JPH05195831A - Suction and exhaust valve operation state detecting device for internal combustion engine - Google Patents

Suction and exhaust valve operation state detecting device for internal combustion engine

Info

Publication number
JPH05195831A
JPH05195831A JP1126892A JP1126892A JPH05195831A JP H05195831 A JPH05195831 A JP H05195831A JP 1126892 A JP1126892 A JP 1126892A JP 1126892 A JP1126892 A JP 1126892A JP H05195831 A JPH05195831 A JP H05195831A
Authority
JP
Japan
Prior art keywords
camshaft
cylinder
intake
cam shaft
cylinder deactivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1126892A
Other languages
Japanese (ja)
Other versions
JP2917643B2 (en
Inventor
Takashi Dougahara
隆 堂ケ原
Kazuhide Togai
一英 栂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP1126892A priority Critical patent/JP2917643B2/en
Publication of JPH05195831A publication Critical patent/JPH05195831A/en
Application granted granted Critical
Publication of JP2917643B2 publication Critical patent/JP2917643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To surely detect the switching operation state of a valve stopping mechanism by calculating the rotation speed changing quantity of a cam shaft based on the rotation variation quantity of the cam shaft and judging whether or not cut-off cylinder switching is completed speed on the deviation between the displacement quantity and a specified criterion. CONSTITUTION:Pairs of rocker arms 3a and 3b and rocker arms 4a and 4b for opening and closing the suction and exhaust valve of an internal combustion engine 1 are rotatably and detachably supported by suction and exhaust rocker shafts 7 and 8 respectively, and suction and exhaust cams 5 and 6 are formed in a cam shaft 9 in a body. In this case, valve stopping mechanism M, which can stop the opening and closing operation of the suction and exhaust valve at required time, are attached to the rocker arms 3a and 4a respectively. On the other hand, the rotation variation quantity of the cam shaft, which is detected by a cam shaft rotation sensor 16, and other various pieces of information relating to running are input in an ECU 24 controlling each injector 25. In addition, in the ECU 24, the rotation speed variation quantity of the cam shaft is calculated based on the rotation variation quantity of the cam shaft, and whether or not cut-off cylinder switching is completed is judged based on the deviation quantity between the rotation speed variation quantity of the cam shaft and a specified criterion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、適時に内燃機関の設定
された気筒の吸排気弁のみを停止させて設定気筒を休筒
運転できる内燃機関に装着され、特に、休筒気筒の吸排
気弁の作動状態を適確に検知出来る内燃機関の吸排気弁
作動状態検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on an internal combustion engine capable of performing a cylinder deactivation operation of a set cylinder by stopping only the intake and exhaust valves of the cylinder of the internal combustion engine set at a proper time. The present invention relates to an intake / exhaust valve operating state detection device for an internal combustion engine, which can accurately detect the operating state of a valve.

【0002】[0002]

【従来の技術】内燃機関の運転中において、適時に出力
低減や低燃費化を図るべく、一部気筒への吸気及び燃料
の供給を停止させ、休筒運転を行うことの出来る弁停止
機構を備えた内燃機関が知られている。この種内燃機関
の弁停止機構を制御する制御手段は各種運転情報に基づ
き設定運転域に入るとその運転域内では、休筒気筒の吸
排気弁の開閉作動を停止させると共に休筒気筒への燃料
供給を停止させ、設定運転域を離脱すると、休筒気筒の
吸排気弁の開閉作動を正常状態に戻し、休筒気筒への燃
料供給を再開させている。ここで使用される弁停止機構
では、休筒運転から通常運転に復帰する場合、弁停止さ
せていた気筒の吸排気弁と共にインジェクタの駆動をも
再開させるが、この時、現システムでは吸排気弁の弁停
止モードを弁駆動モードに切り換えた後、自動的に一定
待ち時間の経過の後にインジェクタの駆動を再開させ、
全気筒運転状態に復帰する様に構成されっている。
2. Description of the Related Art During operation of an internal combustion engine, a valve stop mechanism that can stop cylinder operation by stopping intake and fuel supply to some cylinders in order to reduce output and reduce fuel consumption in a timely manner. Internal combustion engines equipped with this are known. When the control means for controlling the valve stop mechanism of this kind of internal combustion engine enters into the set operating range based on various operating information, the opening / closing operation of the intake / exhaust valves of the deactivated cylinders is stopped and the fuel to the deactivated cylinders is stopped within the operating range. When the supply is stopped and the set operating range is departed, the opening / closing operation of the intake / exhaust valves of the deactivated cylinders is returned to the normal state, and the fuel supply to the deactivated cylinders is restarted. In the valve stop mechanism used here, when returning from cylinder deactivation operation to normal operation, the injector drive is restarted together with the intake / exhaust valve of the cylinder that was stopped, but at this time, in the current system, the intake / exhaust valve After switching the valve stop mode to the valve drive mode, the injector drive is automatically restarted after a certain waiting time has passed,
It is configured to return to the all-cylinder operating state.

【0003】[0003]

【発明が解決しようとする課題】ところが、休筒運転か
ら通常運転に復帰する際、吸排気弁を弁駆動に切り換え
る指令に応じて、自動的に弁停止機構の切り換え用アク
チュエータが作動し、カム軸回転に連動して吸排気弁が
その開閉作動をスムーズに再開させることができれば問
題無い。しかし、場合により、その切り換えが適確に成
されず、休筒運転から通常運転に復帰する際に切り換え
用アクチュエータが作動したにもかかわらず、吸排気弁
がその開閉作動を正常に行わなくなったり、逆に、通常
運転より休筒運転への切り換えの際に、吸排気弁がその
開閉作動をスムーズに停止させないという状態が発生す
ることが有る。
However, when returning from the cylinder deactivation operation to the normal operation, the switching actuator of the valve stop mechanism automatically operates in response to the command to switch the intake / exhaust valve to the valve drive, and the cam is operated. There is no problem if the intake / exhaust valve can smoothly resume its opening / closing operation in conjunction with the shaft rotation. However, in some cases, the switching may not be performed properly, and the intake / exhaust valve may not normally open / close even if the switching actuator operates when returning from the cylinder deactivation operation to the normal operation. Conversely, when switching from the normal operation to the cylinder deactivation operation, a state may occur in which the intake / exhaust valve does not smoothly stop its opening / closing operation.

【0004】現システムではこのように休筒運転から通
常運転への切り換えが適確に成されない場合でも、正常
切り換えが成されたものと見做し、一定待ち時間の後に
インジェクタ駆動を自動的に再開させてしまう。このよ
うな状態に陥ると、休筒気筒の吸気ポートに燃料が滞留
し、エンジンのバックファイア或いはアフタファイアの
生じる可能性が高まる。逆に、通常運転より休筒運転へ
の切り換えが適確に成されず、一定待ち時間の後にイン
ジェクタ駆動が自動停止すると、排ガスが過剰リーンに
達し、触媒の劣化が進むこととなる。
In the current system, even when the switching from the cylinder deactivation operation to the normal operation is not properly performed in this way, it is considered that the normal switching has been performed, and the injector drive is automatically performed after a certain waiting time. I will restart it. If such a state occurs, the fuel stays in the intake port of the deactivated cylinder, increasing the possibility of backfire or afterfire of the engine. On the contrary, if the switching from the normal operation to the cylinder deactivation operation is not properly performed and the injector drive is automatically stopped after a certain waiting time, the exhaust gas reaches an excessive lean and the catalyst deteriorates.

【0005】このように、吸排気弁のいずれかがその切
り換え不良を生じるとこれに不適切な燃料噴射が成され
ることによるエンジン本体の損傷や触媒劣化を招く可能
性が有り、問題と成っている。本発明の目的は弁停止機
構の切り換え作動状態を適確に検知出来る内燃機関の吸
排気弁作動状態検知装置を提供することにある。
As described above, if any one of the intake and exhaust valves causes a switching failure, improper fuel injection may cause damage to the engine body or catalyst deterioration, which is a problem. ing. An object of the present invention is to provide an intake / exhaust valve operating state detection device for an internal combustion engine, which can accurately detect the switching operating state of the valve stop mechanism.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めに、第1の発明は内燃機関の設定された気筒の吸排気
弁の少なくとも一方を停止させる弁停止手段と、上記内
燃機関のカム軸の回転変位量情報を発するカム軸回転変
位量検知手段と、上記カム軸回転変位量情報に基づきカ
ム軸回転速度の変動量を算出するカム軸速度変動算出手
段と、上記カム軸速度変動量と所定の判定値との偏差に
基づき休筒切り換え完了か否かを判定して休筒切り換え
判定情報を発する休筒切り換え判定手段とを有したこと
を特徴とする。
In order to achieve the above-mentioned object, a first invention is a valve stopping means for stopping at least one of intake and exhaust valves of a cylinder of an internal combustion engine, and a cam of the internal combustion engine. Camshaft rotational displacement amount detecting means for issuing shaft rotational displacement amount information, camshaft speed fluctuation calculating means for calculating camshaft rotational speed fluctuation amount based on the camshaft rotational displacement amount information, and camshaft speed fluctuation amount And a predetermined determination value based on a deviation between the cylinder deactivation switching determination means and a cylinder deactivation switching determination means that issues cylinder deactivation switching determination information.

【0007】第2の発明は内燃機関の設定された気筒の
吸排気弁の少なくとも一方を停止させる弁停止手段と、
上記内燃機関のカム軸に加わる駆動トルク情報を発する
カム軸駆動トルク検知手段と、上記カム軸駆動トルク情
報に基づきカム軸駆動トルクの変動量を算出するカム軸
駆動トルク変動算出手段と、上記カム軸駆動トルクと所
定の判定値との偏差に基づき休筒切り換え完了か否かを
判定して休筒切り換え判定情報を発する休筒切り換え判
定手段とを有したことを特徴とする。
A second aspect of the present invention is a valve stop means for stopping at least one of intake and exhaust valves of a set cylinder of an internal combustion engine,
Camshaft drive torque detection means for issuing drive torque information applied to the camshaft of the internal combustion engine; camshaft drive torque fluctuation calculation means for calculating a fluctuation amount of camshaft drive torque based on the camshaft drive torque information; The present invention is characterized by further comprising cylinder deactivation switching determination means for determining whether or not cylinder deactivation switching is completed based on a deviation between the shaft drive torque and a predetermined determination value and issuing cylinder deactivation switching determination information.

【0008】[0008]

【作用】第1の発明では、カム軸速度変動算出手段がカ
ム軸回転変位量検知手段からのカム軸回転変位量情報を
受けて、その情報に基づきカム軸回転速度の変動量を算
出するので、そのカム軸回転速度変動量と所定の判定値
との偏差に基づき、休筒切り換え判定手段が休筒切り換
え完了か否かを判定して休筒切り換え判定情報を発する
ことができる。
In the first aspect of the invention, the camshaft speed variation calculating means receives the camshaft rotational displacement amount information from the camshaft rotational displacement amount detecting means and calculates the camshaft rotational speed variation amount based on the information. Based on the deviation between the camshaft rotation speed fluctuation amount and the predetermined determination value, the cylinder deactivation switching determination means can determine whether or not the cylinder deactivation switching is completed, and issue the cylinder deactivation switching determination information.

【0009】第2の発明では、カム軸駆動トルク変動算
出手段がカム軸駆動トルク検知手段からのカム軸駆動ト
ルク情報を受けて、その情報に基づきカム軸駆動トルク
の変動量を算出するので、そのカム軸駆動トルク変動量
と所定の判定値との偏差に基づき、休筒切り換え判定手
段が休筒切り換え完了か否かを判定して休筒切り換え判
定情報を発することができる。
In the second aspect of the invention, the camshaft drive torque fluctuation calculating means receives the camshaft driving torque information from the camshaft driving torque detecting means and calculates the fluctuation amount of the camshaft driving torque based on the information. Based on the deviation between the camshaft drive torque fluctuation amount and the predetermined determination value, the cylinder deactivation switching determination means can determine whether or not the cylinder deactivation switching is completed and issue the cylinder deactivation switching determination information.

【0010】[0010]

【実施例】図1の内燃機関の吸排気弁作動状態検知装置
は直列4気筒の内燃機関(以下単にエンジン1と記す)
に装着される。このエンジン1のシリンダヘッド2には
各気筒に連通可能な図示しない吸気路及び排気路がそれ
ぞれ形成され、各流路は図示しない吸気弁及び排気弁に
よって開閉される。これら図示しない吸排弁は各々のロ
ッカアーム3a,3b,4a,4bを介して吸気カム5
及び排気カム6により開閉駆動される。ここで各ロッカ
アーム3a,3b,4a,4bは吸排ロッカ軸7,8に
枢支され、吸気カム5及び排気カム6はカム軸9に一体
形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The intake / exhaust valve operating state detecting device for an internal combustion engine of FIG.
Be attached to. The cylinder head 2 of the engine 1 is formed with an intake passage and an exhaust passage which are not shown and which can communicate with each cylinder, and each passage is opened and closed by an intake valve and an exhaust valve which are not shown. These intake and exhaust valves (not shown) are connected to the intake cam 5 via the rocker arms 3a, 3b, 4a and 4b.
And is driven to open and close by the exhaust cam 6. Here, the rocker arms 3a, 3b, 4a, 4b are pivotally supported by the intake / exhaust rocker shafts 7, 8, and the intake cam 5 and the exhaust cam 6 are integrally formed on the cam shaft 9.

【0011】カム軸9は一端にタイミングギア11を一
体的に取り付けられ、このタイミングギアがタイミング
ベルト13を介して図示しないクランクシャフト側に連
結され、これによりエンジン回転の1/2の回転数でカ
ム軸9を回転するように構成されている。ここでカム軸
9にはタイミングギア11と反対側の端部に回転検出用
のディスク14が一体的に取付けられ、これにはカム軸
9の回転変位量情報を発するカム軸回転センサ16が対
設され、このディスク14及びカム軸回転センサ16が
エンコーダを構成している。なお、図1の符号18,1
9,20は各シャフトを支持する軸受を示す。
A timing gear 11 is integrally attached to one end of the camshaft 9, and this timing gear is connected to a crankshaft side (not shown) via a timing belt 13 so that the rotation speed is half the engine rotation speed. It is configured to rotate the cam shaft 9. Here, a rotation detecting disk 14 is integrally attached to the end of the cam shaft 9 opposite to the timing gear 11, and a cam shaft rotation sensor 16 for issuing information on the rotational displacement amount of the cam shaft 9 is paired therewith. The disk 14 and the cam shaft rotation sensor 16 constitute an encoder. Incidentally, reference numerals 18 and 1 in FIG.
Reference numerals 9 and 20 denote bearings that support each shaft.

【0012】図1において、第2気筒(♯2)及び第3
気筒(♯3)の各ロッカアーム3b,4bは常時吸排弁
を開閉でき、第1気筒(♯1)と第4気筒(♯4)に対
抗する各ロッカアーム3a,4aは所定時に吸排弁の開
閉作動を停止可能な弁停止機構Mを付設されている。こ
こでの弁停止機構Mは各ロッカアーム3a,4a上の図
示しないバルブ押圧片を油圧切り換え手段によってバル
ブ対抗位置と退却位置とに切り換え移動させ、ロッカア
ームのバルブ押圧作動を弁停止時に空振りさせるという
周知の構成を採る。
In FIG. 1, the second cylinder (# 2) and the third cylinder
The rocker arms 3b and 4b of the cylinder (# 3) can always open and close the intake and exhaust valves, and the rocker arms 3a and 4a that oppose the first cylinder (# 1) and the fourth cylinder (# 4) open and close the intake and exhaust valves at predetermined times. A valve stop mechanism M that can stop the engine is attached. It is well known that the valve stop mechanism M here moves the valve pressing piece (not shown) on each rocker arm 3a, 4a between the valve opposing position and the retracted position by the hydraulic pressure switching means to make the valve pressing operation of the rocker arm idle when the valve is stopped. Take the configuration of.

【0013】なお、こここでの弁停止機構Mの油圧切り
換え手段には油圧回路23より圧油が供給される。この
油圧回路23は弁停止機構Mに吸排する圧油を休筒電磁
弁21を介して油圧供給手段22側より受ける。油圧供
給手段22は図示したように油圧ポンプ及びオイルタン
クから成る。休筒電磁弁21は3方弁であり、オン時に
各弁停止機構Mに圧油を供給して、同機構Mを弁停止に
切り換え保持し、オフ時に各弁停止機構Mの圧油を排除
して同機構Mを弁駆動に切り換え保持するもので、後述
のエンジンコントロールユニット24によって駆動制御
される。
The hydraulic oil is supplied from the hydraulic circuit 23 to the hydraulic pressure switching means of the valve stop mechanism M here. The hydraulic circuit 23 receives the pressure oil sucked into and discharged from the valve stop mechanism M from the hydraulic pressure supply means 22 side through the cylinder deactivation electromagnetic valve 21. The hydraulic pressure supply means 22 comprises a hydraulic pump and an oil tank as shown in the figure. The cylinder shut-off solenoid valve 21 is a three-way valve, which supplies pressure oil to each valve stop mechanism M when it is on, switches the mechanism M to a valve stop and holds it, and eliminates pressure oil of each valve stop mechanism M when it is off. Then, the mechanism M is switched to valve drive and held, and is driven and controlled by an engine control unit 24 described later.

【0014】更に、図1のシリンダヘッド2には各気筒
の図示しない吸気ポートに燃料を噴射するインジェクタ
25が装着され、各インジェクタは燃圧調整手段26に
よって定圧調整された燃料を燃料供給源27より受け、
その噴射駆動制御は、エンジンコントロールユニット2
4によって成される。エンジンコントロールユニット
(ECU)24はマイクロコンピュータによってその要
部が形成され、エンジン1への燃料供給制御、点火時期
制御、スロットル弁駆動制御等の周知の制御処理を行う
と共に休筒制御を行い、それに付随して休筒切り換え制
御を行う。このためにエンジンコントロールユニット2
4にはエンジン回転センサ30よりエンジン1の回転数
Neが、エアフローセンサ31より吸入空気量Aが、車
速センサ32より車速Svが、カム軸回転センサ16よ
り図示しないFVコンバータを介してカム軸9の回転変
位量θcが、クランク角センサ33より単位クランク角
信号Δθが、気筒判別センサ34より気筒信号♯nがそ
れぞれ取り込まれ、その他にもスロットル開度情報や水
温等の各種運転情報が取り込まれている。
Further, an injector 25 for injecting fuel to an intake port (not shown) of each cylinder is mounted on the cylinder head 2 of FIG. received,
The injection drive control is performed by the engine control unit 2
Made by 4. The engine control unit (ECU) 24 has its main part formed by a microcomputer, and performs well-known control processing such as fuel supply control to the engine 1, ignition timing control, throttle valve drive control, and cylinder deactivation control. Accompanyingly, the cylinder switching control is performed. For this purpose the engine control unit 2
4, the rotation speed Ne of the engine 1 from the engine rotation sensor 30, the intake air amount A from the air flow sensor 31, the vehicle speed Sv from the vehicle speed sensor 32, and the camshaft 9 from the camshaft rotation sensor 16 via an FV converter (not shown). The rotational displacement amount θc, the unit crank angle signal Δθ from the crank angle sensor 33, the cylinder signal #n from the cylinder determination sensor 34, and various operation information such as throttle opening information and water temperature. ing.

【0015】ここでエンジンコントロールユニット24
は、特にカム軸速度変動算出手段及び休筒切り換え判定
手段としての機能を備える。このカム軸速度変動算出手
段はカム軸回転変位量θc情報に基づきカム軸回転速度
Vcの変動量hnを算出する。休筒切り換え判定手段は
カム軸速度変動量hn,snと所定の判定値h1,s
1,h3との偏差に基づき休筒切り換え完了か否かを判
定して休筒切り換え判定情報を発する。以下に、図1の
内燃機関の吸排気弁作動状態検知装置の作動をエンジン
コントロールユニット24の制御プログラム(図4、図
5参照)及び図2、図3の作動説明図に沿って説明す
る。エンジンコントロールユニット24は図示しないメ
インルーチンに沿って燃料噴射制御、点火時期制御、休
筒制御等を周知の制御プログラムに沿って行うと共に、
所定時点で、図4の休筒切り換え判定制御処理を行うと
共に単位時間毎の時間割込みで図5のカム軸回転速度変
動値演算ルーチンを行う。
Here, the engine control unit 24
Particularly has a function as a cam shaft speed fluctuation calculating means and a cylinder deactivation switching judging means. The camshaft speed fluctuation calculating means calculates the fluctuation amount hn of the camshaft rotational speed Vc based on the camshaft rotational displacement amount θc information. The cylinder deactivation switching determination means determines the camshaft speed fluctuation amounts hn, sn and the predetermined determination values h1, s.
Based on the deviation between 1 and h3, it is determined whether or not the cylinder deactivation switching is completed, and the cylinder deactivation switching determination information is issued. The operation of the intake / exhaust valve operating state detection device for the internal combustion engine of FIG. 1 will be described below with reference to the control program of the engine control unit 24 (see FIGS. 4 and 5) and the operation explanatory diagrams of FIGS. 2 and 3. The engine control unit 24 performs fuel injection control, ignition timing control, cylinder deactivation control, etc. according to a well-known control program along a main routine (not shown), and
At a predetermined point of time, the cylinder deactivation switching determination control process of FIG. 4 is performed, and the camshaft rotation speed fluctuation value calculation routine of FIG. 5 is performed at a time interrupt every unit time.

【0016】なお、ここでは周知の図示しない休筒制御
ルーチンにおいて第1、第4気筒♯1,♯4が、例えば
中低負荷の定速走行時等の適時に休筒処理されており、
その際に休筒フラグICFLGの切り換えが成されてい
るものとし、各フラグのクリア処理等の初期設定がメイ
ンルーチンで行われているものとする。図5の休筒切り
換え判定制御ルーチンに達すると、最新のカム軸速度変
動量hn、休筒指令としての休筒フラグICFLGのデ
ータ等を取り込む。ここで図5のカム軸回転速度変動値
演算ルーチンを説明する。同ルーチンのステップb1,
b2では、最新のカム軸回転速度Vcnを取り込み、更
に,UPFLG(図2中の符号p1の極大点に達したと
見做すフラグ)がオンか否か判定し、オンでない間、即
ち極小点p2の後に有る間はステップb3に進み、達す
るとステップb6に進む。
Here, in a well-known cylinder deactivation control routine (not shown), the cylinder deactivation processing of the first and fourth cylinders # 1 and # 4 is performed at a proper time, for example, during constant speed running with medium to low load.
At this time, it is assumed that the cylinder deactivation flag ICFLG has been switched, and initial setting such as clearing processing of each flag is performed in the main routine. When the cylinder deactivation switching determination control routine in FIG. 5 is reached, the latest camshaft speed fluctuation amount hn, data of the cylinder deactivation flag ICFLG as a cylinder deactivation command, and the like are fetched. Here, the camshaft rotation speed fluctuation value calculation routine of FIG. 5 will be described. Step b1 of the routine
At b2, the latest camshaft rotation speed Vcn is fetched, and it is further determined whether or not UPFLG (a flag which is considered to have reached the maximum point of symbol p1 in FIG. 2) is on, and when it is not on, that is, the minimum point. While it is after p2, the process proceeds to step b3, and when it reaches, the process proceeds to step b6.

【0017】ステップb3では前回のカム軸回転速度V
c(n−1)より今回のカム軸回転速度Vcnが大きいか
否か判定し、大きい間(極小点p2の後に有る間)はス
テップb6に進み、等しいか、小さくなると、即ち、極
大点p1に達するとステップb4に進む。ここでは、U
PFLGをオンし、LPFLG(図2中の符号p2の極
小点に達したと見做すフラグ)をクリアする。更に、ス
テップb5では今回のカム軸回転速度Vcn(p1での
値)より前回のカム軸回転速度の極小値VcLPとの偏
差の絶対値を算出し、同値を最新のカム軸速度変動量h
nとしてhnエリアの値を更新する。ステップb6に達
すると、ここではLPFLGがオンか否か判定し、オン
で無い間、即ち、極大点p1の後に有る間はステップb
7に進み、達するとステップb10に進む。
At step b3, the previous camshaft rotation speed V
It is determined whether or not the current camshaft rotation speed Vcn is higher than c (n-1), and while it is large (while it is after the minimum point p2), the process proceeds to step b6. When it is equal or smaller, that is, the maximum point p1. Is reached, the process proceeds to step b4. Here, U
The PFLG is turned on to clear the LPFLG (a flag which is considered to have reached the minimum point of the symbol p2 in FIG. 2). Further, in step b5, the absolute value of the deviation from the previous minimum value VcLP of the camshaft rotation speed is calculated from the current camshaft rotation speed Vcn (value at p1), and the same value is used as the latest camshaft speed fluctuation amount h.
The value of the hn area is updated as n. When step b6 is reached, it is determined here whether or not LPFLG is on, and while it is not on, that is, while it is after the maximum point p1, step b
7 and when it reaches step b10.

【0018】ステップb7では前回のカム軸回転速度V
c(n−1)より今回のカム軸回転速度Vcnが小さいか
否か判定し、小さい間(極大点p1の後に有る間)はス
テップb10に進み、等しいか、大きくなると、即ち、
極小点p2に達するとステップb8に進む。ここでは、
LPFLGをオンし、UPFLGをクリアする。更に、
ステップb9では最新のカム軸回転速度の極大値VcU
Pを呼出し、同値より今回のカム軸回転速度Vcn(p
2での値)との偏差の絶対値を算出し、同値を最新のカ
ム軸速度変動量hnとしてhnエリアの値を更新する。
At step b7, the previous camshaft rotation speed V
It is determined whether or not the camshaft rotation speed Vcn of this time is smaller than c (n-1), and while it is small (while it is after the maximum point p1), it proceeds to step b10, and when it is equal or larger, that is,
When the minimum point p2 is reached, the process proceeds to step b8. here,
Turn on LPFLG and clear UPFLG. Furthermore,
At step b9, the maximum value VcU of the latest camshaft rotation speed is obtained.
P is called, and the camshaft rotation speed Vcn (p
The value of the hn area is updated with the same value as the latest camshaft speed fluctuation amount hn.

【0019】この後、ステップb10に達すると、ここ
では今回のカム軸回転速度Vcnを前回のカム軸回転速
度Vc(n−1)に書替えし、メインルーチンにリターン
する。 このようにして算出されたカム軸速度変動量h
nが、休筒切り換え制御ルーチンのステップa1で取り
込まれる。休筒切り換え判定制御ルーチンのステップa
2に達すると、休筒指令出力中か否かをICFLGによ
って判定し、休筒中ではステップa4に、そうでなく全
気筒の運転中ではステップa3に進む。
Thereafter, when step b10 is reached, the camshaft rotation speed Vcn of this time is rewritten to the previous camshaft rotation speed Vc (n-1), and the process returns to the main routine. Cam shaft speed fluctuation amount h calculated in this way
n is taken in at step a1 of the cylinder deactivation switching control routine. Step a of the cylinder deactivation switching determination control routine
When it reaches 2, it is judged by the ICFLG whether or not the cylinder deactivation command is being output. If the cylinder deactivation is being performed, the process proceeds to step a4, and otherwise, the process proceeds to step a3.

【0020】ステップa3で全気筒の運転中では最新の
カム軸速度変動量hnが全筒運転判定値h1(図2の正
常カム軸回転速度Vcにおけるカム軸速度変動量h1と
して前以て設定)に等しいか否か判定し、等しいと、即
ち、適正に吸排気弁が開閉作動をしていると見做し、一
の制御周期を終了する。逆に、カム軸速度変動量hnが
全筒運転判定値h1と異なる場合は、適確に吸排気弁が
開閉作動しておらず、切り換え不良と見做し、全筒運転
時であっても第1、第4気筒♯1,♯4への燃料供給を
停止させる指令を発し、全筒運転指令を再度休筒電磁弁
21に出力し、ステップa7に進む。ここでは、再度カ
ム軸速度変動量hnが全筒運転判定値h1と等しいか否
か判定され、等しくなるなでステップa5乃至a7を繰
り返す。ここで等しくなると、ステップa8に達し、第
1、第4気筒♯1,♯4への燃料供給指令を発しリター
ンする。
In step a3, during the operation of all cylinders, the latest camshaft speed fluctuation amount hn is the all-cylinder operation determination value h1 (preset as camshaft speed fluctuation amount h1 at the normal camshaft rotation speed Vc in FIG. 2). Is determined, and if it is equal, that is, it is considered that the intake / exhaust valve is properly opening and closing, and one control cycle is ended. On the contrary, when the camshaft speed fluctuation amount hn is different from the all-cylinder operation determination value h1, it is considered that the intake / exhaust valve is not properly opened / closed and the switching is defective, and even during the all-cylinder operation. A command to stop the fuel supply to the first and fourth cylinders # 1 and # 4 is issued, the all-cylinder operation command is output to the cylinder deactivation electromagnetic valve 21 again, and the process proceeds to step a7. Here, it is again determined whether or not the camshaft speed fluctuation amount hn is equal to the all-cylinder operation determination value h1, and since it is not equal, steps a5 to a7 are repeated. If they are equal to each other, step a8 is reached, a fuel supply command is issued to the first and fourth cylinders # 1, # 4, and the process returns.

【0021】他方、ステップa2で休筒指令が出ている
としてステップa4に進むと、ここでは最新のカム軸速
度変動量hnが休筒運転判定値h2(図3の正常カム軸
回転速度Vcにおけるカム軸速度変動量h2として前以
て設定)に等しいか否か判定し、等しいと、即ち、適正
に吸排気弁が閉状態を保持していると見做し、一の制御
周期を終了する。逆に、カム軸速度変動量hnが休筒運
転判定値h2と異なる場合は、適確に吸排気弁が閉状態
を保持してなく、切り換え不良と見做し、ステップa9
に進み、全筒運転指令を再度休筒電磁弁21に出力す
る。更に、カム軸速度変動量hnが休筒運転判定値h2
と等しいか否か判定され、等しくなるまでステップa9
乃至a10を繰り返し、等しくなると、メインルーチン
にリターンする。
On the other hand, if the cylinder deactivation command is issued in step a2 and the process proceeds to step a4, the latest camshaft speed fluctuation amount hn is the cylinder deactivation operation determination value h2 (at the normal camshaft rotation speed Vc in FIG. 3). It is determined whether or not the camshaft speed fluctuation amount h2 is equal to the preset value), and if it is equal, that is, it is considered that the intake / exhaust valve properly holds the closed state, and one control cycle is ended. .. On the contrary, when the camshaft speed fluctuation amount hn is different from the cylinder deactivation operation determination value h2, the intake / exhaust valve does not properly maintain the closed state, and it is considered that switching is defective, and step a9 is performed.
Then, the all cylinder operation command is output to the cylinder deactivation solenoid valve 21 again. Further, the cam shaft speed fluctuation amount hn is determined by the cylinder deactivation operation determination value h2.
Is determined, and step a9 is performed until they are equal.
Through a10 are repeated, and when they are equal, the process returns to the main routine.

【0022】ここでエンジンコントロールユニット24
の行うインジェクタ駆動処理を図6に沿って説明する。
このインジェクタ駆動ルーチンは単位クランク角信号Δ
θ(パルス信号)の割込み毎に実行される。ここでは、
エンジン回転数Ne及び他のルーチンで算出済の目標吸
入空気量A/Nを取り込み、ステップc3に進む。ここ
ではメインルーチン側より燃料カットか否かの情報を求
め、カットではそのまリターンし、そうでないとステッ
プc4に達する。ここでは、目標吸入空気量A/Nより
基本燃料パルス幅Tfを算出し、その後、目標燃料パル
ス幅Tinjを、基本燃料パルス幅Tfと、メインルー
チン側より取り込んだ空燃比補正係数KAF、大気温及
び大気圧補正係数KDT,インジェクタ作動遅れ補正値
TD等により算出する。
Here, the engine control unit 24
The injector drive processing performed by the above will be described with reference to FIG.
This injector drive routine is based on the unit crank angle signal Δ
It is executed for each interrupt of θ (pulse signal). here,
The target intake air amount A / N calculated by the engine speed Ne and other routines is fetched, and the process proceeds to step c3. Here, the main routine side obtains information as to whether or not the fuel is cut. If the fuel is cut, the process returns as it is, otherwise step c4 is reached. Here, the basic fuel pulse width Tf is calculated from the target intake air amount A / N, and then the target fuel pulse width Tinj, the basic fuel pulse width Tf, the air-fuel ratio correction coefficient KAF fetched from the main routine side, and the ambient temperature. And an atmospheric pressure correction coefficient KDT, an injector operation delay correction value TD, and the like.

【0023】ステップc6に達すると、休筒作動中を示
すICFLG=1か否か判断し、no即ち非休筒時(全
筒運転)であるとステップc7に休筒時にはステップc
8に進む。ステップc7では現在の第1、第4気筒♯
1,♯4への燃料供給カット指令が発せられているか否
か判定し、燃料供給カット指令が無い場合はそのままス
テップc9に進み、発せられているとステップc8に進
む。
When step c6 is reached, it is judged whether or not ICFLG = 1, which indicates that the cylinder is deactivated, and if no, that is, when the cylinder is not deactivated (all cylinder operation), the process proceeds to step c7.
Go to 8. At step c7, the current first and fourth cylinders #
It is determined whether or not a fuel supply cut command to 1 and # 4 is issued. If there is no fuel supply cut command, the process directly proceeds to step c9, and if it is issued, the process proceeds to step c8.

【0024】ステップc9では第1乃至4気筒の全イン
ジェクタ25の駆動用ドライバに目標燃料パルス幅Ti
njをセットし、ステップc8側の休筒時では、2及び
3気筒のみのインジェクタ25の駆動用ドライバにのみ
目標燃料パルス幅Tinjをセットする。そして、各ド
ライバをトリガしリターンする。この結果休筒時には、
2及び3気筒の、非休筒時には1乃至4気筒の各インジ
ェクタ25が所定の噴射タイミングにおいてそれぞれ噴
射駆動を行うと共に、休筒より全筒運転切り換え時に、
全筒運転切り換えが。完了しない間は全筒運転指令が出
ていても第1及び第4気筒♯1,♯4への燃料供給を停
止させて、第1及び第4気筒♯1,♯4の吸気ポートに
燃料が滞留し、バックファイアー等の発生を防止出来
る。
At step c9, the target fuel pulse width Ti is set to the driver for driving all the injectors 25 of the first to fourth cylinders.
nj is set, and when the cylinder is deactivated on the step c8 side, the target fuel pulse width Tinj is set only to the driver for driving the injectors 25 of only the two and three cylinders. Then, each driver is triggered to return. As a result, when the cylinder is suspended,
The injectors 25 of the 1st to 4th cylinders of the 2nd and 3rd cylinders, respectively, perform the injection drive at predetermined injection timings when the cylinders are not deactivated, and when switching all cylinders from the deactivated cylinders,
Switching all cylinders. Even if the all-cylinder operation command is issued before completion, fuel supply to the first and fourth cylinders # 1, # 4 is stopped, and fuel is supplied to the intake ports of the first and fourth cylinders # 1, # 4. It can stay and prevent the occurrence of backfire.

【0025】図1の内燃機関の吸排気弁作動状態検知装
置はエンジン1のシリンダヘッド2に1本のカム軸9と
吸排ロッカ軸7,8を配備していたが、これに代えて、
吸気カム軸のカムによって吸気弁を、排気カム軸の排気
カムにより排気弁を駆動するDOHC式の図示しないエ
ンジンに第1の発明を適用することもできる。この場
合、図7,図8に示すように、吸気カム軸のカム軸回転
速度Vicの極大点p1を図5のカム軸回転速度変動量
演算ルーチンと類似の図9のカム軸回転速度変動量演算
ルーチンによって求め、それに基づき極大値周期Snを
算出する。
In the intake / exhaust valve operating state detecting device for an internal combustion engine shown in FIG. 1, a cylinder head 2 of the engine 1 is provided with one cam shaft 9 and intake / exhaust rocker shafts 7 and 8, but instead of this,
The first invention can also be applied to a DOHC-type engine (not shown) in which an intake valve is driven by a cam of an intake cam shaft and an exhaust valve is driven by an exhaust cam of an exhaust cam shaft. In this case, as shown in FIGS. 7 and 8, the maximum point p1 of the camshaft rotation speed Vic of the intake camshaft is set to the camshaft rotation speed fluctuation calculation routine of FIG. 9 similar to the camshaft rotation speed fluctuation calculation routine of FIG. The maximum value cycle Sn is calculated on the basis of the calculation routine.

【0026】ここで、図9のカム軸回転速度変動量演算
ルーチンは図5と比べて、ステップb5,b9が排除さ
れ、b11,b12が加えられている。ここでステップ
b1,b2より、ステップb3に達し、前回のカム軸回
転速度Vc(n−1)より今回のカム軸回転速度Vcnが
大きい間(極小点p2の後に有る間)はステップb6に
進み、極大点p1に達するとステップb4,b11に進
む。ステップb4では、UPFLGをオンし、LPFL
G(図7中の符号p2の極小点に達したと見做すフラ
グ)をクリアする。更に、ステップb11,b12では
カム角θcのカウンタの値を読み取り、今回のカム軸速
度変動量Snを取り込み、同カウンタをクリアし、ステ
ップb6に進む。なお、ステップb6乃至b10(ステ
ップb9は排除)はLPFLGをオンし、UPFLGを
クリアするべく制御処理を行うこととなる。
Here, in the camshaft rotational speed variation calculation routine of FIG. 9, steps b5 and b9 are eliminated and b11 and b12 are added, as compared with FIG. Here, step b3 is reached from steps b1 and b2, and while the current camshaft rotation speed Vcn is higher than the previous camshaft rotation speed Vc (n-1) (while the camshaft rotation speed Vcn is after the minimum point p2), the process proceeds to step b6. , When the maximum point p1 is reached, the process proceeds to steps b4 and b11. At step b4, UPFLG is turned on and LPFL is turned on.
G (a flag which is considered to have reached the minimum point indicated by the symbol p2 in FIG. 7) is cleared. Further, in steps b11 and b12, the value of the counter of the cam angle θc is read, the camshaft speed fluctuation amount Sn of this time is read, the counter is cleared, and the process proceeds to step b6. In steps b6 to b10 (excluding step b9), LPFLG is turned on, and control processing is performed to clear UPFLG.

【0027】この場合、全筒運転では吸気カム軸(排気
カム軸も同様)のカム軸回転速度Vcnの極大値周期S
1は休筒運転時(図8参照)の極大値周期S2のほぼ1
/2となっている。このため図10の休筒切り換え判定
制御ルーチンでは図4の休筒切り換え判定制御における
ステップa3,a4,a7,a10に代えて、ステップ
a11,a12,a13,a14を行う。ここでは算出
した極大値周期Snとエンジン回転数に応じて設定され
てカム軸速度変動量S1,S2を比較してたとえ全筒運
転時であっても、全筒切り換えがなされない間は第1、
第4気筒♯1,♯4への燃料供給を停止出来、逆に、休
筒運転に入って休筒切り換えが確実に切り換え指令を発
することが出来る。
In this case, in the all-cylinder operation, the maximum value cycle S of the camshaft rotation speed Vcn of the intake camshaft (as well as the exhaust camshaft) is S.
1 is almost 1 of the maximum value period S2 during the cylinder deactivation operation (see FIG. 8).
/ 2. Therefore, in the cylinder deactivation switching determination control routine of FIG. 10, steps a11, a12, a13, and a14 are performed instead of steps a3, a4, a7, and a10 in the cylinder deactivation switching determination control of FIG. Here, the calculated maximum value cycle Sn and the camshaft speed fluctuation amounts S1 and S2 that are set according to the engine speed are compared to compare the camshaft speed fluctuation amounts S1 and S2. ,
The fuel supply to the fourth cylinders # 1, # 4 can be stopped, and conversely, the cylinder deactivation operation can be started and the decommission cylinder switching can be reliably issued.

【0028】第11図には本発明の他の実施例を示し
た。ここでのエンジン1aはそのシリンダヘッド2aに
吸排カム軸9a,10aと吸排ロッカアーム7a,8a
を装着される。吸気カム軸の吸気カム5によって吸気弁
を、排気カム軸の排気カム6により排気弁を駆動するD
OHC式のエンジンとして構成されている。各カム軸9
a,10aは一端にタイミングギア11a,12aを一
体的に取り付けられ、この両タイミングギアはタイミン
グベルト13を介して図示しないクランクシャフト側に
連結され、これによりエンジン回転の1/2の回転数で
両カム軸9a,10aを回転するように構成されてい
る。ここで各カム軸9a,10a上の各タイミングギア
11a,12aの近傍及び他端にはディスク14が一体
結合され、各ディスク14に角カム軸9a,10aのカ
ム軸回転変位量情報をカム軸駆動トルク情報として発す
るカム軸回転センサ16がそれぞれ対設され、これら各
一対のディスク14及びカム軸回転センサ16がカム軸
駆動トルク変動量検知手段を構成している。
FIG. 11 shows another embodiment of the present invention. In the engine 1a, the cylinder head 2a has intake / exhaust cam shafts 9a, 10a and intake / exhaust rocker arms 7a, 8a.
Will be installed. An intake valve is driven by the intake cam 5 of the intake cam shaft, and an exhaust valve is driven by the exhaust cam 6 of the exhaust cam shaft D
It is configured as an OHC engine. Each camshaft 9
Timing gears 11a and 12a are integrally attached to one end of a and 10a, and both timing gears are connected to a crankshaft side (not shown) via a timing belt 13 so that the rotation speed is half the engine rotation speed. Both cam shafts 9a and 10a are configured to rotate. Here, a disc 14 is integrally coupled to the vicinity of each timing gear 11a, 12a on each cam shaft 9a, 10a and the other end, and the cam shaft rotational displacement amount information of the angular cam shaft 9a, 10a is provided to each disc 14 by the cam shaft. A cam shaft rotation sensor 16 which emits as drive torque information is provided in pairs, and each pair of the disk 14 and the cam shaft rotation sensor 16 constitutes a cam shaft drive torque fluctuation amount detecting means.

【0029】図11において、各ロッカアーム3a,4
aは一体形成された片持ち式を成し、第2気筒(♯2)
及び第3気筒(♯3)の各ロッカアーム3b,4bは常
時給排弁を開閉でき、第1気筒(♯1)と第4気筒(♯
4)に対抗する各ロッカアーム3a,4aは、所定時に
給排弁の開閉作動を停止可能な周知の弁停止機構Maを
付設されている。図11において、図1と同一の符号は
同一部材を示し、その重複説明を略す。
In FIG. 11, each rocker arm 3a, 4
a is an integrally formed cantilever type, the second cylinder (# 2)
And the rocker arms 3b and 4b of the third cylinder (# 3) can always open and close the supply / discharge valves, and the first cylinder (# 1) and the fourth cylinder (# 3)
Each of the rocker arms 3a and 4a that opposes 4) is provided with a well-known valve stop mechanism Ma capable of stopping the opening / closing operation of the supply / discharge valve at a predetermined time. 11, the same reference numerals as those in FIG. 1 indicate the same members, and the duplicate description thereof will be omitted.

【0030】ここでエンジンコントロールユニット24
aは、特にカム軸速度変動算出手段及び休筒切り換え判
定手段としての機能を備える。このカム軸速度変動算出
手段はカム軸回転変位量θc情報に基づきカム軸回転速
度Vcの変動量hnを算出する。休筒切り換え判定手段
はカム軸速度変動量hn,snと所定の判定値h1,s
1,h3との偏差に基づき休筒切り換え完了か否かを判
定して休筒切り換え判定情報を発する。
Here, the engine control unit 24
In particular, a has a function as a camshaft speed variation calculation means and a cylinder deactivation switching determination means. The camshaft speed fluctuation calculating means calculates the fluctuation amount hn of the camshaft rotational speed Vc based on the camshaft rotational displacement amount θc information. The cylinder deactivation switching determination means determines the camshaft speed fluctuation amounts hn, sn and the predetermined determination values h1, s.
Based on the deviation between 1 and h3, it is determined whether or not the cylinder deactivation switching is completed, and the cylinder deactivation switching determination information is issued.

【0031】以下に、図11の内燃機関の吸排気弁作動
状態検知装置の作動をエンジンコントロールユニット2
4aの制御プログラム(図14、図15参照)及び図1
2、図13の作動説明図に沿って説明する。ここでのエ
ンジンコントロールユニット24aは図1のもの24と
同様の制御処理部分が多く、ここでは重複説明を略す。
メインルーチンに沿って燃料噴射制御、点火時期制御、
休筒制御等を周知の制御プログラムに沿って行い、図1
4の休筒切り換え判定制御ルーチンに達すると、ステッ
プa1で最新のカム軸駆動トルク変動量Tcn、休筒指
令としての休筒フラグICFLGのデータ等を取り込
む。
The operation of the intake / exhaust valve operating state detecting device for an internal combustion engine shown in FIG.
4a control program (see FIGS. 14 and 15) and FIG.
2. The operation will be described with reference to FIG. The engine control unit 24a here has many control processing portions similar to those in FIG. 1, and therefore redundant description is omitted here.
Fuel injection control, ignition timing control, according to the main routine
Cylinder control, etc. is performed according to a well-known control program, and FIG.
When the cylinder deactivation switching determination control routine of No. 4 is reached, the latest camshaft drive torque fluctuation amount Tcn, the data of the cylinder deactivation flag ICFLG as the cylinder deactivation command, etc. are fetched in step a1.

【0032】ここで図15のカム軸駆動トルク変動量演
算ルーチンを説明する。同ルーチンのステップb11で
は、最新の各一対のディスク14f,14rの相対回転
角差Δθcを算出し、同値に応じたカム軸駆動トルクT
cnを算出し、所定エリアにストアする。更に,UPF
LG(図10中の符号p1の極大点に達したと見做すフ
ラグ)がオンか否か判定し、オンでない間、即ち極小点
p2の後に有る間はステップb3に進み、達するとステ
ップb6に進む。ステップb3では前回のカム軸駆動ト
ルクTc(n−1)より今回のカム軸駆動トルクTcnが
大きいか否か判定し、大きい間(極小点p2の後に有る
間)はステップb6に進み、等しいか、小さくなると、
即ち、極大点p1に達するとステップb4に進む。ここ
では、UPFLGをオンし、LPFLG(図2中の符号
p2の極小点に達したと見做すフラグ)をクリアする。
更に、ステップb12では今回のカム軸駆動トルクTc
n(p1での値)より前回のカム軸駆動トルクの極小値
VcLPとの偏差の絶対値を算出し、同値を最新のカム
軸駆動トルク変動量hnとしてhnエリアの値を更新す
る。
Here, the camshaft drive torque fluctuation amount calculation routine of FIG. 15 will be described. In step b11 of the routine, the latest relative rotation angle difference Δθc between the pair of disks 14f and 14r is calculated, and the camshaft drive torque T corresponding to the same value is calculated.
cn is calculated and stored in a predetermined area. In addition, UPF
It is determined whether or not LG (a flag that considers that the maximum point of the symbol p1 in FIG. 10 has been reached) is on, and while it is not on, that is, while it is after the minimum point p2, the process proceeds to step b3, and when it reaches, step b6. Proceed to. At step b3, it is judged whether or not the camshaft drive torque Tcn of this time is larger than the camshaft drive torque Tc (n-1) of the previous time. , Becomes smaller,
That is, when the maximum point p1 is reached, the process proceeds to step b4. Here, UPFLG is turned on to clear LPFLG (a flag which is considered to have reached the minimum point of reference sign p2 in FIG. 2).
Further, in step b12, the camshaft drive torque Tc of this time
The absolute value of the deviation from the previous minimum value VcLP of the camshaft drive torque is calculated from n (the value at p1), and the same value is used as the latest camshaft drive torque fluctuation amount hn to update the value in the hn area.

【0033】ステップb6に達すると、ここではLPF
LGがオンか否か判定し、オンで無い間、即ち、極大点
p1の後に有る間はステップb7に進み、達するとステ
ップb10に進む。ステップb7では前回のカム軸駆動
トルクTc(n−1)より今回のカム軸回転速度Tcnが
小さいか否か判定し、小さい間(極大点p1の後に有る
間)はステップb10に進み、等しいか、大きくなる
と、即ち、極小点p2に達するとステップb8に進む。
ここでは、LPFLGをオンし、UPFLGをクリアす
る。更に、ステップb13では最新のカム軸駆動トルク
Tcnの極大値VcUPを呼出し、同値より今回のカム
軸駆動トルクTcn(p2での値)との偏差の絶対値を
算出し、同値を最新のカム軸駆動トルク変動量hnとし
てhnエリアの値を更新する。
When step b6 is reached, the LPF is determined here.
It is determined whether or not LG is on, and while it is not on, that is, while it is after the maximum point p1, the process proceeds to step b7, and when it reaches, the process proceeds to step b10. In step b7, it is determined whether or not the current camshaft rotation speed Tcn is smaller than the previous camshaft drive torque Tc (n-1). If it is smaller (while the maximum point p1 is present), the process proceeds to step b10 to see if it is equal. , When it reaches the minimum point p2, the process proceeds to step b8.
Here, the LPFLG is turned on and the UPFLG is cleared. Further, in step b13, the maximum value VcUP of the latest camshaft drive torque Tcn is called, the absolute value of the deviation from the current camshaft drive torque Tcn (value at p2) is calculated from the same value, and the same value is set to the latest camshaft. The value of the hn area is updated as the driving torque fluctuation amount hn.

【0034】この後、ステップb10に達すると、ここ
では今回のカム軸駆動トルクTcnを前回のカム軸回転
速度Tc(n−1)に書替えし、メインルーチンにリター
ンする。このようにして算出されたカム軸駆動トルク変
動量hnが、休筒切り換え制御ルーチンのステップa1
で取り込まれる。休筒切り換え判定制御ルーチンのステ
ップa2に達すると、休筒指令出力中か否かをICFL
Gによって判定し、休筒中ではステップa16に、そう
でなく全気筒の運転中ではステップa15に進む。
Thereafter, when step b10 is reached, the camshaft drive torque Tcn of this time is rewritten to the previous camshaft rotation speed Tc (n-1), and the process returns to the main routine. The camshaft drive torque fluctuation amount hn calculated in this manner is used as the step a1 of the cylinder deactivation switching control routine.
Is taken in. When step a2 of the cylinder deactivation switching determination control routine is reached, it is determined whether or not the cylinder deactivation command is being output.
Judging by G, the process proceeds to step a16 when the cylinder is inactive, and otherwise proceeds to step a15 when all the cylinders are in operation.

【0035】ステップa15で全気筒の運転中では最新
のカム軸駆動トルク変動量hnが全筒運転判定値h3
(図12の正常カム軸駆動トルクTcにおけるカム軸駆
動トルク変動量h3として前以て設定)に等しいか否か
判定し、等しいと、即ち、適正に吸排気弁が開閉作動を
していると見做し、一の制御周期を終了する。逆に、カ
ム軸駆動トルク変動量hnが全筒運転判定値h3と異な
る場合は、適確に吸排気弁が開閉作動しておらず、切り
換え不良と見做し、全筒運転時であっても第1、第4気
筒♯1,♯4への燃料供給を停止させる指令を発し、全
筒運転指令を再度休筒電磁弁21に出力し、ステップa
17に進む。ここでは、再度カム軸駆動トルク変動量h
nが全筒運転判定値h3と等しいか否か判定され、等し
くなるなでステップa5,a6,a17を繰り返す。こ
こで等しくなると、ステップa8に達し、第1、第4気
筒♯1,♯4への燃料供給指令を発しリターンする。
In step a15, during the operation of all cylinders, the latest camshaft drive torque fluctuation amount hn is the all cylinder operation determination value h3.
(Predetermined as the camshaft drive torque variation amount h3 at the normal camshaft drive torque Tc in FIG. 12) is determined, and if it is equal, that is, the intake and exhaust valves are properly opened and closed. Look at it and finish one control cycle. On the contrary, when the camshaft drive torque fluctuation amount hn is different from the all-cylinder operation determination value h3, the intake / exhaust valve is not opened / closed properly, which is considered to be a switching failure, and it is during all-cylinder operation. Also issues a command to stop the fuel supply to the first and fourth cylinders # 1 and # 4, and outputs the all-cylinder operation command to the cylinder deactivation solenoid valve 21 again.
Proceed to 17. Here, again, the cam shaft drive torque fluctuation amount h
It is determined whether or not n is equal to the all-cylinder operation determination value h3, and since it is not equal, steps a5, a6, and a17 are repeated. If they are equal to each other, step a8 is reached, a fuel supply command is issued to the first and fourth cylinders # 1, # 4, and the process returns.

【0036】他方、ステップa2で休筒指令が出ている
としてステップa16に進むと、ここでは最新のカム軸
駆動トルク変動量hnが休筒運転判定値h4(図13の
休筒カム軸駆動トルク変動量h4(エンジン回転数に応
じた値)として前以て設定)に等しいか否か判定し、等
しいと適正に吸排気弁が閉状態を保持していると見做
し、一の制御周期を終了する。逆に、カム軸駆動トルク
変動量hnが休筒運転判定値h4と異なる場合は、適確
に吸排気弁が閉状態を保持してなく、切り換え不良と見
做し、ステップa9に進み、全筒運転指令を再度休筒電
磁弁21に出力する。更に、カム軸駆動トルク変動量h
nが休筒運転判定値h4と等しいか否か判定され、等し
くなるまでステップa9,a18を繰り返し、等しくな
ると、メインルーチンにリターンする。
On the other hand, if the cylinder deactivation command is issued in step a2 and the process proceeds to step a16, the latest cam shaft drive torque fluctuation amount hn is calculated as the cylinder deactivation operation determination value h4 (the cylinder deactivation cam shaft drive torque in FIG. 13). It is determined whether it is equal to the variation amount h4 (value set according to the engine speed) in advance, and if it is equal, it is considered that the intake / exhaust valve is properly maintained in the closed state, and one control cycle To finish. On the contrary, when the camshaft drive torque fluctuation amount hn is different from the cylinder deactivation operation determination value h4, the intake / exhaust valve does not properly maintain the closed state, and it is considered that switching is not successful, and the process proceeds to step a9 to complete the operation. The cylinder operation command is output to the cylinder deactivation solenoid valve 21 again. Furthermore, the cam shaft drive torque fluctuation amount h
It is determined whether or not n is equal to the cylinder deactivation operation determination value h4, steps a9 and a18 are repeated until they are equal, and when they are equal, the process returns to the main routine.

【0037】ここでも図6のインジェクタ駆動処理が同
様に行われ、第1、第4気筒♯1,♯4の非休筒時には
1乃至4気筒の全てのインジェクタ25が所定の噴射タ
イミングにおいてそれぞれ噴射駆動を行うと共に、休筒
より全筒運転切り換え時に、全筒運転切り換えが。完了
しない間は全筒運転指令が出ていても第1及び第4気筒
♯1,♯4への燃料供給を停止させて、第1及び第4気
筒♯1,♯4の吸気ポートに燃料が滞留し、バックファ
イアー等が発生することを防止出来る。上述のところに
おいて、エンジン1は4気筒としたが、その他の気筒数
のエンジンにもこの発明を適応出来、更に、休筒気筒数
を2気筒と固定していたが、休筒数を可変としても良
い。
The injector drive processing of FIG. 6 is similarly performed here, and when the first and fourth cylinders # 1 and # 4 are not in the cylinder deactivated state, all the injectors 25 of the first to fourth cylinders respectively inject at predetermined injection timings. While driving, when switching all cylinders from idle cylinders, all cylinders can be switched. Even if the all-cylinder operation command is issued before completion, fuel supply to the first and fourth cylinders # 1, # 4 is stopped, and fuel is supplied to the intake ports of the first and fourth cylinders # 1, # 4. It can be prevented from staying and generating backfire. In the above description, the engine 1 has four cylinders, but the present invention can be applied to an engine having other number of cylinders. Further, the number of cylinder deactivated cylinders is fixed to two, but the number of cylinder deactivated cylinders is variable. Is also good.

【0038】[0038]

【発明の効果】以上のように、第1の発明では、カム軸
回転変位量Vc情報に基づきカム軸回転速度の変動量h
nを算出し、カム軸回転速度変動量hn,snと所定の
判定値h1,h2,s1,s2との偏差に基づき、休筒
切り換え完了か否かを判定して休筒切り換え判定情報を
適確に発することができ、例えば、弁停止機構の切り換
え作動状態を適確に検知出来、エンジンのバックファイ
ア等の発生を防止出来る。
As described above, in the first aspect of the invention, the variation amount h of the camshaft rotation speed is calculated based on the camshaft rotation displacement amount Vc information.
n is calculated, and based on the deviation between the cam shaft rotational speed fluctuation amount hn, sn and the predetermined judgment values h1, h2, s1, s2, it is judged whether or not the cylinder deactivation switching is completed, and the cylinder deactivation switching determination information is applied. It can be accurately emitted, for example, the switching operation state of the valve stop mechanism can be accurately detected, and the occurrence of engine backfire and the like can be prevented.

【0039】第2の発明では、カム軸駆動トルクTc情
報を受けて、その情報に基づきカム軸駆動トルクの変動
量hnを算出し、カム軸駆動トルク変動量hnと所定の
判定値h3,h4との偏差に基づき,休筒切り換え完了
か否かを判定して休筒切り換え判定情報を適確に発する
ことができ、例えば、弁停止機構の切り換え作動状態を
適確に検知出来、エンジンのバックファイア等の発生を
防止出来る。
In the second invention, the camshaft drive torque Tc information is received, the camshaft drive torque fluctuation amount hn is calculated based on the information, and the camshaft drive torque fluctuation amount hn and the predetermined judgment values h3 and h4 are calculated. It is possible to determine whether or not the cylinder deactivation switching has been completed based on the deviation from the above, and to accurately issue the cylinder deactivation switching determination information. For example, it is possible to accurately detect the switching operation state of the valve stop mechanism, and It can prevent the occurrence of fire.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての内燃機関の吸排気弁
作動状態検知装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an intake / exhaust valve operating state detection device for an internal combustion engine as an embodiment of the present invention.

【図2】図1内エンジンの全筒運転時の各気筒毎の吸排
気弁作動モード及びカム軸速度線図である。
2 is an intake / exhaust valve operation mode and a camshaft velocity diagram for each cylinder when the internal combustion engine of FIG. 1 is operating in all cylinders.

【図3】図1のエンジンの休筒運転時の各気筒毎の吸排
気弁作動モード及びカム軸速度線図である。
3 is an intake / exhaust valve operation mode and a camshaft velocity diagram for each cylinder when the engine of FIG.

【図4】図1の装置内のECUが行う休筒切り換え判定
制御ルーチンのフローチャートである。
4 is a flowchart of a cylinder deactivation switching determination control routine executed by an ECU in the apparatus of FIG.

【図5】図1の装置内のECUが行うカム軸回転速度変
動値演算ルーチンのフローチャートである。
5 is a flowchart of a camshaft rotation speed fluctuation value calculation routine performed by an ECU in the apparatus of FIG.

【図6】図1の装置内のECUが行うインジェクタ駆動
ルーチンのフローチャートである。
6 is a flow chart of an injector drive routine executed by an ECU in the apparatus of FIG.

【図7】本発明の他の実施例としての内燃機関の吸排気
弁作動状態検知装置のエンジンの全筒運転時の各気筒毎
の吸排気弁作動モード及びカム軸速度線図である。
FIG. 7 is an intake / exhaust valve operating mode and a camshaft velocity diagram for each cylinder of an internal combustion engine according to another embodiment of the present invention, when the intake / exhaust valve operating state detection device operates in all cylinders of the engine.

【図8】本発明の他の実施例としての内燃機関の吸排気
弁作動状態検知装置のエンジンの休筒運転時の各気筒毎
の吸排気弁作動モード及びカム軸速度線図である。
FIG. 8 is an intake / exhaust valve operating mode and a camshaft velocity diagram for each cylinder when the engine is in the cylinder deactivated operation of the intake / exhaust valve operating state detection device for an internal combustion engine according to another embodiment of the present invention.

【図9】本発明の他の実施例としての内燃機関の吸排気
弁作動状態検知装置内のECUが行う休筒切り換え判定
制御ルーチンのフローチャートである。
FIG. 9 is a flowchart of a cylinder deactivation switching determination control routine executed by an ECU in an intake / exhaust valve operating state detection device for an internal combustion engine as another embodiment of the present invention.

【図10】本発明の他の実施例としての内燃機関の吸排
気弁作動状態検知装置内のECUが行うカム軸回転速度
変動値演算ルーチンのフローチャートである。
FIG. 10 is a flowchart of a camshaft rotational speed fluctuation value calculation routine that is executed by the ECU in the intake / exhaust valve operating state detection device for an internal combustion engine as another embodiment of the present invention.

【図11】本発明の他の実施例としての内燃機関の吸排
気弁作動状態検知装置の全体構成図である。
FIG. 11 is an overall configuration diagram of an intake / exhaust valve operating state detection device for an internal combustion engine as another embodiment of the present invention.

【図12】図9内エンジンの全筒運転時の各気筒毎の吸
排気弁作動モード及びカム軸速度線図である。
12 is an intake / exhaust valve operation mode and a camshaft velocity diagram for each cylinder when all the cylinders of the engine in FIG. 9 are operating.

【図13】図9内エンジンの休筒運転時の各気筒毎の吸
排気弁作動モード及びカム軸速度線図である。
13 is an intake / exhaust valve operation mode and a camshaft velocity diagram for each cylinder when the internal combustion engine of FIG. 9 is in a cylinder deactivated operation.

【図14】図9内のECUが行う休筒切り換え判定制御
ルーチンのフローチャートである。
FIG. 14 is a flowchart of a cylinder deactivation switching determination control routine executed by the ECU in FIG.

【図15】図1内のECUが行うカム軸駆動トルク変動
量演算ルーチンのフローチャートである。
FIG. 15 is a flowchart of a camshaft drive torque fluctuation amount calculation routine executed by the ECU in FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 2 シリンダヘッド 3a ロッカアーム 3b ロッカアーム 5 カム 6 カム 9 カム軸 14 ディスク 16 カム軸回転速度 21 電磁切り換え弁 24 ECU 25 燃料噴射弁 M 休筒機構 M1 休筒機構 hn カム軸速度変動量 Vcn カム軸回転速度 hn カム軸速度変動量 sn カム軸速度変動量 Tcn カム軸駆動トルク 1 engine 2 cylinder head 3a rocker arm 3b rocker arm 5 cam 6 cam 9 cam shaft 14 disk 16 cam shaft rotation speed 21 electromagnetic switching valve 24 ECU 25 fuel injection valve M cylinder deactivation mechanism M1 cylinder deactivation mechanism hn cam shaft speed fluctuation amount Vcn cam shaft Rotation speed hn Cam shaft speed fluctuation amount sn Cam shaft speed fluctuation amount Tcn Cam shaft drive torque

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の設定された気筒の吸排気弁の少
なくとも一方を停止させる弁停止手段と、上記内燃機関
のカム軸の回転変位量情報を発するカム軸回転変位量検
知手段と、上記カム軸回転変位量情報に基づきカム軸回
転速度の変動量を算出するカム軸速度変動算出手段と、
上記カム軸速度変動量と所定の判定値との偏差に基づき
休筒切り換え完了か否かを判定して休筒切り換え判定情
報を発する休筒切り換え判定手段とを有したことを特徴
とする内燃機関の吸排気弁作動状態検知装置。
1. A valve stopping means for stopping at least one of intake and exhaust valves of a set cylinder of an internal combustion engine, a camshaft rotational displacement amount detecting means for issuing rotational displacement amount information of a camshaft of the internal combustion engine, and Camshaft speed fluctuation calculating means for calculating the fluctuation amount of the camshaft rotational speed based on the camshaft rotational displacement information,
An internal combustion engine comprising: a cylinder deactivation switching determination means for determining whether or not cylinder deactivation switching is completed based on a deviation between the camshaft speed variation amount and a predetermined determination value and issuing cylinder deactivation switching determination information. Intake / exhaust valve operating state detection device.
【請求項2】内燃機関の設定された気筒の吸排気弁の少
なくとも一方を停止させる弁停止手段と、上記内燃機関
のカム軸に加わる駆動トルク情報を発するカム軸駆動ト
ルク検知手段と、上記カム軸駆動トルク情報に基づきカ
ム軸駆動トルクの変動量を算出するカム軸駆動トルク変
動算出手段と、上記カム軸駆動トルク変動量と所定の判
定値との偏差に基づき休筒切り換え完了か否かを判定し
て休筒切り換え判定情報を発する休筒切り換え判定手段
とを有したことを特徴とする内燃機関の吸排気弁作動状
態検知装置。
2. A valve stopping means for stopping at least one of intake and exhaust valves of a set cylinder of an internal combustion engine, a camshaft drive torque detecting means for issuing drive torque information applied to a camshaft of the internal combustion engine, and the cam. A camshaft drive torque fluctuation calculation means for calculating the fluctuation amount of the camshaft driving torque based on the shaft driving torque information, and whether or not the cylinder deactivation switching is completed based on the deviation between the camshaft driving torque fluctuation amount and a predetermined judgment value. An intake / exhaust valve operating state detection device for an internal combustion engine, comprising: a cylinder deactivation switching determination means for making a determination and issuing cylinder deactivation switching determination information.
JP1126892A 1992-01-24 1992-01-24 Intake / exhaust valve operation state detection device for internal combustion engine Expired - Fee Related JP2917643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126892A JP2917643B2 (en) 1992-01-24 1992-01-24 Intake / exhaust valve operation state detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126892A JP2917643B2 (en) 1992-01-24 1992-01-24 Intake / exhaust valve operation state detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05195831A true JPH05195831A (en) 1993-08-03
JP2917643B2 JP2917643B2 (en) 1999-07-12

Family

ID=11773225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126892A Expired - Fee Related JP2917643B2 (en) 1992-01-24 1992-01-24 Intake / exhaust valve operation state detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2917643B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088876A (en) * 2006-09-29 2008-04-17 Honda Motor Co Ltd Multi-cylinder internal combustion engine
KR100858752B1 (en) * 2006-10-31 2008-09-16 미쯔비시 지도샤 고교 가부시끼가이샤 Operating valve device of internal combustion engine
JP2017031873A (en) * 2015-07-31 2017-02-09 富士重工業株式会社 Control device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088876A (en) * 2006-09-29 2008-04-17 Honda Motor Co Ltd Multi-cylinder internal combustion engine
US8047167B2 (en) 2006-09-29 2011-11-01 Honda Motor Co., Ltd. Multi-cylinder internal combustion engine
KR100858752B1 (en) * 2006-10-31 2008-09-16 미쯔비시 지도샤 고교 가부시끼가이샤 Operating valve device of internal combustion engine
JP2017031873A (en) * 2015-07-31 2017-02-09 富士重工業株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2917643B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US6543220B2 (en) Exhaust emission control apparatus of internal combustion engine
US6691021B2 (en) Failure determination system, failure determination method and engine control unit for variable-cylinder internal combustion engine
JP4092917B2 (en) Electromagnetically driven valve control device for internal combustion engine
JP3749395B2 (en) Control device for internal combustion engine
JP2000110594A (en) Abnormality diagnostic device of variable valve system
JPH06146829A (en) Switching control device for engine with valve variable driving mechanism
JP2917643B2 (en) Intake / exhaust valve operation state detection device for internal combustion engine
JP2737509B2 (en) Operation control device for internal combustion engine with valve stop mechanism
JP2000073843A (en) Internal combustion engine control device
JPH11166439A (en) Engine controller for vehicle
JP2001280188A (en) Electronic throttle control device of internal combustion engine
JP2003120394A (en) Fuel injection controller of internal combustion engine
JP4103821B2 (en) Intake control device for internal combustion engine
JPH07189757A (en) Fuel control device for engine with cylinder cut-off mechanism
JPS6036737A (en) Negative intake pressure detecting apparatus for engine capable of changing the number of cylinders to be operated
JPH051383B2 (en)
JPS6282250A (en) Idling speed control device for internal combustion engine
JPH11324687A (en) Intake device for engine
JP3974331B2 (en) Engine control device
JP2668037B2 (en) Automotive engine
JP3478170B2 (en) Idle speed control device for internal combustion engine
JP2005127335A (en) Controller of internal combustion engine
JPH0681679A (en) Switching control device for engine with valve variable drive mechanism
WO2006098058A1 (en) Fuel injection system
JPH0413381Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees