JPH05195809A - Air cooling device for gas turbine combustion - Google Patents

Air cooling device for gas turbine combustion

Info

Publication number
JPH05195809A
JPH05195809A JP838892A JP838892A JPH05195809A JP H05195809 A JPH05195809 A JP H05195809A JP 838892 A JP838892 A JP 838892A JP 838892 A JP838892 A JP 838892A JP H05195809 A JPH05195809 A JP H05195809A
Authority
JP
Japan
Prior art keywords
gas turbine
air
water
combustion
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP838892A
Other languages
Japanese (ja)
Other versions
JP3181084B2 (en
Inventor
Michio Sugawara
道雄 菅原
Manabu Mejika
学 女鹿
Genichi Sakai
源一 佐貝
Tsuneo Sato
常夫 佐藤
Noboru Yamada
昇 山田
Hiromasa Sakai
拡正 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP00838892A priority Critical patent/JP3181084B2/en
Publication of JPH05195809A publication Critical patent/JPH05195809A/en
Application granted granted Critical
Publication of JP3181084B2 publication Critical patent/JP3181084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To suppress reduction of gas turbine output which is caused by rising of atmospheric temperature by reducing the temperature of combustion air supplied into a gas turbine with a simple and good economical structure without using a large scale facility. CONSTITUTION:In a system for taking combustion air in a gas turbine 25 from air taking-in ports 14, 15 which are opened the atmosphere, water atomizing mechanisms 26, 27 are provided in the vicinity of the air taking-in ports 14, 15 so as to cool air taken in by vaporization heat of fine particle water atomized by the water atomizing mechanisms 26, 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば火力発電所等
に使用されるガスタービンに係り、特に大気温度が高く
なることによるガスタービン出力の減少を抑制しようと
するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine used in, for example, a thermal power plant, and more particularly to a gas turbine for suppressing a decrease in gas turbine output due to a rise in atmospheric temperature.

【0002】[0002]

【従来の技術】周知のように、ガスタービンに供給する
燃焼用空気は、それに直結された空気圧縮機から発生さ
れる。この場合、燃焼用空気の体積は、空気圧縮機の回
転数が一定であることから常に同一体積であるが、その
質量は、大気温度が低く空気密度が高いときは大きく、
大気温度が高く空気密度の低いときは小さくなる。
As is well known, combustion air supplied to a gas turbine is generated from an air compressor directly connected to the combustion air. In this case, the volume of the combustion air is always the same because the rotation speed of the air compressor is constant, but its mass is large when the atmospheric temperature is low and the air density is high,
It decreases when the atmospheric temperature is high and the air density is low.

【0003】一方、ガスタービンの出力は、燃焼ガスの
量と燃焼ガス温度とに比例するが、通常、ガスタービン
は、燃焼ガス温度を一定とするように運転されることか
ら、大気温度が高くなると燃焼ガス量が減少し、ガスタ
ービン出力が減少することになる。
On the other hand, the output of the gas turbine is proportional to the amount of combustion gas and the combustion gas temperature. Normally, however, the gas turbine is operated so that the combustion gas temperature is constant, so that the atmospheric temperature is high. If this happens, the amount of combustion gas will decrease and the gas turbine output will decrease.

【0004】このため、例えば高温低湿度地域で使用さ
れるガスタービンについては、従来より、専用の大型ク
ーラーを設置することによってガスタービンに供給する
燃焼用空気の温度を下げることにより、ガスタービン出
力が減少することを抑制するようにしている。
Therefore, for a gas turbine used in a high temperature and low humidity area, for example, by installing a dedicated large-scale cooler, the temperature of the combustion air supplied to the gas turbine is lowered to reduce the gas turbine output. It is trying to suppress the decrease of.

【0005】ところで、ガスタービンに供給する燃焼用
空気の温度を下げるために専用の大型クーラーを設置す
ることは、年間を通じて高温な地域では有用であるが、
寒暖の差がある地域では、高温になるわずかな期間にし
かクーラーが使用されないため、設備費に対する利益率
が悪く経済的に不利になるという問題が生じる。
By the way, installing a dedicated large-scale cooler for lowering the temperature of the combustion air supplied to the gas turbine is useful in hot regions throughout the year.
In an area where there is a difference in temperature, the cooler is used only for a short period of time when the temperature is high, which causes a problem that the profit ratio against the facility cost is poor and it is economically disadvantageous.

【0006】[0006]

【発明が解決しようとする課題】以上のように、大気温
度の上昇によるガスタービン出力の減少を抑制するため
に専用の大型クーラーを設置するという従来の手段で
は、設備が大規模になるため寒暖の差がある地域には不
向きであるという問題を有している。
As described above, according to the conventional means of installing a large-scale cooler for exclusive use in order to suppress the decrease in gas turbine output due to the rise in atmospheric temperature, the equipment becomes large-scale, so it is cold and warm. There is a problem that it is unsuitable for areas with differences.

【0007】そこで、この発明は上記事情を考慮してな
されたもので、大規模な設備を用いることなく簡易でか
つ経済的にも有利な構成でガスタービンに供給する燃焼
用空気の温度を下げて、大気温度の上昇によるガスター
ビン出力の減少を抑制することができる極めて良好なガ
スタービン燃焼用空気冷却装置を提供することを目的と
する。
Therefore, the present invention has been made in consideration of the above circumstances, and lowers the temperature of combustion air supplied to a gas turbine with a simple and economically advantageous structure without using large-scale equipment. Thus, it is an object of the present invention to provide an extremely good air cooling device for gas turbine combustion, which can suppress a decrease in gas turbine output due to an increase in atmospheric temperature.

【0008】[0008]

【課題を解決するための手段】この発明に係るガスター
ビン燃焼用空気冷却装置は、大気中に開口された空気取
入口からガスタービンの燃焼用空気を取り込むシステム
において、空気取入口の近傍に水噴霧手段を設け、この
水噴霧手段で噴霧された微細粒水の気化熱により取り込
まれる空気を冷却するように構成したものである。
A gas turbine combustion air cooling apparatus according to the present invention is a system for taking in combustion air of a gas turbine from an air intake opening to the atmosphere, and water is provided near the air intake. A spraying means is provided to cool the air taken in by the heat of vaporization of the fine-grained water sprayed by this water spraying means.

【0009】[0009]

【作用】上記のような構成によれば、空気取入口の近傍
に設けられた水噴霧手段で噴霧された微細粒水の気化熱
により取り込まれる空気を冷却するようにしたので、大
規模な設備を用いることなく簡易でかつ経済的にも有利
な構成でガスタービンに供給する燃焼用空気の温度を下
げて、大気温度の上昇によるガスタービン出力の減少を
抑制することができるようになるものである。
According to the above construction, the air taken in by the heat of vaporization of the fine-grained water sprayed by the water spray means provided near the air intake port is cooled, so that large-scale equipment can be installed. It is possible to reduce the temperature of the combustion air supplied to the gas turbine with a simple and economically advantageous configuration without using a is there.

【0010】[0010]

【実施例】以下、この発明の一実施例について図面を参
照して詳細に説明する。図1は、この実施例で説明する
火力発電所設備の一部を抜き出して示している。図1中
符号11は火力発電所設備の屋上であり、略傘状に形成
された複数(図示の場合は2つ)の空気取入部12,1
3が突設されている。これら空気取入部12,13は、
その一方の空気取入部12を例にとると、図2に示すよ
うに、正面略傘状の長形状に形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a part of the thermal power plant equipment described in this embodiment. Reference numeral 11 in FIG. 1 denotes a roof of a thermal power plant facility, and a plurality (two in the case of illustration) of air intake portions 12, 1 formed in a substantially umbrella shape.
3 is projected. These air intake parts 12 and 13 are
Taking one of the air intake portions 12 as an example, as shown in FIG. 2, the air intake portion 12 is formed in an elongated shape of a front substantially umbrella shape.

【0011】そして、これら空気取入部12,13の内
部は、図1に示すように空洞状になっており、その傘下
が大気中に開口された空気取入口14,15となってい
る。なお、各空気取入口14,15には、それぞれ約1
cm×1cm程度の升目の金網16,17が張られ、小
石等の侵入が防がれている。
The insides of the air intake portions 12 and 13 are hollow as shown in FIG. 1, and the subordinates thereof are the air intake ports 14 and 15 that are open to the atmosphere. Each air intake 14 and 15 has about 1
Square meshes 16 and 17 of about cm × 1 cm are stretched to prevent invasion of pebbles and the like.

【0012】また、各空気取入部12,13の内部は、
それぞれ仕切り板18,19によって中央から縦に分割
されている。そして、空気取入口14,15から金網1
6,17を介して取り込まれた空気は、図中矢印で示す
ように、空気フィルタ20,21を介して混合された
後、ダクト22を通って、床面23の台座24に載置さ
れたガスタービン25に燃焼用空気として供給される。
Further, the inside of each air intake section 12, 13 is
It is divided vertically from the center by partition plates 18 and 19, respectively. And from the air intakes 14 and 15, the wire netting 1
The air taken in via 6 and 17 is mixed via the air filters 20 and 21 as shown by the arrow in the figure, and then passes through the duct 22 and is placed on the pedestal 24 on the floor 23. It is supplied to the gas turbine 25 as combustion air.

【0013】以上の構成は、1つのガスタービン25に
対して大気中から燃焼用空気を供給するための空気流通
経路であるが、この火力発電所設備では、同様な構成の
空気流通経路が6つ形成されており、6つのガスタービ
ンを駆動できるようになっている。この場合、図1に示
す空気取入部12,13の仕切り板18,19より左及
び右側が、それぞれ他の図示しないガスタービンへの空
気流通経路を構成する如くして、6つの空気流通経路が
形成されている。
The above structure is an air flow path for supplying combustion air from the atmosphere to one gas turbine 25. However, in this thermal power plant facility, there are 6 air flow paths of similar structure. Are formed, and six gas turbines can be driven. In this case, the left and right sides of the partition plates 18 and 19 of the air intake sections 12 and 13 shown in FIG. 1 respectively constitute air circulation paths to other gas turbines (not shown), and six air circulation paths are provided. Has been formed.

【0014】ここで、上記空気取入口14,15の近傍
には、水噴霧機構26,27が設けられている。これら
水噴霧機構26,27は、その一方の水噴霧機構26を
例にとると、図3に示すように、空気取入口14の周縁
に沿って並設された2本のパイプ28,28と、これら
2本のパイプ28,28にそれぞれ取り付けられる複数
のスプレーノズル29,29,……とよりなり、各パイ
プ28,28に水供給用パイプ30を介して圧力水を注
入することにより、各スプレーノズル29,29,……
から水を霧状に放出させるようにしたものである。
Here, water spray mechanisms 26 and 27 are provided near the air intakes 14 and 15, respectively. Taking one of the water spray mechanisms 26 as an example, the water spray mechanisms 26 and 27 have two pipes 28 and 28 arranged side by side along the peripheral edge of the air intake port 14 as shown in FIG. 3. , Spray nozzles 29, 29, ... Attached to these two pipes 28, 28, respectively. By injecting pressurized water into each pipe 28, 28 through a water supply pipe 30, Spray nozzle 29, 29, ...
It is designed to release water from a mist.

【0015】具体的に言えば、各スプレーノズル29,
29,……は、図4(a)に示すように、2本のパイプ
28,28に勝手違いとなるように取り付けられてお
り、1本のパイプ28に46個で、水噴霧機構26,2
7合わせて46×2×2=184個取り付けられてい
る。また、各スプレーノズル29,29,……の噴霧範
囲は、パイプ28から700mm離れた地点で、図4
(b)に示すように、互いに重なり合うように設定され
ている。
Specifically, each spray nozzle 29,
As shown in FIG. 4 (a), 29, ... Are attached to the two pipes 28, 28 so as to be different from each other. Two
Seven in total, 46 × 2 × 2 = 184 pieces are attached. Further, the spray range of each spray nozzle 29, 29, ...
As shown in (b), they are set to overlap each other.

【0016】ここで、水噴霧機構26の水供給用パイプ
30は、図5に示すように、水噴霧機構27における複
数のスプレーノズル31,31,……が取り付けられた
2本のパイプ32,32に接続された水供給用パイプ3
3と連結されており、その連結部Aは、図6に示すよう
な水供給システムに接続されている。
As shown in FIG. 5, the water supply pipe 30 of the water spray mechanism 26 includes two pipes 32, to which a plurality of spray nozzles 31, 31 ,. Water supply pipe 3 connected to 32
3 and its connecting portion A is connected to a water supply system as shown in FIG.

【0017】すなわち、この水供給システムは、火力発
電所内に設けられた図示しない用水系統から、天弁34
を介して得た水を、前述した6つのガスタービンに対応
する各空気流通経路にそれぞれ設置された水噴霧機構に
供給するために6つの系統に分配している。これら6つ
の系統は、それぞれ流量調整弁35,ストレーナ36,
遠方操作用電磁弁37及び水圧計38を有しており、こ
のうちの1つの系統が前述した連結部Aに接続されるこ
とになる。なお、図中39は水圧計であり、40はブロ
ー弁である。
That is, this water supply system is provided with a ceiling valve 34 from a water system (not shown) provided in the thermal power plant.
The water obtained through the above is distributed to six systems in order to be supplied to the water spray mechanisms respectively installed in the air circulation paths corresponding to the above-mentioned six gas turbines. These six systems respectively include a flow rate adjusting valve 35, a strainer 36,
It has a remote operation solenoid valve 37 and a water pressure gauge 38, and one of these systems is connected to the above-mentioned connecting portion A. In the figure, 39 is a water pressure gauge, and 40 is a blow valve.

【0018】したがって、上記実施例のような構成によ
れば、空気取入口14,15に設けた水噴霧機構26,
27によって水を霧状に放出させることにより、噴霧さ
れた微細粒水の気化熱により取り込まれる空気を冷却す
るようにしたので、大規模な設備を用いることなく簡易
でかつ経済的にも有利な構成でガスタービン25に供給
する燃焼用空気の温度を下げて、大気温度の上昇による
ガスタービン25の出力の減少を抑制することができ
る。
Therefore, according to the configuration of the above embodiment, the water spray mechanism 26, which is provided at the air intakes 14, 15,
By releasing the water in the form of mist by 27, the air taken in by the heat of vaporization of the sprayed fine-grained water is cooled, so it is simple and economically advantageous without using large-scale equipment. With the configuration, the temperature of the combustion air supplied to the gas turbine 25 can be lowered, and a decrease in the output of the gas turbine 25 due to an increase in atmospheric temperature can be suppressed.

【0019】また、水噴霧機構26,27によって水を
霧状に放出させるということは、取りも直さず、燃焼用
空気を加湿することになるため、ガスタービン25で発
生する窒素酸化物を低減するという効果も生じる。すな
わち、ガスタービン25の燃焼室で発生する窒素酸化物
は、燃焼用空気の湿度によって変化し、湿度が高いほど
発生する窒素酸化物は少なくなる。このため、燃焼用空
気を加湿することにより、窒素酸化物を低減することが
可能となるものである。
Further, the fact that the water is sprayed in the form of mist by the water spray mechanisms 26 and 27 does not correct it, but it humidifies the combustion air, so that the nitrogen oxides generated in the gas turbine 25 are reduced. The effect of doing is also produced. That is, the nitrogen oxides generated in the combustion chamber of the gas turbine 25 change depending on the humidity of the combustion air, and the higher the humidity, the less the nitrogen oxides generated. Therefore, it is possible to reduce nitrogen oxides by humidifying the combustion air.

【0020】次に、上述した実施例のガスタービン燃焼
用空気冷却装置における実験値について説明する。すな
わち、水噴霧機構26,27による水噴霧前は、燃焼用
空気温度27.6℃,燃焼用空気湿度47.7%,ガス
タービン出力109.1MW,窒素酸化物濃度90.9
ppmであったのに対し、空気取入口14,15に一定
間隔で設置された184個のスプレーノズル29,31
から、2kg/cm2 の圧力で噴霧粒径165μmで水
を噴霧させた場合、燃焼用空気温度が25.5℃と2.
1℃低下し、燃焼用空気湿度が62.2%と14.5%
高くなり、ガスタービン出力が111.0MWと1.9
MW増加し、窒素酸化物濃度が86.2ppmと4.7
ppm低下するという良好な結果が得られている。な
お、この発明は上記実施例に限定されるものではなく、
この外その要旨を逸脱しない範囲で種々変形して実施す
ることができる。
Next, the gas turbine combustion of the above-mentioned embodiment
Experimental values in the air cooling device for use will be described. sand
That is, before the water spray by the water spray mechanism 26, 27 is for combustion
Air temperature 27.6 ° C, combustion air humidity 47.7%, gas
Turbine output 109.1 MW, nitrogen oxide concentration 90.9
Although it was ppm, it was constant at the air intakes 14 and 15.
184 spray nozzles 29, 31 installed at intervals
From 2 kg / cm2 Water with a pressure of 165 μm
Is sprayed, the combustion air temperature is 25.5 ° C. and 2.
Decrease by 1 ° C, humidity of combustion air is 62.2% and 14.5%
Higher, gas turbine output is 111.0 MW and 1.9
MW increased, nitrogen oxide concentration 86.2ppm and 4.7
Good results have been obtained with a decrease in ppm. Na
The present invention is not limited to the above embodiment,
In addition to this, various modifications are performed without departing from the gist of the invention.
You can

【0021】[0021]

【発明の効果】以上詳述したようにこの発明によれば、
大規模な設備を用いることなく簡易でかつ経済的にも有
利な構成でガスタービンに供給する燃焼用空気の温度を
下げて、大気温度の上昇によるガスタービン出力の減少
を抑制することができる極めて良好なガスタービン燃焼
用空気冷却装置を提供することができる。
As described in detail above, according to the present invention,
The temperature of the combustion air supplied to the gas turbine can be lowered with a simple and economically advantageous configuration without using large-scale equipment, and the reduction in gas turbine output due to an increase in atmospheric temperature can be suppressed extremely. A good gas turbine combustion air cooling device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るガスタービン燃焼用空気冷却装
置の一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of an air cooling device for gas turbine combustion according to the present invention.

【図2】同実施例の空気取入部の形状を示す斜視図。FIG. 2 is a perspective view showing the shape of an air intake portion of the embodiment.

【図3】同実施例の水噴霧機構の構成を示す斜視図。FIG. 3 is a perspective view showing a configuration of a water spray mechanism of the same embodiment.

【図4】同水噴霧機構の詳細を説明するために示す図。FIG. 4 is a view shown for explaining the details of the water spray mechanism.

【図5】同水噴霧機構への水の供給手段を示す図。FIG. 5 is a view showing a means for supplying water to the water spray mechanism.

【図6】同水噴霧機構への水の供給手段を示す図。FIG. 6 is a view showing a means for supplying water to the water spray mechanism.

【符号の説明】[Explanation of symbols]

11…屋上、12,13…空気取入部、14,15…空
気取入口、16,17…金網、18,19…仕切り板、
20,21…空気フィルタ、22…ダクト、23…床
面、24…台座、25…ガスタービン、26,27…水
噴霧機構、28…パイプ、29…スプレーノズル、30
…水供給用パイプ、31…スプレーノズル、32…パイ
プ、33…水供給用パイプ、34…天弁、35…流量調
整弁、36…ストレーナ、37…遠方操作用電磁弁、3
8,39…水圧計、40…ブロー弁。
11 ... Rooftop, 12, 13 ... Air intake part, 14, 15 ... Air intake port, 16, 17 ... Wire mesh, 18, 19 ... Partition plate,
20, 21 ... Air filter, 22 ... Duct, 23 ... Floor, 24 ... Pedestal, 25 ... Gas turbine, 26, 27 ... Water spray mechanism, 28 ... Pipe, 29 ... Spray nozzle, 30
... Water supply pipe, 31 ... Spray nozzle, 32 ... Pipe, 33 ... Water supply pipe, 34 ... Top valve, 35 ... Flow rate adjusting valve, 36 ... Strainer, 37 ... Far operation solenoid valve, 3
8, 39 ... Water pressure gauge, 40 ... Blow valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 常夫 新潟県北蒲原郡聖篭町東港1丁目1番155 号 東北電力株式会社東新潟火力発電所内 (72)発明者 山田 昇 新潟県北蒲原郡聖篭町東港1丁目1番155 号 東北電力株式会社東新潟火力発電所内 (72)発明者 坂井 拡正 新潟県北蒲原郡聖篭町東港1丁目1番155 号 東北電力株式会社東新潟火力発電所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Sato No. 1-155, Higashi Port, Seiko-cho, Kitakanbara-gun, Niigata Prefecture Tohoku Electric Power Co., Inc. Higashi-Niigata Thermal Power Station (72) Inventor Noboru Yamada, East Port, Kita-kanbara-gun, Niigata Prefecture 1-15-1 Tohoku Electric Power Co., Inc. Higashi Niigata Thermal Power Plant (72) Inventor Noriyoshi Sakai 1-1 1-155, East Port, Seiko-cho, Kitakanbara-gun, Niigata Prefecture Tohoku Electric Power Co., Inc. Higashi Niigata Thermal Power Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大気中に開口された空気取入口からガス
タービンの燃焼用空気を取り込むシステムにおいて、前
記空気取入口の近傍に水噴霧手段を設け、この水噴霧手
段で噴霧された微細粒水の気化熱により取り込まれる空
気を冷却するように構成してなることを特徴とするガス
タービン燃焼用空気冷却装置。
1. A system for taking in combustion air of a gas turbine from an air intake opening to the atmosphere, wherein water spray means is provided in the vicinity of the air intake, and fine-grain water sprayed by this water spray means. An air cooling device for gas turbine combustion, characterized in that the air taken in by the heat of vaporization of is cooled.
【請求項2】 前記水噴霧手段は、前記空気取入口の縁
部に沿って配設され内部に圧力水が注入されるパイプ
と、このパイプに取り付けられ前記圧力水を霧状に外部
に放出する複数のスプレーノズルとより構成されること
を特徴とする請求項1記載のガスタービン燃焼用空気冷
却装置。
2. The pipe for spraying water, the pipe being arranged along an edge portion of the air intake port for injecting pressure water into the inside thereof, and being attached to the pipe, discharging the pressure water to the outside in the form of mist. 2. An air cooling device for gas turbine combustion according to claim 1, wherein the air cooling device comprises a plurality of spray nozzles.
JP00838892A 1992-01-21 1992-01-21 Air cooling system for gas turbine combustion Expired - Lifetime JP3181084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00838892A JP3181084B2 (en) 1992-01-21 1992-01-21 Air cooling system for gas turbine combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00838892A JP3181084B2 (en) 1992-01-21 1992-01-21 Air cooling system for gas turbine combustion

Publications (2)

Publication Number Publication Date
JPH05195809A true JPH05195809A (en) 1993-08-03
JP3181084B2 JP3181084B2 (en) 2001-07-03

Family

ID=11691827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00838892A Expired - Lifetime JP3181084B2 (en) 1992-01-21 1992-01-21 Air cooling system for gas turbine combustion

Country Status (1)

Country Link
JP (1) JP3181084B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043530A1 (en) * 1996-05-14 1997-11-20 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
EP0889212A2 (en) 1997-06-30 1999-01-07 Hitachi, Ltd. Gas turbine
US5930990A (en) * 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US6216443B1 (en) 1995-12-28 2001-04-17 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
USRE38831E1 (en) 1997-06-30 2005-10-18 Hitachi, Ltd. Gas turbine having water spray injection control
USRE39092E1 (en) * 1997-06-30 2006-05-09 Hitachi, Ltd. Gas turbine with water injection
JP4285781B2 (en) * 1997-04-22 2009-06-24 株式会社日立製作所 Gas turbine power generation equipment
JP2011012655A (en) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd Intake air cooling device of gas turbine, and method of controlling the same
JP2015190365A (en) * 2014-03-28 2015-11-02 東京電力株式会社 Intake air cooling device, gas turbine plant, and intake air cooling method
JP2018525556A (en) * 2015-06-24 2018-09-06 エーエーエフ・リミテッド System that lowers the intake air temperature of the device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563489B1 (en) * 2009-04-16 2010-10-13 東北電力株式会社 Optimal arrangement method for optimally arranging mist spray nozzles in the gas turbine intake tower

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598401B1 (en) 1995-12-28 2003-07-29 Hitachi, Ltd. Gas turbine combined cycle plant and compressor
US6378284B1 (en) 1995-12-28 2002-04-30 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6581368B2 (en) 1995-12-28 2003-06-24 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US7441399B2 (en) 1995-12-28 2008-10-28 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6216443B1 (en) 1995-12-28 2001-04-17 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6286301B1 (en) 1995-12-28 2001-09-11 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6357236B1 (en) 1995-12-28 2002-03-19 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US7404287B2 (en) 1995-12-28 2008-07-29 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6609360B2 (en) 1995-12-28 2003-08-26 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US5930990A (en) * 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
WO1997043530A1 (en) * 1996-05-14 1997-11-20 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
US5867977A (en) * 1996-05-14 1999-02-09 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
EP1108870A3 (en) * 1996-05-14 2003-12-17 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
JP4285781B2 (en) * 1997-04-22 2009-06-24 株式会社日立製作所 Gas turbine power generation equipment
US7040083B2 (en) 1997-06-30 2006-05-09 Hitachi, Ltd. Gas turbine having water injection unit
US6705074B2 (en) 1997-06-30 2004-03-16 Hitachi, Ltd. Gas turbine with water injection
US6711888B2 (en) 1997-06-30 2004-03-30 Hitachi, Ltd. Gas turbine
US6779332B2 (en) 1997-06-30 2004-08-24 Hitachi, Ltd. Gas turbine
USRE38831E1 (en) 1997-06-30 2005-10-18 Hitachi, Ltd. Gas turbine having water spray injection control
EP0889212A2 (en) 1997-06-30 1999-01-07 Hitachi, Ltd. Gas turbine
USRE39092E1 (en) * 1997-06-30 2006-05-09 Hitachi, Ltd. Gas turbine with water injection
US6568168B2 (en) 1997-06-30 2003-05-27 Hitachi, Ltd. Gas turbine having water spray injection control
US6568167B2 (en) 1997-06-30 2003-05-27 Hitachi, Ltd. Gas turbine having water droplet injector
US6530210B2 (en) 1997-06-30 2003-03-11 Hitachi, Ltd. Gas turbine
JP2011012655A (en) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd Intake air cooling device of gas turbine, and method of controlling the same
JP2015190365A (en) * 2014-03-28 2015-11-02 東京電力株式会社 Intake air cooling device, gas turbine plant, and intake air cooling method
JP2018525556A (en) * 2015-06-24 2018-09-06 エーエーエフ・リミテッド System that lowers the intake air temperature of the device

Also Published As

Publication number Publication date
JP3181084B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US4660390A (en) Air conditioner with three stages of indirect regeneration
JPH05195809A (en) Air cooling device for gas turbine combustion
US3923935A (en) Parallel air path wet-dry water cooling tower
US3630030A (en) Liquid-attenuated exhaust system
US6533654B2 (en) Integrated air flow booth and methods
WO2016173093A2 (en) Natural wind heat exchange device of water tower-less central water-cooled air conditioner
CN107606826B (en) Evaporative condenser based on indirect evaporative cooling precooling of plate tube
CN101825322A (en) Radiation air conditioning system based on combination of evaporative cooling and mechanical refrigeration
CN1532466A (en) Environment protection energy saving central air conditioner
US4685385A (en) Refinishing unit
CN107631386A (en) Semi-conductor condensation type air purification humidifier
JPH1122487A (en) Gas turbine power plant
CN111770700A (en) Cooling system
KR20210026492A (en) Apparatus for reducing fine dust
CN108224668A (en) A kind of cooling system of data center module
CN104121649A (en) Gas-water double-travel contact heat recycling type evaporative cooling water chiller unit
RU2166163C2 (en) Ejection cooling tower
CN108758926A (en) A kind of air-conditioning
JPH02267492A (en) White smoke preventive cooling tower
CN108332575A (en) Band fog dispersal module fog dispersal cooling tower
GB2136947A (en) Spray Booth Air Handling Unit
CN203575225U (en) Cooling and heating ventilation air greenhouse
RU33637U1 (en) Cooling tower (options)
KR100514946B1 (en) Landscape modeling cooling tower
JPH08303806A (en) Supply method of cold air and cold blast device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090420

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120420