JPH0519538Y2 - - Google Patents

Info

Publication number
JPH0519538Y2
JPH0519538Y2 JP10354586U JP10354586U JPH0519538Y2 JP H0519538 Y2 JPH0519538 Y2 JP H0519538Y2 JP 10354586 U JP10354586 U JP 10354586U JP 10354586 U JP10354586 U JP 10354586U JP H0519538 Y2 JPH0519538 Y2 JP H0519538Y2
Authority
JP
Japan
Prior art keywords
exhaust
exhaust passage
reinforcing rib
arrangement direction
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10354586U
Other languages
Japanese (ja)
Other versions
JPS6310219U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10354586U priority Critical patent/JPH0519538Y2/ja
Publication of JPS6310219U publication Critical patent/JPS6310219U/ja
Application granted granted Critical
Publication of JPH0519538Y2 publication Critical patent/JPH0519538Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はエンジンの排気装置に関するものであ
る。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to an engine exhaust system.

(従来技術) 通常エンジン、例えば直列4気筒エンジンの排
気マニホールドは、第7図及び第8図に示す如く
気筒配列方向一方側に位置する2つの気筒からの
排気を導出する第1の排気通路52と、他方側に
位置する2つの気筒からの排気を導出する第2の
排気通路53とをそれぞれ気筒配列方向中央部側
へ延出させ、且つこれを下方へ略V字形に湾曲さ
せた状態で集合させて構成されている。
(Prior Art) The exhaust manifold of a normal engine, for example, an in-line four-cylinder engine, has a first exhaust passage 52 that leads out exhaust from two cylinders located on one side in the cylinder arrangement direction, as shown in FIGS. 7 and 8. and a second exhaust passage 53 that guides exhaust gas from the two cylinders located on the other side, respectively, extend toward the center in the cylinder arrangement direction, and are curved downward into a substantially V-shape. It is made up of a collection.

ところで、このような構成をもつ排気マニホー
ルド、特にターボ過給機付きエンジンに適用され
る排気マニホールドにおいては排気熱量が多いと
ころからその熱膨張が大きくその内部に上記各排
気通路52,53に沿つて排気集合部54側へ向
かう圧縮力Pとか該排気集合部54を外方へ張り
出す方向に作用する引張力Qとかが発生し、この
過大な熱変形力により上記排気集合部54のコー
ナ部分にクラツクが発生するおそれがある。
By the way, in an exhaust manifold having such a configuration, especially an exhaust manifold applied to an engine equipped with a turbo supercharger, the thermal expansion is large due to the large amount of exhaust heat, and there is a large amount of heat inside the exhaust manifold along the above-mentioned exhaust passages 52 and 53. Compressive force P directed toward the exhaust gas collecting portion 54 side and tensile force Q acting in the direction of extending the exhaust gas collecting portion 54 outward are generated, and this excessive thermal deformation force causes the corner portions of the exhaust gas collecting portion 54 to Cracks may occur.

このような排気マニホールドの熱応力によるク
ラツク発生を抑制する手段として、例えば特開昭
60−50217号公報に開示される如く排気マニホー
ルドの左右一対の排気通路部相互間に、該排気通
路部の熱変形量が一定量以上に達すると相互に当
接してそれ以上の熱収縮を抑制するストツパーを
設け、これにより排気集合部に過度の応力集中が
発生するのを防止するようにしたものが知られて
いる。
As a means to suppress the occurrence of cracks due to thermal stress in the exhaust manifold, for example,
As disclosed in Publication No. 60-50217, a pair of left and right exhaust passages of an exhaust manifold is arranged such that when the amount of thermal deformation of the exhaust passages reaches a certain amount or more, they come into contact with each other to suppress further thermal contraction. It is known that a stopper is provided to prevent excessive stress concentration from occurring in the exhaust gas collecting section.

ところが、この従来例のものにおいては、左右
一対のストツパーが相互に離間配置されるもので
あるため、熱膨張に伴う圧縮力に対してはそれな
りの効果を発揮するが、引張力に対してはほとん
ど効果がなく、従つて、排気マニホールド全体と
して見た場合にはクラツク対策が十分に行なわれ
ているとは言い難い。
However, in this conventional example, the pair of left and right stoppers are spaced apart from each other, so although it is effective against compressive force due to thermal expansion, it is not effective against tensile force. It has almost no effect, and therefore, when looking at the exhaust manifold as a whole, it cannot be said that crack countermeasures have been taken sufficiently.

(考案の技術的背景) このような排気マニホールドの熱変形(圧縮力
によるものと引張力によるものの両方)を効果的
に抑えるためには、左右の排気通路部相互間に働
く圧縮力と引張力とに対してともに有効に対抗で
きるように該両排気通路部相互間に補強リブを設
けて該両排気通路部相互間を一体的に連結すれば
よい。
(Technical background of the invention) In order to effectively suppress such thermal deformation of the exhaust manifold (both due to compressive force and due to tensile force), it is necessary to reduce the compressive and tensile forces that act between the left and right exhaust passages. In order to effectively counteract both, reinforcing ribs may be provided between the two exhaust passages to integrally connect the two exhaust passages.

ところが、このように補強リブを設けた場合、
補強リブによつて上記熱変形力が排気通路部自体
と補強リブの両方に分散伝達されるものの、この
場合、排気通路部分と補強リブとの間における上
記熱変形力の分担比率、換言すれば両者間におけ
る断面性能の比率が適当に設定されていないと、
場合によつては補強リブ側に集中的に過大な熱変
形力が負荷されて該補強リブ自体にクラツクが発
生するというおそれがでてくる(現象その1)。
However, when reinforcing ribs are provided like this,
Although the thermal deformation force is distributed and transmitted to both the exhaust passage section itself and the reinforcing ribs by the reinforcing ribs, in this case, the sharing ratio of the thermal deformation force between the exhaust passage section and the reinforcing ribs, in other words, If the ratio of cross-sectional performance between the two is not set appropriately,
In some cases, an excessive thermal deformation force is intensively applied to the reinforcing rib side, and there is a fear that cracks may occur in the reinforcing rib itself (Phenomenon 1).

また一方、本願考案者らは排気マニホールドの
左右一対の排気通路部相互間に補強リブを設けた
場合における熱変形力の発生状況を実験並びに構
造解析により解明した結果、例えば第1図ないし
第3図に示すような4気筒エンジンの排気マニホ
ールド1の場合、熱応力のうち圧縮力は矢印Pで
示すように排気通路部2,3と補強リブ10の両
方に分散伝達され、これに対して引張力は矢印Q
で示すように補強リブ10にその大部分が集中し
て作用する。そして、圧縮力P及び引張力Qの補
強リブ10における分布状態は、ともに該補強リ
ブ10の外端縁部10c側に向つて次第に増大す
る片寄つた分布状態であることを知見した。従つ
て、補強リブ10によつて圧縮力P及び引張力Q
を効果的に受けて特に圧縮力Pによる補強リブ1
0の集合通路部5の熱変形を抑制するためには、
該補強リブ10を各排気通路部2,3との結合部
においては該排気通路部2,3の前面まで延出さ
せる必要がある(現象その2)。
On the other hand, as a result of experiments and structural analysis, the present inventors clarified the generation of thermal deformation force when reinforcing ribs are provided between a pair of left and right exhaust passages of an exhaust manifold. In the case of the exhaust manifold 1 of a four-cylinder engine as shown in the figure, the compressive force of the thermal stress is distributed and transmitted to both the exhaust passages 2 and 3 and the reinforcing rib 10 as shown by the arrow P, whereas the tensile force Power is arrow Q
Most of the force acts concentratedly on the reinforcing ribs 10, as shown in FIG. It was also found that the distribution state of the compressive force P and the tensile force Q in the reinforcing rib 10 is a lopsided distribution state in which both of them gradually increase toward the outer end edge 10c side of the reinforcing rib 10. Therefore, the compressive force P and the tensile force Q are reduced by the reinforcing ribs 10.
Reinforcement rib 1 by compressive force P that effectively receives
In order to suppress thermal deformation of the collective passage section 5 of 0,
It is necessary to extend the reinforcing ribs 10 to the front surfaces of the exhaust passages 2 and 3 at the joints with the exhaust passages 2 and 3 (Phenomenon 2).

本願考案者らは、上記(現象その1)並びに
(現象その2)をそれぞれ勘案して考察した結果、
排気通路部及び補強リブのクラツク発生を抑制し
且つ集合通路部の熱変形を効果的に抑えるために
は、 (1) 補強リブ10はその幅方向両端部に位置する
排気通路部2,3との接合部においては取付フ
ランジ部4から各排気通路部2,3の前面まで
延出せるとともに、その幅方向中央部分におい
ては該補強リブ10に過大な圧縮力が負荷され
るのを防止する意味からその両端部よりもその
断面性能を低くすること(即ち、断面積を小さ
くすること)が必要であり、しかもその場合、
圧縮力及び引張力の分布状態に照らして考えれ
ば補強リブ10の幅方向中央部の断面性能をそ
の両端部よりも低くする方法としては単位面積
当りの負荷荷重が大きい補強リブ10の外端縁
部10c側の断面性能を落とすようにすればよ
り小さな形状変化(例えば切欠を形成するとか
リブ厚さを減少させるとかの形状変化)でより
効果的に上記目的を達成できるということに想
到したものである。
The inventors of this application have considered the above (phenomenon 1) and (phenomenon 2), and as a result,
In order to suppress the occurrence of cracks in the exhaust passage section and the reinforcing ribs and to effectively suppress the thermal deformation of the collective passage section, (1) the reinforcing rib 10 is connected to the exhaust passage sections 2 and 3 located at both ends in the width direction; At the joint part, it extends from the mounting flange part 4 to the front surface of each exhaust passage part 2, 3, and at the center part in the width direction, it is intended to prevent excessive compressive force from being applied to the reinforcing rib 10. It is necessary to make the cross-sectional performance lower than that of both ends (that is, to make the cross-sectional area smaller), and in that case,
Considering the distribution state of compressive force and tensile force, one way to make the cross-sectional performance of the central part in the width direction of the reinforcing rib 10 lower than that of both ends is to use the outer edge of the reinforcing rib 10, which has a large load per unit area. The idea was that if the cross-sectional performance of the portion 10c side is lowered, the above objective can be achieved more effectively with smaller shape changes (for example, shape changes such as forming a notch or reducing the rib thickness). It is.

(考案の目的) 本考案は上記従来技術の項で指摘した問題点を
解決しようとするもので、排気マニホールドの熱
変形を可及的に抑制し且つ熱応力を効率良く分散
させることにより排気マニホールドのクラツク発
生を防止し、もつてその耐久性の向上を図るよう
にしたエンジンの排気装置を提供することを目的
とするものである。
(Purpose of the invention) The present invention is an attempt to solve the problems pointed out in the above section of the prior art. It is an object of the present invention to provide an engine exhaust system which prevents the occurrence of cracks and improves its durability.

(目的を達成するための手段) 本考案は上記の目的を達成するための手段とし
て、気筒配列方向においてその一方側に位置する
気筒群からの排気を導出する第1の排気通路部と
他方側に位置する気筒群からの排気を導出する第
2の排気通路部とをそれぞれ上記シリンダヘツド
側端部に対する取付フランジ部から気筒配列方向
中央部側に延出させ且つこれら両排気通路部を上
記シリンダヘツド側端面の排気通路開口位置より
も下方側において略V字状に集合させてなる排気
マニホールドを備えたエンジンの排気装置におい
て、上記排気マニホールドの第1の排気通路部と
第2の排気通路部との集合部の近傍位置に略平板
状の補強リブを該第1の排気通路部と第2の排気
通路部間に跨りしかも気筒配列方向に略平行な方
向に向けて延設する一方、該補強リブを上記取付
フランジ部と反対側に位置する外端縁が上記各排
気通路部の前端縁近くまで延出ししかもその断面
性能が、気筒配列方向に沿う方向においてはその
両端部より中央部の方が低く、また気筒配列方向
に直交する方向においては上記取付フランジ側部
分よりも上記外端縁部の方が低くなるように設定
したものである。
(Means for Achieving the Object) As a means for achieving the above object, the present invention provides a first exhaust passage portion for guiding exhaust gas from a group of cylinders located on one side in the cylinder arrangement direction, and a first exhaust passage portion on the other side. A second exhaust passage portion for guiding exhaust gas from a group of cylinders located in the second cylinder group extends from the mounting flange portion to the cylinder head side end toward the center in the cylinder arrangement direction, and both exhaust passage portions are connected to the cylinder In an engine exhaust system including an exhaust manifold assembled in a substantially V-shape below an exhaust passage opening position on a head side end face, a first exhaust passage part and a second exhaust passage part of the exhaust manifold are arranged in a substantially V-shaped manner. A substantially flat reinforcing rib is provided at a position near the gathering portion of the first exhaust passage and the second exhaust passage, and extends in a direction substantially parallel to the cylinder arrangement direction. The outer edge of the reinforcing rib located on the opposite side of the mounting flange extends to near the front edge of each of the exhaust passages, and the cross-sectional performance of the reinforcing rib is lower in the center than in both ends in the direction along the cylinder arrangement direction. Furthermore, the outer end edge portion is set to be lower than the mounting flange side portion in the direction orthogonal to the cylinder arrangement direction.

(作用) 本考案のエンジンの排気装置によれば、 (1) 左右の排気通路部相互間に補強リブを設けて
いるため、熱変形により発生する圧縮力と引張
力がともに排気マニホールド本体部分と補強リ
ブの両方に分散して伝達されるため、排気通路
部の集合部における熱応力の集中が少なく、そ
れだけ排気通路部あるいは補強リブにおけるク
ラツク発生が抑制される、 (2) 排気マニホールドの排気通路部に結合される
補強リブの両端部が取付フランジ部から排気通
路部の前面まで延出されているため、該補強リ
ブに負荷される引張力による排気通路部の集合
部の熱変形が効果的に抑制される、 (3) 補強リブの幅方向中央部の断面性能をその両
端部の断面性能より低めに設定しているため、
排気マニホールドの熱変形による圧縮力に対す
る補強リブの有効断面性能は該補強リブの中央
部分の断面性能で規定され、従つて、補強リブ
の断面性能をその幅方向の全域に亘つて同一に
設定する場合に比して、該補強リブに負荷され
る圧縮力が軽減される、 等の作用が得られる。
(Function) According to the engine exhaust system of the present invention, (1) Since the reinforcing ribs are provided between the left and right exhaust passages, both compressive force and tensile force generated by thermal deformation are transferred to the exhaust manifold body. Since the thermal stress is distributed and transmitted to both of the reinforcing ribs, there is less concentration of thermal stress at the gathering part of the exhaust passage, and the occurrence of cracks in the exhaust passage or the reinforcing ribs is suppressed accordingly. (2) Exhaust passage of the exhaust manifold Since both ends of the reinforcing ribs connected to the parts extend from the mounting flange part to the front surface of the exhaust passage part, thermal deformation of the gathering part of the exhaust passage part due to the tensile force applied to the reinforcing ribs is effective. (3) Since the cross-sectional performance at the center of the reinforcing rib in the width direction is set lower than the cross-sectional performance at both ends,
The effective cross-sectional performance of the reinforcing rib against compressive force due to thermal deformation of the exhaust manifold is defined by the cross-sectional performance of the central portion of the reinforcing rib, and therefore, the cross-sectional performance of the reinforcing rib is set to be the same throughout its width direction. Compared to the case where the compressive force is applied to the reinforcing ribs, the following effects can be obtained.

(実施例) 以下、第1図ないし第6図を参照して本考案の
好適な実施例を説明する。
(Embodiment) Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. 1 to 6.

(第1の実施例) 第1図ないし第3図には本考案の第1の実施例
に係る自動車用直列4気筒エンジンに適用される
排気マニホールド1が示されている。この排気マ
ニホールド1は、エンジン本体40の4つの気筒
のうち、気筒配列方向一方側に位置する2つの気
筒からの排気を導出するための第1の排気通路部
2と、他方側に位置する2つの気筒からの排気を
導出するための第2の排気通路部3とを、それぞ
れ取付フランジ部4から気筒配列方向中央部へ延
出させ且つこれを下方へ略V字形に湾曲させて集
合通路部5により集合させて構成されている。
(First Embodiment) FIGS. 1 to 3 show an exhaust manifold 1 applied to an in-line four-cylinder automobile engine according to a first embodiment of the present invention. This exhaust manifold 1 includes a first exhaust passage section 2 for guiding exhaust gas from two cylinders located on one side in the cylinder arrangement direction among the four cylinders of the engine main body 40, and a first exhaust passage section 2 for guiding exhaust gas from two cylinders located on one side in the cylinder arrangement direction, and two cylinders located on the other side. A second exhaust passage section 3 for guiding exhaust gas from the two cylinders is extended from the mounting flange section 4 toward the center in the cylinder arrangement direction, and is curved downward into a substantially V-shape to form a collective passage section. It is composed of 5.

さらに、この実施例においては本考案を適用し
て、排気マニホールド1の集合通路部5の直排気
上流側位置に上記第1の排気通路部2と第2の排
気通路部3とに跨つて略水平方向に延出する補強
リブ10を形成している。また、この補強リブ1
0の平面形状は、第2図及び第3図に示す如くそ
の両端部10a,10bにおいてはそれぞれ上記
取付フランジ部4ら各排気通路部2,3の前面2
a,3aまで延出形成されている。また補強リブ
10の反取付フランジ部4側に位置する前端縁1
0cは、その幅方向(気筒配列方向)略中央部か
ら取付フランジ部4側に向けて円弧状に凹入せし
められている。従つて、この補強リブ10の断面
性能を幅方向及び奥行方向(気筒配列方向に直交
する方向)の2方向について考察すれば、先ず幅
方向においてはその両端部10a,10bから中
央部10dに向つて次第に断面性能が低下するよ
うになつている。また一方、補強リブ10の奥行
方向においては、その前端縁10d側の断面性能
が他の部分よりも低くなつている。
Further, in this embodiment, the present invention is applied to a position directly upstream of the collective passage 5 of the exhaust manifold 1, extending approximately between the first exhaust passage 2 and the second exhaust passage 3. A reinforcing rib 10 extending in the horizontal direction is formed. In addition, this reinforcing rib 1
0, as shown in FIGS. 2 and 3, at both ends 10a and 10b, the mounting flange 4 and the front surface 2 of each exhaust passage 2 and 3 are connected to each other.
It is formed to extend to a and 3a. In addition, the front edge 1 of the reinforcing rib 10 is located on the side opposite to the mounting flange 4.
0c is recessed in an arc shape from approximately the center in the width direction (cylinder arrangement direction) toward the mounting flange portion 4 side. Therefore, when considering the cross-sectional performance of this reinforcing rib 10 in two directions, the width direction and the depth direction (direction orthogonal to the cylinder arrangement direction), first of all, in the width direction, the performance is The cross-sectional performance is gradually decreasing. On the other hand, in the depth direction of the reinforcing rib 10, the cross-sectional performance of the front end edge 10d side is lower than that of other parts.

さらに、補強リブ10の上記圧縮力Pに対する
実質的な断面性能は、最も断面性能の低い中央部
10dで規定されるものである。このことから、
この実施例においては補強リブ10の断面性能を
決定するにあたり、圧縮力Pを排気通路部2,3
側と補強リブ10側の両方に好適な比率で分散さ
せることができるように該排気通路部2,3側の
断面性能を勘案して相対的に設定するようにして
いる。
Furthermore, the substantial cross-sectional performance of the reinforcing rib 10 against the compressive force P is defined by the central portion 10d, which has the lowest cross-sectional performance. From this,
In this embodiment, when determining the cross-sectional performance of the reinforcing rib 10, the compressive force P is
The cross-sectional properties of the exhaust passage portions 2 and 3 are taken into consideration so that they can be relatively set so that they can be dispersed at a suitable ratio both on the side and on the reinforcing rib 10 side.

このように構成された排気マニホールド1によ
れば、エンジンの各気筒から排出される高温の排
気の影響を受けて該排気マニホールド1が熱膨張
し、その内部に熱変形力として圧縮力と引張力が
それぞれ発生する。この熱変形力の内、圧縮力
は、第1図ないし第3図においてそれぞれ矢印P
で示すように、第1の排気通路部2と第2の排気
通路部3に沿つてそれぞれ排気マニホールド1の
集合通路部5側に負荷される圧縮力と上記補強リ
ブ10側に負荷される圧縮力との2方向に分散し
て伝達される。従つて、補強リブ10を設けたこ
とによる排気マニホールド1の剛性アツプと圧縮
力Pの分散効果との相乗効果により排気マニホー
ルド1の集合通路部5の熱変形及びそれに伴う応
力集中が可及的に緩和され、該集合通路部5にお
けるクラツク発生が未然に防止されることにな
る。
According to the exhaust manifold 1 configured in this way, the exhaust manifold 1 thermally expands under the influence of high-temperature exhaust gas discharged from each cylinder of the engine, and compressive force and tensile force are generated as thermal deformation force inside the exhaust manifold 1. occurs respectively. Of this thermal deformation force, the compressive force is indicated by the arrow P in Figures 1 to 3, respectively.
As shown, the compression force applied to the collective passage part 5 side of the exhaust manifold 1 along the first exhaust passage part 2 and the second exhaust passage part 3, and the compression force applied to the reinforcing rib 10 side, respectively. The force is distributed and transmitted in two directions. Therefore, due to the synergistic effect of increased rigidity of the exhaust manifold 1 due to the provision of the reinforcing ribs 10 and the dispersion effect of the compressive force P, thermal deformation of the collective passage section 5 of the exhaust manifold 1 and the resulting stress concentration can be minimized. As a result, the occurrence of cracks in the collecting passage section 5 is prevented.

さらに、この実施例においては、補強リブ10
の奥行方向において最も荷重分布の大きい部分、
即ち、補強リブ10の前端縁部10cのしかも幅
方向中央部10dを切欠くことにより、補強リブ
10の引張力に対する性能(後述する)を損なう
ことなく該補強リブ10の実質的断面性能を適宜
に低下させて該補強リブ10と上記排気通路部
2,3への圧縮力Pの圧縮力の負荷比率を調整し
ているため、該補強リブ10あるいは排気マニホ
ールド1の集合通路部5への過大な応力集中がな
く、これらの部分におけるクラツク発生が効果的
に防止される。
Furthermore, in this embodiment, the reinforcing rib 10
The part with the largest load distribution in the depth direction,
That is, by cutting out the front edge 10c of the reinforcing rib 10 as well as the central part 10d in the width direction, the substantial cross-sectional performance of the reinforcing rib 10 can be adjusted appropriately without impairing the tensile force performance (described later) of the reinforcing rib 10. Since the load ratio of the compressive force P to the reinforcing rib 10 and the exhaust passage sections 2 and 3 is adjusted by reducing the compression force P to the reinforcing rib 10 or the exhaust manifold 1 to There is no significant stress concentration, and the occurrence of cracks in these parts is effectively prevented.

また一方、補強リブ10が設けられていない状
態においては第8図に示すように、排気マニホー
ルド1の熱膨張により発生する引張力は集合通路
部5部分にこれを外方に張り出す方向の荷重とし
て作用するが、この実施例の如く補強リブ10を
排気通路部2,3相互間に設けることにより上記
引張力は第1図ないし第3図において矢印Qで示
すように該補強リブ10部分にしかも該補強リブ
10を前方に引き出す方向に作用し(即ち、補強
リブ10によつて支持され)、しかもその場合、
補強リブ10の両端部10a,10bは最も荷重
分布の大きい各排気通路部2,3の前面まで延出
形成されているため、該引張力Qによる上記集合
通路部5の変形が効果的に防止されることとな
る。
On the other hand, in a state where the reinforcing ribs 10 are not provided, as shown in FIG. However, by providing the reinforcing rib 10 between the exhaust passage portions 2 and 3 as in this embodiment, the above-mentioned tensile force is applied to the reinforcing rib 10 portion as shown by the arrow Q in FIGS. 1 to 3. Moreover, it acts in a direction to pull out the reinforcing rib 10 forward (that is, it is supported by the reinforcing rib 10), and in that case,
Since both ends 10a and 10b of the reinforcing rib 10 are formed to extend to the front surface of each exhaust passage section 2 and 3 where the load distribution is the largest, deformation of the collective passage section 5 due to the tensile force Q is effectively prevented. It will be done.

従つて、排気マニホールド1の各部におけるク
ラツク発生が効果的に防止され、その耐久性が向
上せしめられるものである。
Therefore, occurrence of cracks in various parts of the exhaust manifold 1 is effectively prevented, and its durability is improved.

(第2の実施例) 第4図ないし第6図には本考案の第2の実施例
に係る直列4気筒自動車用エンジンに適用される
排気マニホールド1が示されている。この排気マ
ニホールド1は上記第1の実施例の排気マニホー
ルド1と同一の基本的構成を有するものであり、
従つて、その作用・効果も上記第1の実施例のも
のと同様なものが得られるわけであるが、特にこ
の実施例のものはこれに加えて補強リブ10の排
気通路部2,3への接合部分、即ち補強リブ10
の両端部10a,10bに負荷される荷重をさら
に多方向に分散させてこの部分における強度向上
を図るようにしたものであり、具体的には、補強
リブ10の両端部10a,10bの近傍に、該両
端部10a,10bから垂直方向に各排気通路部
2,3まで延びる垂直リブ11,11をそれぞれ
追加形成したものである。これにより、補強リブ
10に負荷される荷重がさらにその幅方向両端部
10a,10bにおいて2方向へ分散伝達される
ため、該両端部10a,10bにおける応力集中
がより一層軽減され、クラツク発生が未然に防止
されることになる。
(Second Embodiment) FIGS. 4 to 6 show an exhaust manifold 1 applied to an in-line four-cylinder automobile engine according to a second embodiment of the present invention. This exhaust manifold 1 has the same basic configuration as the exhaust manifold 1 of the first embodiment,
Therefore, the same functions and effects as those of the first embodiment can be obtained, but especially in this embodiment, in addition to this, the exhaust passages 2 and 3 of the reinforcing rib 10 are , that is, the reinforcing rib 10
The load applied to both ends 10a, 10b of the reinforcing rib 10 is further dispersed in multiple directions to improve the strength of this portion. , vertical ribs 11, 11 are additionally formed, which extend vertically from both ends 10a, 10b to the respective exhaust passages 2, 3, respectively. As a result, the load applied to the reinforcing rib 10 is further distributed and transmitted in two directions at both ends 10a, 10b in the width direction, so that stress concentration at both ends 10a, 10b is further reduced, and the occurrence of cracks is prevented. This will be prevented.

尚、第4図ないし第6図の他の部材にはそれぞ
れ第1図ないし第3図の部材に対応させて同一の
符号を付することによりその説明を省略する。
It should be noted that other members shown in FIGS. 4 to 6 are given the same reference numerals corresponding to the members shown in FIGS. 1 to 3, respectively, and their explanations will be omitted.

(考案の効果) 本考案は、気筒配列方向においてその一方側に
位置する気筒群からの排気を導出する第1の排気
通路部と他方側に位置する気筒群からの排気を導
出する第2の排気通路部とをそれぞれ上記シリン
ダヘツド側端部に対する取付フランジ部から気筒
配列方向中央部側に延出させ且つこれら両排気通
路部を上記シリンダヘツド側端面の排気通路開口
位置よりも下方側において略V字状に集合させて
なる排気マニホールドを備えたエンジンの排気装
置において、上記排気マニホールドの第1の排気
通路部と第2の排気通路部との集合部の近傍位置
に略平板状の補強リブを該第1の排気通路部と第
2の排気通路部間に跨りしかも気筒配列方向に略
平行な方向に向けて延設する一方、該補強リブを
上記取付フランジ部と反対側に位置する外端縁が
上記各排気通路部の前端縁近くまで延出ししかも
その断面性能が、気筒配列方向に沿う方向におい
てはその両端部より中央部の方が低く、また気筒
配列方向に直交する方向においては上記取付フラ
ンジ側部分よりも上記外端縁部の方が低くなるよ
うに設定したことを特徴とするものである。
(Effects of the invention) The present invention has a first exhaust passage section that guides exhaust gas from a cylinder group located on one side in the cylinder arrangement direction, and a second exhaust passage section that leads exhaust gas from a cylinder group located on the other side. Exhaust passage portions extend from the mounting flange portions on the cylinder head side end toward the center in the cylinder arrangement direction, and both exhaust passage portions are located approximately below the exhaust passage opening position on the cylinder head side end surface. In an exhaust system for an engine including an exhaust manifold assembled in a V-shape, a substantially flat reinforcing rib is provided at a position near a joint of a first exhaust passage portion and a second exhaust passage portion of the exhaust manifold. The reinforcing rib is provided across the first exhaust passage portion and the second exhaust passage portion and extends in a direction substantially parallel to the cylinder arrangement direction, while the reinforcing rib is provided on the outer side located on the opposite side of the mounting flange portion. The edge extends close to the front edge of each exhaust passage, and its cross-sectional performance is lower at the center than at both ends in the direction along the cylinder arrangement direction, and in the direction perpendicular to the cylinder arrangement direction. The outer edge portion is set to be lower than the mounting flange side portion.

従つて、本考案のエンジンの排気装置によれ
ば、 (1) 左右の排気通路部相互間に補強リブを設けて
いるため、熱変形により発生する圧縮力と引張
力がともに排気マニホールド本体部分と補強リ
ブの両方に分散して伝達されるため、排気通路
部の集合部における熱応力の集中が少なく、そ
れだけ排気通路部あるいは補強リブにおけるク
ラツク発生が抑制される、 (2) 排気マニホールドの排気通路部に結合される
補強リブの両端部が取付フランジ部から排気通
路部の前面まで延出されているため、該補強リ
ブに負荷される引張力による排気通路部の集合
部の熱変形が効果的に抑制される、 (3) 補強リブの幅方向中央部の断面性能をその両
端部の断面性能より低めに設定しているため、
排気マニホールドの熱変形による圧縮力に対す
る補強リブの有効断面性能は該補強リブの中央
部分の断面性能で規定され、従つて、補強リブ
の断面性能をその幅方向の全域に亘つて同一に
設定する場合に比して、該補強リブに負荷され
る圧縮力が軽減され、該補強リブのクラツク発
生が効果的に防止される、 等のことから排気マニホールドの耐久性が向上す
るという効果が得られる。
Therefore, according to the engine exhaust system of the present invention, (1) Since the reinforcing ribs are provided between the left and right exhaust passages, both compressive force and tensile force generated by thermal deformation are transferred to the exhaust manifold main body. Since the thermal stress is distributed and transmitted to both of the reinforcing ribs, there is less concentration of thermal stress at the gathering part of the exhaust passage, and the occurrence of cracks in the exhaust passage or the reinforcing ribs is suppressed accordingly. (2) Exhaust passage of the exhaust manifold Since both ends of the reinforcing ribs connected to the parts extend from the mounting flange part to the front surface of the exhaust passage part, thermal deformation of the gathering part of the exhaust passage part due to the tensile force applied to the reinforcing ribs is effective. (3) Since the cross-sectional performance at the center of the reinforcing rib in the width direction is set lower than the cross-sectional performance at both ends,
The effective cross-sectional performance of the reinforcing rib against compressive force due to thermal deformation of the exhaust manifold is defined by the cross-sectional performance of the central portion of the reinforcing rib, and therefore, the cross-sectional performance of the reinforcing rib is set to be the same throughout its width direction. The compressive force applied to the reinforcing ribs is reduced compared to the case where the reinforcing ribs are cracked, and the occurrence of cracks in the reinforcing ribs is effectively prevented, thereby improving the durability of the exhaust manifold. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の第1の実施例に係るエンジン
の排気装置に適用される排気マニホールドの正面
図、第2図は第1図の−縦断面図、第3図は
第1図の−矢視図、第4図は本考案の第2の
実施例に係るエンジンの排気装置に適用される排
気マニホールドの正面図、第5図は第4図の−
縦断面図、第6図は第4図の−矢視図、第
7図は従来の排気マニホールドの正面図、第8図
は第7図の−矢視図である。 1……排気マニホールド、2……第1の排気通
路部、3……第2の排気通路部、4……取付フラ
ンジ部、5……集合通路部、10……補強リブ、
11……垂直リブ、40……エンジン本体、41
……シリンダヘツド。
FIG. 1 is a front view of an exhaust manifold applied to an engine exhaust system according to a first embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of FIG. 1, and FIG. 3 is a longitudinal sectional view of FIG. 4 is a front view of an exhaust manifold applied to an engine exhaust system according to a second embodiment of the present invention, and FIG. 5 is a view shown in FIG. 4.
FIG. 6 is a longitudinal sectional view, FIG. 6 is a view taken along the - arrow in FIG. 4, FIG. 7 is a front view of a conventional exhaust manifold, and FIG. 8 is a view taken along the - arrow in FIG. DESCRIPTION OF SYMBOLS 1... Exhaust manifold, 2... First exhaust passage section, 3... Second exhaust passage section, 4... Mounting flange section, 5... Collective passage section, 10... Reinforcement rib,
11... Vertical rib, 40... Engine body, 41
...Cylinder head.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 気筒配列方向においてその一方側に位置する気
筒群からの排気を導出する第1の排気通路部と他
方側に位置する気筒群からの排気を導出する第2
の排気通路部とをそれぞれシリンダヘツド側端部
に対する取付フランジ部から気筒配列方向中央部
側に延出させ且つこれら両排気通路部を上記シリ
ンダヘツド側端面の排気通路開口位置よりも下方
側において略V字状に集合させてなる排気マニホ
ールドを備えたエンジンの排気装置であつて、上
記排気マニホールドの第1の排気通路部と第2の
排気通路部との集合部の近傍位置に略平板状の補
強リブが該第1の排気通路部と第2の排気通路部
間に跨りしかも気筒配列方向に略平行な方向に向
けて延設されており、しかも該補強リブは上記取
付フランジ部と反対側に位置する外端縁が上記各
排気通路部の前端縁近くまで延出せしめられてい
るとともに、その断面性能が気筒配列方向に沿う
方向においてはその両端部より中央部の方が低
く、また気筒配列方向に直交する方向においては
上記取付フランジ側部分よりも上記外端縁部の方
が低くなるように設定されていることを特徴とす
るエンジンの排気装置。
A first exhaust passage section that leads out exhaust gas from a cylinder group located on one side in the cylinder arrangement direction, and a second exhaust passage section that leads out exhaust gas from a cylinder group located on the other side.
Exhaust passage portions extend from the mounting flange portions on the cylinder head side end toward the center in the cylinder arrangement direction, and both exhaust passage portions are located approximately below the exhaust passage opening position on the cylinder head side end surface. An exhaust system for an engine equipped with an exhaust manifold assembled in a V-shape, the exhaust manifold having a substantially flat plate located near a gathering part of a first exhaust passage part and a second exhaust passage part. A reinforcing rib extends between the first exhaust passage section and the second exhaust passage section and extends in a direction substantially parallel to the cylinder arrangement direction, and the reinforcing rib is located on the side opposite to the mounting flange section. The outer edge of the exhaust passage extends close to the front edge of each of the exhaust passages, and its cross-sectional performance is lower at the center than at both ends along the cylinder arrangement direction. An exhaust system for an engine, wherein the outer end edge portion is set to be lower than the mounting flange side portion in a direction perpendicular to the arrangement direction.
JP10354586U 1986-07-04 1986-07-04 Expired - Lifetime JPH0519538Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354586U JPH0519538Y2 (en) 1986-07-04 1986-07-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354586U JPH0519538Y2 (en) 1986-07-04 1986-07-04

Publications (2)

Publication Number Publication Date
JPS6310219U JPS6310219U (en) 1988-01-23
JPH0519538Y2 true JPH0519538Y2 (en) 1993-05-24

Family

ID=30976199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354586U Expired - Lifetime JPH0519538Y2 (en) 1986-07-04 1986-07-04

Country Status (1)

Country Link
JP (1) JPH0519538Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890257B2 (en) * 2012-06-06 2016-03-22 フタバ産業株式会社 Exhaust system parts

Also Published As

Publication number Publication date
JPS6310219U (en) 1988-01-23

Similar Documents

Publication Publication Date Title
JPH0519538Y2 (en)
JPH09177549A (en) Exhaust collecting part structure for exhaust manifold
US5438828A (en) Manifold type catalytic converter arrangement
JP2870463B2 (en) Cylinder head structure of a multi-cylinder internal combustion engine
EP1149993B1 (en) Vehicle engine exhaust system
JPH0139847Y2 (en)
JP3225731B2 (en) Support structure of intake manifold
JP3449161B2 (en) Exhaust manifold insulator
JPH1047153A (en) Open deck type cylinder block
JP2000027643A (en) Fastening structure of exhaust manifold
JPH0442490Y2 (en)
JPH0519537Y2 (en)
JPH029083Y2 (en)
JPH045721Y2 (en)
JPH0224898Y2 (en)
CN214036628U (en) Novel variable cross-section passenger car plate spring
JPH0612239Y2 (en) Cylinder head structure for sub-chamber engine
JPH0216016Y2 (en)
JPH0618050Y2 (en) Cylinder block structure
JPH0544526Y2 (en)
JPH017846Y2 (en)
JP3604976B2 (en) Intake and exhaust system metal gasket
JPH0236970Y2 (en)
JP2588998Y2 (en) Metal gasket
JPS6347634Y2 (en)