連結して冷媒を流し、
再び該圧縮機に戻し循環する低温空気冷却装置におい
て、複数の膨張弁のそれぞれに信号線を結線して膨張弁
の開閉を制御する膨張弁制御コンピュータを設け、各蒸
発器下流の管路にそれぞれ信号線を該コンピュータと結
線した温度センサと圧力センサを設け、該コンピュータ
に各蒸発器のデフロストを制御する低温空気冷却装置制
御盤をデフロスト信号線で結線して設け、該コンピュー
タが冷媒蒸発器下流の温度と圧力とを検出することによ
り検索した複数個の膨張弁の弁最大能力の最大値、最小
値または平均値のいずれかを使用して発するデフロスト
開始信号を該制御盤に入力し、公知のデフロスト装置を
用いてデフロストを開始することを特徴とする冷媒蒸発
器におけるデフロスト開始装置。
4. A plurality of expansion valves and a refrigerant evaporator are sequentially connected to a single compressor and a condenser by pipelines to flow the refrigerant,
In the low-temperature air cooling device that returns to the compressor and circulates again, an expansion valve control computer that controls the opening and closing of the expansion valve by connecting a signal line to each of the plurality of expansion valves is provided, and each expansion valve control computer is provided in a pipeline downstream of each evaporator. A temperature sensor and a pressure sensor whose signal lines are connected to the computer are provided, and a low-temperature air cooling device control panel for controlling the defrost of each evaporator is provided to the computer by connecting the defrost signal line. By inputting a defrost start signal to the control panel using any one of the maximum value, the minimum value or the average value of the valve maximum capacities of the plurality of expansion valves searched by detecting the temperature and pressure of A defrost starting device in a refrigerant evaporator, characterized in that the defrosting device is used to start defrosting.
JP4049020A 1992-01-21 1992-01-21 Defrost start timing identification method for refrigerant evaporator Expired - Fee Related JP2694885B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4049020A JP2694885B2 (en) 1992-01-21 1992-01-21 Defrost start timing identification method for refrigerant evaporator
KR1019920016712A KR930016736A (en) 1992-01-21 1992-09-15 Defrost start method and apparatus in refrigerant evaporator
EP9393300302A EP0552906A3 (en) 1992-01-21 1993-01-18 Defrost starting method and device for refrigerant evaporators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4049020A JP2694885B2 (en) 1992-01-21 1992-01-21 Defrost start timing identification method for refrigerant evaporator

Publications (2)

Publication Number Publication Date
JPH05196343A true JPH05196343A (en) 1993-08-06
JP2694885B2 JP2694885B2 (en) 1997-12-24

Family

ID=12819444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4049020A Expired - Fee Related JP2694885B2 (en) 1992-01-21 1992-01-21 Defrost start timing identification method for refrigerant evaporator

Country Status (3)

Country Link
EP (1) EP0552906A3 (en)
JP (1) JP2694885B2 (en)
KR (1) KR930016736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093297A1 (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
KR101396693B1 (en) * 2013-12-23 2014-05-16 주식회사 지엠에스 Medical refrigerator and defrosting method using the same
CN103998878A (en) * 2011-12-02 2014-08-20 韦尔比尔特冰柜基赛尔面板系统有限公司 Refrigeration apparatus and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970726A (en) * 1997-04-08 1999-10-26 Heatcraft Inc. Defrost control for space cooling system
CN101600917B (en) * 2007-02-02 2011-04-13 开利公司 Method for operating transport refrigeration unit with remote evaporator
CN101451779B (en) * 2007-11-28 2012-09-05 海尔集团公司 Defrosting control method for heat pump air conditioner
CN109059192B (en) * 2018-06-20 2021-04-20 广东美的制冷设备有限公司 Control method and device for heating compressor winding
CN108800489B (en) * 2018-06-20 2020-12-22 广东美的制冷设备有限公司 Control method and device for heating compressor winding
CN108954730B (en) * 2018-06-20 2021-04-20 广东美的制冷设备有限公司 Control method and device for heating compressor winding
CN113776230A (en) * 2021-09-25 2021-12-10 益鹏智能系统科技(上海)有限公司 Control method and system for natural gas heating electronic expansion valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131167A (en) * 1985-12-03 1987-06-13 株式会社デンソー Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136671A (en) * 1984-07-26 1986-02-21 三洋電機株式会社 Controller for flow rate of refrigerant
DE3900643A1 (en) * 1989-01-11 1990-07-12 Schmitz Kuehler Baierbrunn METHOD FOR OPTIMIZING THE PERFORMANCE OF REFRIGERANT EVAPORATORS
US5233841A (en) * 1990-01-10 1993-08-10 Kuba Kaltetechnik Gmbh Method of optimising the performance of refrigerant vaporizers including improved frost control method and apparatus
DE4105880A1 (en) * 1991-02-25 1992-08-27 Kueba Kaeltetechnik Gmbh METHOD AND DEVICE FOR OPTIMIZING THE PERFORMANCE AND DEFROSTING OF REFRIGERANT EVAPORATORS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131167A (en) * 1985-12-03 1987-06-13 株式会社デンソー Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093297A1 (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
JPWO2009093297A1 (en) * 2008-01-21 2011-05-26 三菱電機株式会社 Heat pump device and air conditioner or water heater equipped with the heat pump device
JP5528119B2 (en) * 2008-01-21 2014-06-25 三菱電機株式会社 Heat pump device and air conditioner or water heater equipped with the heat pump device
CN103998878A (en) * 2011-12-02 2014-08-20 韦尔比尔特冰柜基赛尔面板系统有限公司 Refrigeration apparatus and method
KR101396693B1 (en) * 2013-12-23 2014-05-16 주식회사 지엠에스 Medical refrigerator and defrosting method using the same

Also Published As

Publication number Publication date
EP0552906A2 (en) 1993-07-28
JP2694885B2 (en) 1997-12-24
KR930016736A (en) 1993-08-26
EP0552906A3 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
EP2217872B1 (en) Control method of refrigerator
JP4365378B2 (en) Defrosting operation control device and defrosting operation control method
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
US7992398B2 (en) Refrigeration control system
US5809789A (en) Refrigeration module
JP2000513797A (en) Refrigeration system
CN109253524B (en) Control method of heat pump system, heat pump system and air conditioner
CN115095955B (en) Air conditioner and defrosting control method thereof
CN108917282A (en) A kind of defrosting control device and method of refrigerating display case
JPH05196343A (en) Method and device for starting defrosting operation in refrigerant evaporator
KR20190040671A (en) Air conditioner and control method thereof
JP2004257666A (en) Controller of cooling system
US7007490B2 (en) Refrigerator and control method thereof
KR101470538B1 (en) control method of Air conditioner
JPH043865A (en) Freezing cycle device
JP4435226B2 (en) Refrigeration equipment
JP2000205672A (en) Refrigerating system
JP4409316B2 (en) Cooling system
KR20110089532A (en) A refrigerator and a control method the same
JPH04251164A (en) Freezing cycle device
CN115095956A (en) Air conditioner and defrosting control method thereof
JP2000283626A (en) Refrigerator
JP4183451B2 (en) Control device for cooling system
CN113983728A (en) Defrosting method, device and equipment for evaporator and temperature adjusting system
JPH0926182A (en) Regenerative type air conditioning equipment and operation control method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees