JPH0519569B2 - - Google Patents

Info

Publication number
JPH0519569B2
JPH0519569B2 JP22408585A JP22408585A JPH0519569B2 JP H0519569 B2 JPH0519569 B2 JP H0519569B2 JP 22408585 A JP22408585 A JP 22408585A JP 22408585 A JP22408585 A JP 22408585A JP H0519569 B2 JPH0519569 B2 JP H0519569B2
Authority
JP
Japan
Prior art keywords
group
heat
resistant
copolyarylate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22408585A
Other languages
Japanese (ja)
Other versions
JPS6284118A (en
Inventor
Takayuki Imamura
Tetsuo Matsumoto
Bunpei Imura
Eiji Ichihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP22408585A priority Critical patent/JPS6284118A/en
Publication of JPS6284118A publication Critical patent/JPS6284118A/en
Publication of JPH0519569B2 publication Critical patent/JPH0519569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、耐熱性及び難燃性に優れたコポリア
リレートに関するものであり、さらに詳しくは、
主としてリン原子を含有する芳香族ジオール、芳
香族ジオール及びテレフタル酸を含む芳香族ジカ
ルボン酸から得られる耐熱性及び難燃性に優れ、
充分な強度を有するコポリアリレートに関するも
のである。 (従来の技術) 従来より、耐熱性高分子としてポリアリレート
が知られている。たとえば、4−ヒドロキシ安息
香酸ホモポリマーや同コポリマー(住友化学 商
品名 エコノール)、あるいはビスフエノールA
とテレフタル酸(TPA)及びイソフタル酸
(IPA)からなるポリマー(ユニチカ 商品名
Uポリマー)がかつて提案され、現在では市販も
されている。 かかるポリマーは、本質的に (1)比較的高融点であつたり、また分解温度が融
点あるいは軟化点よりも低かつたりするため成形
性が悪い、(2)色調が悪い、(3)透明性が悪い、(4)耐
熱性が不十分である、(5)難燃性に劣る、 といつた欠点を有していた。 本発明者らは、先に特定のホスフイン酸化合物
とTPA及び/またはIPAとからなる耐熱性ポリ
アリレート(特願昭59−96196号)、特定のホスフ
イン酸化合物とビスフエノールAとIPAからなる
耐熱性コポリアリレート(特願昭59−138827号)、
特定のホスフイン酸化合物とレゾルシンとIPAか
らなる耐熱性コポリアリレート(特願昭59−
202820号)によれば、かかる欠点の大部分が解決
されることを見い出した。 (発明が解決しようとする問題点) しかしながら、前記したような従来技術におい
ては、溶融成形性、耐熱性及び難燃性を一応改良
することはできても、ポリエステル自体の強度が
低いため、製造された成形品は特性が比較的低下
したものになつてしまうという欠点が残されてい
た。 したがつてエポキシの主たる目的は、プラズマ
溶射被覆や、高温で使用する成形品に特に適する
耐熱性コポリアリレートを提供することにあり、
耐熱性が良く、高度な難燃性を有し、しかも充分
な強度をも有した、コポリアリレートを提供する
ことにある。 (問題点を解決するための手段) 本発明者らは、350℃以下の温度で成形可能で
あり、かつ前記した問題点を解消しうる新しい耐
熱性コポリアリレートについて鋭意研究の結果、
特定の構成単位を有する含リンコポリアリレート
が、極めて優れた性質を有することを見い出し、
本発明に到達した。 本発明は、次の構成を有する。すなわち、下記
構造式()及び()で示される構成単位から
主としてなり、()と()とが99:1〜1:
99のモル比で不規則に配列した極限粘度0.5以上
の耐熱性コポリアリレート。 (式において、Ar1はフエニレン基もしくはナフ
チレン基である。また、Ar2,Ar3はフエニレン
であつて、そのうちパラフエニレン基が1〜100
モル%で、残余はメタフエニレン基である。ただ
し、芳香環の水素原子は、それぞれハロゲン原
子、炭素数1〜20の低級アルキル基、アリール
基、アルコキシ基あるいはアリロキシ基で置換さ
れていてもよい。) 本発明の耐熱性コポリアリレートの第一必須構
成単位は前記構造式()で示される含リン芳香
族ジオールとテレフタル酸を含む芳香族ジカルボ
ン酸とからなる単位である。 含リン芳香族ジオールとしては具体的には、た
とえば後記式、(),(),(),()等の有
機リン化合物が挙げられる。 本発明の第二必須構成単位は、前記式()で
示される2,2−ビス(4′−ヒドロキシフエニ
ル)プロパン(BA)と芳香族ジカルボン酸から
なる残基である。 前記構造式()及び()で示される必須構
成単位を構成する芳香族ジカルボン酸成分とし
て、テレフタル酸成分は不可欠であり、テレフタ
ル酸成分が含まれない場合、ポリマーを製造する
際に反応性が低く高重合度のポリマーが得られな
かつたり、また、得られたポリマーの強度等の特
性が比較的低下したものになつてしまうという問
題点がある。従つて、芳香族ジカルボン酸成分と
しては、たとえばテレフタル酸(TPA)、イソフ
タル酸(IPA)各成分を、TPA/IPAのモル比
で1/99〜100/0、好ましくは20/80〜90/10、
最適には50/50〜80/20とするのが好ましい。 その他の共重合成分として好ましい化合物とし
ては、たとえば4,4′−ジカルボキシジフエニ
ル、ビス(4−カルボキシフエニル)メタン、
2,2−ビス(4−カルボキシフエニル)プロパ
ン、ビス(4−カルボキシフエニル)エーテル、
ナフタル酸、ハイドロキノン、レゾルシン、6−
オキシ−2−ナフトエ酸、p−オキシ安息香酸等
が挙げられる。 一方、構成単位()と構成単位()の比率
は通常モル比で1/99〜99/1であり、好ましく
は20/80〜90/10であり、最適には50/50〜80/
20である。これらの範囲を外れて、構成単位
()が多くなり過ぎると強度が低下し、構成単
位()が多くなるとガラス転移温度が低くなつ
たり、難燃性に劣る。 本発明の耐熱性コポリアリレートの極限粘度
〔η〕は0.5以上、好ましくは0.5〜1.5、最適には
0.6〜0.9である。〔η〕が0.5より小さいと耐熱性
を始めとする各種の物理的、機械的、化学的特性
値が劣るため好ましくない。なお、〔η〕が0.9よ
り大きいと溶融粘度が高くなりすぎて成形性、流
動性などが損われたりして好ましくないときがあ
る。 本発明の耐熱性コポリアリレートを経済的に製
造し得る好ましい一例として、第一必須構成単位
として9,10−ジヒドロ−9−オキサ−10−(2′,
5′−ジヒドロキシフエニル)ホスフアフエナント
レン−10−オキシド(PHQ)とTPA/IPAから
なる単位、第二必須構成単位としてビスフエノー
ルA(BA)とTPA/IPAからなる単位を用いた
系で製造方法を説明する。 TPA/IPAからなる酸成分とPHQ/BAから
なるジオール成分とを等モル、さらにジオール成
分の2倍当量以上(好ましくは1.05〜1.25倍当
量)の無水酢酸(Ac2O)を反応機に仕込み、常
圧下、150℃程度の温度で約2時間程度エステル
化反応させる。その後順次昇温し、必要なら減圧
しながら酢酸(AcOH)を溜出させ、酸交換反応
させる。その後、最終的に通常250〜250℃の温度
下、1torr未満の高減圧下に数時間〜数十時間、
溶融相または固相で重縮合反応させることによつ
て、本発明の耐熱性コポリアリレートを製造する
ことができる。 また、通常重縮合反応には触媒が用いられる
が、本発明の耐熱性コポリアリレートを製造する
際には、たとえば各種金属化合物あるいは有機ス
ルホン酸化合物の中から選ばれた1種以上の化合
物が用いられる。かかる金属化合物としては、ア
ンチモン、チタン、ゲルマニウム、スズ、亜鉛、
アルミニウム、マグネシウム、カルシウム、マン
ガンあるいはコバルトなどの化合物が用いられ、
一方、有機スルホン酸化合物としては、スルホサ
リチル酸、o−スルホ無水安息香酸(OSB)な
どの化合物が用いられるが、ジメチルスズマレー
ト(CS)やOSBが特に好適に用いられる。前記
触媒の添加量としては、ポリエステルの構造単位
1モルに対し、通常0.1×10-4〜100×10-4モル、
好ましくは0.5〜10-4〜50×10-4モル、最適には
1×10-4〜10×10-4モル用いられる。 なお、重縮合反応の温度条件及び反応時間の詳
細は、まず通常常圧下180℃〜300℃で4〜12時
間、好ましくは200℃〜290℃で6〜10時間、最適
には230℃〜280℃で8〜10時間とするのが好まし
い。 さらに減圧下(通常0.01〜1torr)250℃〜350
℃で1〜10時間、好ましくは280℃〜330℃で2〜
8時間、最適には300℃〜330℃で4〜6時間とす
るのが好ましい。かかる重縮合反応の過程でポリ
アリレートの構造単位の種類によつては固化し、
固相状態となる場合もあるし、溶融状態のまま重
縮合できる場合もある。 (実施例) 以下、実施例をあげて本発明をさらに具体的に
説明する。なお、例中ポリマーの極限粘度はフエ
ノール−四塩化エタン等重量溶媒中20℃で測定し
た溶融粘度から求めた。また、ガラス転移温度及
び融点は、差動熱量計(パーキンエルマー社製
DSC−2型)を用い、昇温速度20℃/分で測定
し、衝撃強度はASTM D256規格により1/8イン
チ厚で測定した。 また、難燃性はUL−94規格による耐炎性なら
びにJIS−K7201規格による限界酸素指数により、
判定した。 一方、本発明の耐熱性コポリアリレートは、赤
外線吸収スペクトル、融点及び元素分析により同
定した。 実施例 1 反応装置にPHQとBAと無水酢酸をモル比で
7:3:22及びPHQとBAの和と等モルのTPA
を仕込み、触媒としてCSをポリエステルの繰返
し単位1モルに対し4×10-4モル加え、窒素雰囲
気下常圧150℃で2時間混合しながら反応させた。
この反応物をさらに常圧下250℃で2時間、さら
に0.1torrの減圧下320℃で3時間固相反応を行つ
た。得られたポリエステルは、極限粘度0.87、融
点384℃、UL−94規格V−0級、限界酸素指数61
で色調、透明性に優れた耐熱難燃性結晶質ポリマ
ーであつた。また、このポリエステルを赤外線吸
収スペクトル及び元素分析により分析したとこ
ろ、次に示すような結果が得られ、下記の構造の
繰返し単位を有する耐熱性コポリアリレートであ
ることを確認した。 すなわち、赤外線吸収スペクトルにおいては
1779κに芳香族カルボン酸エステルのC=Oに基
づく吸収が、735κ,782κにパラ置換芳香族の吸収
が、888κに非対称3置換芳香族の吸収が、2950κ
にメチル基に基づく吸収が見られた。 一方、元素分析の結果では、C=70.4%(理論
値70.8%)、H=3.71%(理論値3.77%)、P=
5.11%(理論値5.09%)という結果が得られた。 実施例2〜11、比較例1 PHQ,BA,TPA及びIPAのモル比を第1表
に示す如く変えたこと以外は実施例1と同様にし
て耐熱性コポリアリレートを製造した。得られた
耐熱性コポリアリレートは、赤外線吸収スペクト
ル及び元素分析により同定した。また、LOI値、
UL−94規格値、衝撃強度を実施例1と同様にし
て測定した。 実施例1〜11及び比較例1の結果を第1表に記
載した。第1表から、比較例のものは衝撃強度に
劣ることがわかる。 実施例 12〜14 実施例2においてPHQの代わりに他のリン化
合物を用いる以外は、実施例1と同様にして耐熱
性コポリアリレートを製造した。得られた耐熱性
コポリアリレートは、赤外線吸収スペクトル及び
元素分析により同定した。また、LOI値、UL−
94規格値、衝撃強度を実施例1と同様にして測定
した。 実施例11〜13の結果を第2表に記載した。 なお、第2表中における(),(),()
は、それぞれ本文中に記載された構造式(),
(),()を有する有機リン化合物である。
(Industrial Application Field) The present invention relates to copolyarylates with excellent heat resistance and flame retardancy, and more specifically,
It has excellent heat resistance and flame retardancy, and is obtained mainly from aromatic diols containing phosphorus atoms, aromatic diols, and aromatic dicarboxylic acids containing terephthalic acid.
This invention relates to a copolyarylate having sufficient strength. (Prior Art) Polyarylate has been known as a heat-resistant polymer. For example, 4-hydroxybenzoic acid homopolymer or copolymer (Sumitomo Chemical, trade name Econol), or bisphenol A
A polymer consisting of terephthalic acid (TPA) and isophthalic acid (IPA) (Unitika product name)
U polymer) was once proposed and is now commercially available. Such polymers inherently have (1) poor moldability due to a relatively high melting point or a decomposition temperature lower than the melting or softening point, (2) poor color tone, and (3) poor transparency. (4) insufficient heat resistance; and (5) poor flame retardancy. The present inventors previously discovered a heat-resistant polyarylate made of a specific phosphinate compound and TPA and/or IPA (Japanese Patent Application No. 59-96196); copolyarylate (patent application No. 138827, 1982),
Heat-resistant copolyarylate consisting of a specific phosphinic acid compound, resorcinol, and IPA (patent application 1983-
No. 202820), it has been found that most of these drawbacks can be solved. (Problems to be Solved by the Invention) However, in the prior art as described above, although it is possible to improve melt moldability, heat resistance, and flame retardance, the strength of polyester itself is low, so it is difficult to manufacture. The disadvantage remains that the resulting molded products have relatively deteriorated properties. The primary purpose of epoxies is therefore to provide heat-resistant copolyarylates that are particularly suitable for plasma spray coatings and molded articles used at high temperatures.
The object of the present invention is to provide a copolyarylate having good heat resistance, high flame retardancy, and sufficient strength. (Means for Solving the Problems) As a result of intensive research by the present inventors on a new heat-resistant copolyarylate that can be molded at a temperature of 350°C or lower and that can solve the above-mentioned problems,
We discovered that phosphorus-containing polyarylates having specific structural units have extremely excellent properties,
We have arrived at the present invention. The present invention has the following configuration. That is, it mainly consists of structural units shown by the following structural formulas () and (), and () and () are 99:1 to 1:
A heat-resistant copolyarylate with an intrinsic viscosity of 0.5 or more arranged irregularly in a molar ratio of 99. (In the formula, Ar 1 is a phenylene group or a naphthylene group. Also, Ar 2 and Ar 3 are phenylene, of which 1 to 100 paraphenylene groups are
In mol%, the remainder is metaphenylene group. However, each hydrogen atom in the aromatic ring may be substituted with a halogen atom, a lower alkyl group having 1 to 20 carbon atoms, an aryl group, an alkoxy group, or an allyloxy group. ) The first essential structural unit of the heat-resistant copolyarylate of the present invention is a unit consisting of a phosphorus-containing aromatic diol represented by the above structural formula () and an aromatic dicarboxylic acid containing terephthalic acid. Specific examples of the phosphorus-containing aromatic diol include organic phosphorus compounds of the following formulas, (), (), (), (), and the like. The second essential structural unit of the present invention is a residue consisting of 2,2-bis(4'-hydroxyphenyl)propane (BA) represented by the above formula () and an aromatic dicarboxylic acid. The terephthalic acid component is indispensable as the aromatic dicarboxylic acid component that constitutes the essential structural units represented by the above structural formulas () and (), and if the terephthalic acid component is not included, the reactivity will be reduced during the production of the polymer. There are problems in that a polymer with a low and high degree of polymerization cannot be obtained, and the resulting polymer has relatively poor properties such as strength. Therefore, as the aromatic dicarboxylic acid component, for example, terephthalic acid (TPA) and isophthalic acid (IPA) are used in a molar ratio of TPA/IPA of 1/99 to 100/0, preferably 20/80 to 90/ Ten,
Optimally, the ratio is preferably 50/50 to 80/20. Other preferred compounds as copolymerization components include, for example, 4,4'-dicarboxydiphenyl, bis(4-carboxyphenyl)methane,
2,2-bis(4-carboxyphenyl)propane, bis(4-carboxyphenyl)ether,
naphthalic acid, hydroquinone, resorcinol, 6-
Examples include oxy-2-naphthoic acid and p-oxybenzoic acid. On the other hand, the ratio of structural units () to structural units () is usually 1/99 to 99/1 in molar ratio, preferably 20/80 to 90/10, and optimally 50/50 to 80/1.
It is 20. Outside these ranges, if the number of structural units () is too large, the strength will decrease, and if the number of structural units () is too large, the glass transition temperature will be low and the flame retardance will be poor. The intrinsic viscosity [η] of the heat-resistant copolyarylate of the present invention is 0.5 or more, preferably 0.5 to 1.5, optimally
It is 0.6-0.9. If [η] is less than 0.5, various physical, mechanical, and chemical property values including heat resistance will be inferior, which is not preferable. It should be noted that if [η] is larger than 0.9, the melt viscosity becomes too high, which may impair moldability, flowability, etc., which is not preferable. As a preferable example in which the heat-resistant copolyarylate of the present invention can be produced economically, the first essential structural unit is 9,10-dihydro-9-oxa-10-(2',
5'-dihydroxyphenyl)phosphaphenanthrene-10-oxide (PHQ) and a unit consisting of TPA/IPA, and a system using a unit consisting of bisphenol A (BA) and TPA/IPA as the second essential constituent unit. The manufacturing method will be explained. Equimolar moles of the acid component consisting of TPA/IPA and the diol component consisting of PHQ/BA, and more than twice the equivalent (preferably 1.05 to 1.25 times equivalent) of acetic anhydride (Ac 2 O) of the diol component are charged into the reactor. , the esterification reaction is carried out at a temperature of about 150° C. for about 2 hours under normal pressure. Thereafter, the temperature is raised sequentially, and if necessary, acetic acid (AcOH) is distilled out while reducing the pressure, and an acid exchange reaction is performed. After that, the final step is usually at a temperature of 250 to 250℃ and under a high vacuum of less than 1 torr for several hours to several tens of hours.
The heat-resistant copolyarylate of the present invention can be produced by carrying out a polycondensation reaction in a melt phase or a solid phase. Further, although a catalyst is usually used in the polycondensation reaction, when producing the heat-resistant copolyarylate of the present invention, one or more compounds selected from various metal compounds or organic sulfonic acid compounds are used. It will be done. Such metal compounds include antimony, titanium, germanium, tin, zinc,
Compounds such as aluminum, magnesium, calcium, manganese or cobalt are used,
On the other hand, as the organic sulfonic acid compound, compounds such as sulfosalicylic acid and o-sulfobenzoic anhydride (OSB) are used, and dimethyltin malate (CS) and OSB are particularly preferably used. The amount of the catalyst added is usually 0.1 x 10 -4 to 100 x 10 -4 mol, per 1 mol of polyester structural unit.
It is preferably used in an amount of 0.5 to 10 -4 to 50 x 10 -4 mol, most preferably 1 x 10 -4 to 10 x 10 -4 mol. In addition, the details of the temperature conditions and reaction time of the polycondensation reaction are: first, usually at 180°C to 300°C under normal pressure for 4 to 12 hours, preferably at 200°C to 290°C for 6 to 10 hours, most preferably at 230°C to 280°C. It is preferable to set it as 8 to 10 hours at °C. Furthermore under reduced pressure (usually 0.01~1torr) 250℃~350
℃ for 1 to 10 hours, preferably 280℃ to 330℃ for 2 to 10 hours
8 hours, optimally 4 to 6 hours at 300°C to 330°C. In the process of such polycondensation reaction, depending on the type of structural unit of polyarylate, it solidifies,
Sometimes it becomes a solid state, and sometimes it can be polycondensed while it is in a molten state. (Examples) Hereinafter, the present invention will be explained in more detail by giving examples. In addition, the intrinsic viscosity of the polymer in the example was determined from the melt viscosity measured at 20° C. in a weight solvent such as phenol-tetrachloroethane. In addition, the glass transition temperature and melting point were determined using a differential calorimeter (manufactured by PerkinElmer).
DSC-2 model) was used for measurement at a heating rate of 20° C./min, and impact strength was measured at a thickness of 1/8 inch according to ASTM D256 standard. In addition, flame retardancy is determined by flame resistance according to UL-94 standard and limit oxygen index according to JIS-K7201 standard.
I judged it. On the other hand, the heat-resistant copolyarylate of the present invention was identified by infrared absorption spectrum, melting point, and elemental analysis. Example 1 PHQ, BA and acetic anhydride in a molar ratio of 7:3:22 and TPA in a molar amount equivalent to the sum of PHQ and BA.
and CS as a catalyst was added in an amount of 4 x 10 -4 mol per mol of polyester repeating unit, and the mixture was reacted with mixing at 150°C under nitrogen atmosphere for 2 hours.
This reaction product was further subjected to solid phase reaction at 250°C under normal pressure for 2 hours, and further at 320°C under reduced pressure of 0.1 torr for 3 hours. The obtained polyester has an intrinsic viscosity of 0.87, a melting point of 384°C, a UL-94 standard V-0 class, and a limiting oxygen index of 61.
It was a heat-resistant, flame-retardant crystalline polymer with excellent color tone and transparency. Further, when this polyester was analyzed by infrared absorption spectrum and elemental analysis, the following results were obtained, and it was confirmed that it was a heat-resistant copolyarylate having a repeating unit of the following structure. In other words, in the infrared absorption spectrum
1779κ is the absorption based on C=O of aromatic carboxylic acid ester, 735κ, 782κ is the absorption of para-substituted aromatics, 888κ is the absorption of asymmetric trisubstituted aromatics, 2950κ
Absorption based on methyl groups was observed. On the other hand, the results of elemental analysis show that C = 70.4% (theoretical value 70.8%), H = 3.71% (theoretical value 3.77%), P =
A result of 5.11% (theoretical value 5.09%) was obtained. Examples 2 to 11, Comparative Example 1 Heat-resistant copolyarylates were produced in the same manner as in Example 1, except that the molar ratios of PHQ, BA, TPA, and IPA were changed as shown in Table 1. The obtained heat-resistant copolyarylate was identified by infrared absorption spectrum and elemental analysis. Also, LOI value,
The UL-94 standard value and impact strength were measured in the same manner as in Example 1. The results of Examples 1 to 11 and Comparative Example 1 are shown in Table 1. From Table 1, it can be seen that the comparative examples have poor impact strength. Examples 12 to 14 Heat-resistant copolyarylates were produced in the same manner as in Example 1, except that another phosphorus compound was used in place of PHQ in Example 2. The obtained heat-resistant copolyarylate was identified by infrared absorption spectrum and elemental analysis. Also, LOI value, UL−
94 standard value and impact strength were measured in the same manner as in Example 1. The results of Examples 11 to 13 are listed in Table 2. In addition, (), (), () in Table 2
are the structural formulas () and
It is an organic phosphorus compound with () and ().

【表】【table】

【表】 (発明の効果) 本発明の耐熱性コポリアリレートは、 (1) 側鎖に特定の含リン構造単位を有しているの
で、高温で使用しても分解が起こらないだけで
なく、成形品として時にも高度の難燃性を有し
ている。 (2) 主鎖が主としてヒドロキノン、ビスフエノー
ルAおよびTPA/IPA単位から構成されてい
るので強度等の特性に優れており、耐熱性、成
形性にも優れている。 など、耐熱性高分子として優れた物性を有する。
このように、本発明の耐熱性コポリアリレート
は、耐熱性、難燃性を要求される用途に使用され
るフイルム、繊維、成形用素材として有用であ
る。
[Table] (Effects of the invention) The heat-resistant copolyarylate of the present invention has (1) a specific phosphorus-containing structural unit in its side chain, so it not only does not decompose even when used at high temperatures; It also has a high degree of flame retardancy, sometimes as a molded product. (2) Since the main chain is mainly composed of hydroquinone, bisphenol A, and TPA/IPA units, it has excellent properties such as strength, as well as excellent heat resistance and moldability. It has excellent physical properties as a heat-resistant polymer.
As described above, the heat-resistant copolyarylate of the present invention is useful as a film, fiber, or molding material used in applications requiring heat resistance and flame retardancy.

Claims (1)

【特許請求の範囲】 1 下記構造式()及び()で示される構成
単位から主としてなり、()と()とが99:
1〜1:99のモル比で不規則に配列した極限粘度
0.5以上の耐熱性コポリアリレート。 (式において、Ar1はフエニレン基もしくはナフ
チレン基である。また、Ar2,Ar3はフエニレン
であつて、そのうちパラフエニレン基が1〜100
モル%で、残余はメタフエニレン基である。ただ
し、芳香環の水素原子はそれぞれハロゲン原子、
炭素数1〜20の低級アルキル基、アリール基、ア
ルコキシ基あるいはアリロキシ基で置換されてい
てもよい。)
[Scope of Claims] 1 Mainly composed of structural units represented by the following structural formulas () and (), where () and () are 99:
Intrinsic viscosity randomly arranged in a molar ratio of 1 to 1:99
Heat resistant copolyarylate of 0.5 or higher. (In the formula, Ar 1 is a phenylene group or a naphthylene group. Also, Ar 2 and Ar 3 are phenylene, of which 1 to 100 paraphenylene groups are
In mol%, the remainder is metaphenylene group. However, the hydrogen atoms in the aromatic ring are halogen atoms and
It may be substituted with a lower alkyl group, aryl group, alkoxy group or allyloxy group having 1 to 20 carbon atoms. )
JP22408585A 1985-10-08 1985-10-08 Heat-resistant copolyarylate Granted JPS6284118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22408585A JPS6284118A (en) 1985-10-08 1985-10-08 Heat-resistant copolyarylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22408585A JPS6284118A (en) 1985-10-08 1985-10-08 Heat-resistant copolyarylate

Publications (2)

Publication Number Publication Date
JPS6284118A JPS6284118A (en) 1987-04-17
JPH0519569B2 true JPH0519569B2 (en) 1993-03-17

Family

ID=16808317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22408585A Granted JPS6284118A (en) 1985-10-08 1985-10-08 Heat-resistant copolyarylate

Country Status (1)

Country Link
JP (1) JPS6284118A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078090A (en) * 2006-09-25 2008-04-03 Omron Corp Push-button switch

Also Published As

Publication number Publication date
JPS6284118A (en) 1987-04-17

Similar Documents

Publication Publication Date Title
US4123454A (en) Thermoplastic copolyesters
JPH04494B2 (en)
JPH0519569B2 (en)
JPH0466253B2 (en)
JP2657083B2 (en) Aromatic copolyester
JP2547820B2 (en) Aromatic copolyester
JP2507735B2 (en) Method for producing thermo-tropic liquid crystalline copolyester
JPS63146927A (en) Aromatic copolyesteramide
JPH04493B2 (en)
JPH0519570B2 (en)
JPH0251523A (en) Aromatic polyester
JPS63277233A (en) Aromatic copolyester
JPS63186760A (en) Aromatic copolyester composition
WO2024070037A1 (en) Co-polyester resin
JPS63210127A (en) Aromatic copolyester
WO2024070038A1 (en) Co-polyester resin
JPH045048B2 (en)
JPH0635687B2 (en) Polyester fiber
JPS63225625A (en) Aromatic polyester
JPH01156328A (en) Polyphosphonate
JPS63154734A (en) Copolyester
JPS62280222A (en) Copolyester
JPS62169848A (en) Polyarylate-containing composition
JPH0826134B2 (en) Thermotropic liquid crystalline copolyester
JPS63122730A (en) Thermotropic liquid crystalline copolyester