JPH05195026A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH05195026A
JPH05195026A JP4023294A JP2329492A JPH05195026A JP H05195026 A JPH05195026 A JP H05195026A JP 4023294 A JP4023294 A JP 4023294A JP 2329492 A JP2329492 A JP 2329492A JP H05195026 A JPH05195026 A JP H05195026A
Authority
JP
Japan
Prior art keywords
tuyere
burner
iron source
blast furnace
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4023294A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Hiromitsu Ueno
浩光 上野
Kenji Tamura
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4023294A priority Critical patent/JPH05195026A/en
Publication of JPH05195026A publication Critical patent/JPH05195026A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To keep the constant production and the constant coke ratio by removing stuck material when powdery iron source injected in a tuyere sticks to a refractory heat-insulating ring set in the tuyere and the cross-sectional area of the tuyere is reduced, and recovering back the reduced cross-sectional area of the tuyere to the original state. CONSTITUTION:In order to melt and remove the stuck material 3 developed at the refractory heat-insulating ring by utilizing combustion heat of the pulverized coal injected into the inner part of a blast furnace together with the powdery iron source, the tip part of an injecting burner 1 is shifted to near the stack material, and also by using the burner 1 cutting the tip part to the diagonal direction, the combustion flame is made to directly contact with the stack material. Even in the case the stack material is developed in any position of the refractory heat-insulating ring, the stuck material can be removed by advancing/retreating and rotating the burner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、羽口部から粉状鉄源を
安定して高炉の内部に吹込み、安定して還元溶融させる
ことにより、生産性の安定を図った高炉操業法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace in which a powdery iron source is stably blown into a blast furnace from a tuyere to stably reduce and melt the blast furnace to stabilize productivity. ..

【0002】[0002]

【従来の技術】最近の高炉操業にあっては、後工程の製
鋼工程における品質の向上、あるいは経済性の観点から
低シリコン操業が指向されている。この種の操業形態の
代表的なものとして、微粉炭とともに酸化鉄粉あるいは
還元鉄粉などの粉状鉄源を羽口部から吹込む方法があ
り、特開昭57−137402号公報に開示されてい
る。
2. Description of the Related Art In recent blast furnace operations, low silicon operations have been aimed at from the viewpoint of improving the quality in the subsequent steel making process or economical efficiency. As a typical operation mode of this kind, there is a method of blowing a powdered iron source such as iron oxide powder or reduced iron powder from the tuyere together with pulverized coal, which is disclosed in Japanese Patent Laid-Open No. 57-137402. ing.

【0003】高炉内に吹込まれた酸化鉄粉、還元鉄粉な
どの粉状鉄源は、還元反応により金属状態に還元される
とともに、還元途中で高炉内の溶銑と反応式2(Fe
O)+[Si]=2[Fe]+(SiO2 )による反応
を行って溶銑中のシリコンを低下させる。高炉操業安定
時には、羽口部から吹込まれる粉状鉄源の分だけ高炉の
炉頂から装入する鉄鉱石の量を減らすことができる。通
常、炉頂から装入される鉄鉱石は、炉内の通気性を維持
するために、塊成化されたものが使用されているから、
予備処理の必要な鉄鉱石に代えて価格の安い粉状鉄源を
使用することは、高炉操業の経済性を高める上でも効果
が大きい。
A powdered iron source such as iron oxide powder and reduced iron powder blown into the blast furnace is reduced to a metallic state by a reduction reaction, and the hot metal in the blast furnace and reaction formula 2 (Fe
O) + [Si] = 2 [Fe] + (SiO 2 ) to reduce the silicon content in the hot metal. When the blast furnace operation is stable, the amount of iron ore charged from the top of the blast furnace can be reduced by the amount of the powdery iron source blown from the tuyere. Usually, iron ore charged from the top of the furnace is agglomerated to maintain the air permeability in the furnace,
The use of an inexpensive powdered iron source in place of iron ore that requires pretreatment is also effective in increasing the economic efficiency of blast furnace operation.

【0004】[0004]

【発明が解決しようとする課題】ところで従来の高炉操
業において、羽口部から吹込まれた粉状鉄源は、コーク
スが旋回燃焼するレースウェイといわれる領域で、還元
溶融されて溶銑となる。通常粉状鉄源は、送風支管部に
取付けられているバーナーを通して羽口内に吹込まれ
る。このバーナーとしてはストレートパイプが用いら
れ、かつその先端と羽口先端との距離は固定されてお
り、粉状鉄源の吹込み量や粉状鉄源の予備還元率が変化
してもそのままである。
In the conventional blast furnace operation, the powdery iron source blown from the tuyere is reduced and melted into hot metal in a region called a raceway where coke swirls and burns. Usually, the powdery iron source is blown into the tuyere through a burner attached to the blower branch pipe portion. A straight pipe is used as this burner, and the distance between its tip and the tuyere tip is fixed, so that it remains unchanged even if the amount of powdered iron source blown in or the preliminary reduction rate of powdered iron source changes. is there.

【0005】ところが、粉状鉄源の吹込み量が増加した
り、粉状鉄源の予備還元率が増大すると、粉状鉄源が羽
口内に設置した耐火性断熱リングに付着して羽口断面積
を縮小させる。耐火性断熱リングはSiO2 、Al2
3 、SiC、ZrO2 等の耐火材でできており、水冷銅
製の羽口からの抜熱量を減少させるために設置したもの
である。また吹込まれた粉状鉄源による銅製羽口へのア
タックを防止して、羽口破損を抑制する役割をも果たし
ている。
However, when the amount of the powdered iron source blown in increases or the preliminary reduction rate of the powdered iron source increases, the powdered iron source adheres to the refractory heat insulating ring installed in the tuyere and tuyere. Reduce the cross-sectional area. Refractory insulation ring is made of SiO 2 , Al 2 O
3 , made of refractory material such as SiC, ZrO 2, etc., and installed to reduce the amount of heat removed from the water-cooled copper tuyere. In addition, it also prevents the tuyere from being attacked by the blown powdery iron source and prevents tuyere damage.

【0006】このように羽口断面積が縮小すると、送風
圧力が上昇し、送風機の電力消費量が増大するととも
に、送風限界に容易に到達するようになって送風量を減
少せざるを得なくなり、生産量が低下する。また送風圧
力上昇を防止するために、耐火性断熱リングを設置する
ことを止めると、羽口からの抜熱量が増加し、実質的に
送風温度が低下して高炉の燃料消費量が増大するととも
に、羽口破損が起こりやすくなるため高炉の一時停止を
余儀なくされる結果、生産量が低下する。
When the tuyere cross-sectional area is reduced in this way, the blower pressure rises, the power consumption of the blower increases, and the blower limit is easily reached so that the blower amount must be reduced. , The production volume will decrease. If the installation of refractory heat insulating rings is stopped to prevent an increase in blast pressure, the amount of heat removed from the tuyere will increase, which will substantially reduce the blast temperature and increase the fuel consumption of the blast furnace. Since tuyere damage is more likely to occur, the blast furnace must be temporarily stopped, resulting in a decrease in production.

【0007】粉状鉄源が耐火性断熱リングに付着する原
因は、鉄源中のFeOが溶融してリング中のSiO2
Al23 、ZrO2 と反応し、化合物を生成すること
にある。したがつて粉状鉄源の予備還元率が高くなった
り、あるいは粉状鉄源吹込み量が増加すると、FeOが
増加する結果、いずれも付着物生成量が増大する。この
ため粉状鉄源の吹込み量をある値以上には増加すること
ができず、また粉状鉄源の予備還元率もある値以上に大
きくすることができないため、粉状鉄源吹込みによる生
産量増加には限界があった。
The reason why the powdery iron source adheres to the refractory heat insulating ring is that FeO in the iron source is melted and SiO 2 in the ring is
It is to react with Al 2 O 3 and ZrO 2 to form a compound. Therefore, when the pre-reduction rate of the powdery iron source becomes high or the powdered iron source blowing amount increases, FeO increases, and as a result, the amount of deposit formation increases. For this reason, the amount of powdered iron source blown cannot be increased above a certain value, and the pre-reduction rate of the powdered iron source cannot be increased above a certain value either. There was a limit to the increase in production volume.

【0008】そこで本発明は、羽口内に吹込まれた粉状
鉄源が、羽口内に設置された耐火性断熱リングに付着し
て羽口断面積が縮小したときに、その付着物を除去して
縮小した羽口断面積を元の状態に復帰させ、一定の生産
量、一定のコークス比を維持することを可能とする方法
の提供を目的とする。
Therefore, the present invention removes the deposits when the powdery iron source blown into the tuyere adheres to the refractory heat insulating ring installed in the tuyere to reduce the cross-sectional area of the tuyere. It is an object of the present invention to provide a method capable of returning a tuyere cross-sectional area that has been reduced to an original state and maintaining a constant production amount and a constant coke ratio.

【0009】[0009]

【課題を解決するための手段】本発明は、前記目的を達
成するために、羽口部から粉状鉄源および微粉炭を高炉
の内部に吹込む高炉操業法において、先端を斜めに切っ
た吹込みバーナーを用い、送風支管内で該バーナーを前
後進、回転させることを特徴とする。
In order to achieve the above object, the present invention has a blast furnace operating method in which a powdery iron source and pulverized coal are blown into the interior of a blast furnace from a tuyere to cut the tip obliquely. It is characterized in that a blower burner is used to move the burner forward and backward and rotate in the blower branch pipe.

【0010】[0010]

【作用】本発明のポイントは、耐火性断熱リングに生成
した付着物を、高炉の内部に粉状鉄源とともに吹込んで
いる微粉炭の燃焼熱を利用して溶融除去することにあ
る。そのためには、微粉炭の燃焼熱を効率良く付着物に
与える必要があり、吹込みバーナー先端を付着物の近く
に移動させるとともに、先端を斜めに切ったバーナーを
用い、かつこのバーナーを回転させて、燃焼フレームを
直接付着物に接触させるようにする。以下に本発明にお
ける、耐火性断熱リングの付着物生成位置と、バーナー
の操作方法との関係を説明する。
The point of the present invention is to remove the deposits formed on the refractory heat insulating ring by using the combustion heat of the pulverized coal blown into the blast furnace together with the powdery iron source. In order to do so, it is necessary to efficiently apply the combustion heat of pulverized coal to the deposits.Move the tip of the blowing burner near the deposits, use a burner with the tip cut diagonally, and rotate this burner. So that the combustion flame is in direct contact with the deposit. The relationship between the deposit formation position of the refractory heat insulating ring and the operation method of the burner in the present invention will be described below.

【0011】図1ないし図6(図1、図4は(a)図)
は羽口を覗穴部から覗いたときの状況を示す図である。
図1は、付着物が右中央に生成した場合で、バーナーの
斜め切り口が右横になるようにバーナーを回転させ、か
つバーナーを前進させてその先端を付着物に近付ける。
1はバーナー、2は羽口観察断面、3は付着物を示す。
(b)図はこのときの羽口部の縦断面図であり、4は羽
口、5は送風支管を示す。図2は、付着物が右上に生成
した場合で、バーナーの斜め切り口が上になるようにバ
ーナーを回転させ、かつバーナーを前進させてその先端
を付着物に近付ける。図3は、付着物が右下に生成した
場合で、バーナーの斜め切り口が下になるようにバーナ
ーを回転させ、かつバーナーを前進させてその先端を付
着物に近付ける。
1 to 6 (FIGS. 1 and 4 are views (a))
FIG. 6 is a diagram showing a situation when a tuyere is seen through a peephole.
FIG. 1 shows a case where the deposit is generated in the center of the right. The burner is rotated so that the diagonal cut of the burner is on the right side, and the burner is advanced to bring its tip closer to the deposit.
Reference numeral 1 is a burner, 2 is a tuyere observation cross section, and 3 is a deposit.
(B) is a vertical cross-sectional view of the tuyere at this time, and 4 is a tuyere and 5 is a blower branch pipe. FIG. 2 shows the case where the deposit is generated in the upper right, the burner is rotated so that the slanted cut of the burner is on the top, and the burner is advanced to bring its tip closer to the deposit. FIG. 3 shows the case where the deposit is generated at the lower right, and the burner is rotated so that the diagonal cut of the burner is at the bottom, and the burner is advanced to bring its tip closer to the deposit.

【0012】図4は、付着物が左中央に生成した場合
で、バーナーの斜め切り口が左横になるようにバーナー
を回転させ、かつバーナーを後退させてその先端を付着
物に近付ける。(b)図はこのときの羽口部の縦断面図
である。図5は、付着物が左上に生成した場合で、バー
ナーの斜め切り口が上になるようにバーナーを回転さ
せ、かつバーナーを後退させてその先端を付着物に近付
ける。図6は、付着物が左下に生成した場合で、バーナ
ーの斜め切り口が下になるようにバーナーを回転させ、
かつバーナーを後退させてその先端を付着物に近付け
る。
FIG. 4 shows a case in which the deposit is generated in the left center. The burner is rotated so that the diagonal cut of the burner lies on the left side, and the burner is retracted to bring the tip thereof closer to the deposit. FIG. 6B is a vertical cross-sectional view of the tuyere at this time. FIG. 5 shows the case where the deposit is generated at the upper left, and the burner is rotated so that the diagonal cut of the burner is on the top, and the burner is retracted so that the tip of the burner approaches the deposit. FIG. 6 shows the case where the deposit is generated at the lower left, and the burner is rotated so that the diagonal cut of the burner is at the bottom.
At the same time, the burner is retracted so that its tip approaches the deposit.

【0013】このように、付着物が耐火性断熱リングの
どの位置に生成しても、バーナーの前後進と回転によ
り、付着物を溶融除去できる。本発明の操作方法は、人
間が直接羽口覗孔部から内部を覗き、手動で直接バーナ
ーを前後進、回転させても良いし、羽口覗孔部に移動式
カメラを取付けて計器室で遠隔監視を行い、遠隔手動で
バーナーを前後進、回転させることもできる。
As described above, no matter where the deposit is formed on the refractory heat insulating ring, the deposit can be melted and removed by moving the burner forward and backward and rotating. In the operating method of the present invention, a person may directly look into the inside of the tuyere peephole portion and manually move the burner forward and backward and rotate it. Alternatively, a movable camera may be attached to the tuyere peephole portion in the instrument room. It is also possible to perform remote monitoring and remotely move the burner forward and backward and rotate it.

【0014】[0014]

【実施例】以下、実施例により表1を参照しながら、本
発明の特徴を具体的に説明する。
EXAMPLES The features of the present invention will be specifically described below with reference to Table 1 by examples.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例1は、微粉炭比50kg/tで吹込
む時に、30%予備還元した粉状鉄源も同時に吹込み、
人間が直接羽口覗孔部から内部を覗き、手動で直接バー
ナーを前後進、回転させて付着を抑制した結果、安定し
て粉状鉄源50kg/t吹込みが達成できた操業例であ
る。一方、比較例1は通常のストレートバーナーを固定
して微粉炭比50kg/tで吹込む時に、付着物生成の
ため、30%予備還元した粉状鉄源を40kg/tしか
吹込めなかった操業例である。実施例1と比較例1とを
対比すると、実施例1の方が生産量は高く、コークス比
も低下している。
In Example 1, when a pulverized coal ratio of 50 kg / t was blown, a powdered iron source preliminarily reduced by 30% was also blown,
This is an example of operation in which a person directly looks into the interior from the tuyere peep hole and manually moves the burner forward and backward to rotate and rotate it to suppress adhesion, and as a result, a powdery iron source of 50 kg / t can be stably injected. .. On the other hand, in Comparative Example 1, when a normal straight burner was fixed and blown at a pulverized coal ratio of 50 kg / t, only 40 kg / t of a powdery iron source preliminarily reduced by 30% could be blown because of deposit formation. Here is an example. Comparing Example 1 with Comparative Example 1, the production amount of Example 1 is higher and the coke ratio is also lower.

【0017】実施例2は、微粉炭比100kg/tで吹
込む時に、50%予備還元した粉状鉄源も同時に吹込
み、羽口覗孔部に移動式カメラを取付けて計器室で遠隔
監視を行い、遠隔手動でバーナーを前後進、回転させて
付着を抑制した結果、安定して粉状鉄源100kg/t
吹込みが達成てきた操業例である。一方、比較例2は通
常のストレートバーナーを固定して微粉炭比100kg
/tで吹込む時に、付着物生成のため、50%予備還元
した粉状鉄源を80kg/tしか吹込めなかった操業例
である。実施例2と比較例2とを対比すると、実施例2
の方が生産量は高く、コークス比も低下している。
In Example 2, when a pulverized coal ratio of 100 kg / t was blown in, a 50% pre-reduced powdery iron source was also blown in at the same time, and a mobile camera was attached to the tuyere peephole for remote monitoring in the instrument room. As a result, the burner was moved forwards and backwards and rotated by remote control to suppress the adhesion, resulting in a stable powder iron source of 100 kg / t.
This is an example of operation that has achieved blowing. On the other hand, in Comparative Example 2, a normal straight burner is fixed and the pulverized coal ratio is 100 kg.
This is an example of operation in which only 80 kg / t of the powdery iron source preliminarily reduced by 50% was blown due to the formation of deposits when it was blown in at / t. Comparing Example 2 with Comparative Example 2, Example 2
Has a higher production volume and a lower coke ratio.

【0018】実施例3は、微粉炭比120kg/tで吹
込む時に、80%予備還元した粉状鉄源も同時に吹込
み、人間が直接羽口覗孔部から内部を覗き、遠隔手動で
バーナーを前後進、回転させて付着を抑制した結果、安
定して粉状鉄源200kg/t吹込みが達成できた操業
例である。一方、比較例3は通常のストレートバーナー
を固定して微粉炭比120kg/tで吹込む時に、付着
物生成のため、80%予備還元した粉状鉄源を160k
g/tしか吹込めなかつた操業例である。実施例3と比
較例3とを対比すると実施例3の方が生産量は高く、コ
ークス比も低下している。
In Example 3, when a pulverized coal ratio of 120 kg / t was blown, a powdery iron source preliminarily reduced by 80% was also blown in at the same time, and a person directly looked into the inside from the tuyere peep hole portion, and the burner was manually operated remotely. This is an example of operation in which 200 kg / t of the powdery iron source could be stably injected as a result of advancing and reversing and rotating the steel to suppress adhesion. On the other hand, in Comparative Example 3, when a normal straight burner was fixed and blown at a pulverized coal ratio of 120 kg / t, a powdery iron source preliminarily reduced by 80% was generated at a rate of 160 k due to deposit formation.
This is an example of operation in which only g / t could be blown. Comparing Example 3 with Comparative Example 3, the production amount of Example 3 is higher and the coke ratio is also lower.

【0019】[0019]

【発明の効果】以上説明したように、本発明において
は、送風支管部に取付けられる吹込みバーナーの先端を
斜めに切ったものを用い、送風支管内で該バーナーを前
後進、回転させることにより、羽口内に設置された耐火
性断熱リングの粉状鉄源による付着物を溶融除去し、羽
口断面積が縮小することによる送風圧力上昇を防止でき
るため、生産量、コークス比を一定に維持することがで
き、その結果、安定した溶銑供給が可能となる。
As described above, according to the present invention, a blower burner attached to the blower branch pipe whose tip is cut obliquely is used, and the burner is moved forward and backward and rotated in the blower branch pipe. , The refractory heat-insulating ring installed in the tuyere can be melted to remove deposits from the powdered iron source, and the increase in blast pressure due to the reduction in the tuyere cross-sectional area can be prevented, so the production volume and coke ratio can be kept constant. As a result, a stable hot metal supply can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、羽口を覗穴部から覗いたときの付着
物と本発明におけるバーナーの状況を示す図、(b)は
このときの羽口部の縦断面図
FIG. 1 (a) is a view showing a state of an adhering substance and a burner according to the present invention when a tuyere is seen through a peephole portion, and FIG. 1 (b) is a longitudinal sectional view of the tuyere portion at this time.

【図2】羽口を覗穴部から覗いたときの付着物と本発明
におけるバーナーの状況を示す図、
FIG. 2 is a diagram showing a state of an adhered matter and a burner according to the present invention when a tuyere is seen through a peephole.

【図3】羽口を覗穴部から覗いたときの付着物と本発明
におけるバーナーの状況を示す図、
FIG. 3 is a diagram showing a state of an adhered matter and a burner according to the present invention when a tuyere is seen through a peephole,

【図4】(a)は、羽口を覗穴部から覗いたときの付着
物と本発明におけるバーナーの状況を示す図、(b)は
このときの羽口部の縦断面図
FIG. 4 (a) is a view showing a state of an adhered substance and a burner in the present invention when a tuyere is seen through a peephole portion, and FIG. 4 (b) is a vertical cross-sectional view of the tuyere portion at this time.

【図5】羽口を覗穴部から覗いたときの付着物と本発明
におけるバーナーの状況を示す図、
FIG. 5 is a diagram showing a state of an adhered matter and a burner according to the present invention when a tuyere is seen through a peephole.

【図6】羽口を覗穴部から覗いたときの付着物と本発明
におけるバーナーの状況を示す図、
FIG. 6 is a view showing a state of an adhered matter and a burner according to the present invention when a tuyere is seen through a peephole,

【符号の説明】[Explanation of symbols]

1 バーナー 2 羽口観察断面 3 付着物 4 羽口 5 送風支管 1 burner 2 cross section of tuyere observation 3 adhering matter 4 tuyere 5 blower branch pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 羽口部から粉状鉄源および微粉炭を高炉
の内部に吹込む高炉操業法において、先端を斜めに切っ
た吹込みバーナーを用い、送風支管内で該バーナーを前
後進、回転させることを特徴とする高炉操業法。
1. A blast furnace operating method in which a pulverized iron source and pulverized coal are blown into a blast furnace from a tuyere, a blow burner having a beveled tip is used, and the burner is moved forward and backward in a blower branch pipe. A blast furnace operating method characterized by rotating.
JP4023294A 1992-01-14 1992-01-14 Method for operating blast furnace Withdrawn JPH05195026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023294A JPH05195026A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023294A JPH05195026A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH05195026A true JPH05195026A (en) 1993-08-03

Family

ID=12106594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023294A Withdrawn JPH05195026A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH05195026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180088579A (en) * 2015-12-25 2018-08-06 가부시키가이샤 트라이텍 Fuel supply apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180088579A (en) * 2015-12-25 2018-08-06 가부시키가이샤 트라이텍 Fuel supply apparatus

Similar Documents

Publication Publication Date Title
US4525208A (en) Method for recovery of Zn and Pb from iron and steel dust
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
MXPA04000246A (en) Method of manufacturing metal iron.
KR100635420B1 (en) Coal Combustion Enhancer and Method of Using in Blast Furnace
JP5166804B2 (en) Molten iron manufacturing method
JPH05195026A (en) Method for operating blast furnace
JP4116874B2 (en) Liquid iron manufacturing method
JP2018119693A (en) Hollow electrode for electric furnace and electric furnace
EP4032990A1 (en) Method for producing molten steel
JP5559871B2 (en) Refractory lining for titanium ore beneficiation
EP0342374B1 (en) Method for smelting reduction in electric furnace
JP2018003075A (en) Method for reducing-melting iron oxide-containing iron raw material
JPH055109A (en) Method for operating blast furnace
JPH09157712A (en) Operation for simultaneously blowing pulverized coal and powdery iron source in blast furnace
US3511644A (en) Process for reducing and carburizing melting of metallic material in a rotary furnace
US5885322A (en) Method for reducing iron losses in an iron smelting process
EP2057294A2 (en) A method for the commercial production of iron
KR100325099B1 (en) Method for removing slag and skull of furnace mouth during air blowing in converter
JPH10121157A (en) Method for recovering zinc and lead from steelmaking dust
EP4116443A1 (en) Method for producing low-carbon ferromanganese
JP2686204B2 (en) Smelting reduction method for chromium ore
JPS5916920A (en) Rotary kiln for semifusion reduction smelting of iron group element oxide ore and smelting with this kiln
JPH09137209A (en) Method for operating blast furnace
JPH0120208B2 (en)
JPH05287338A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408