JPH05194007A - Production of amorphous silica fine powder and concrete blended with amorphous silica fine powder - Google Patents

Production of amorphous silica fine powder and concrete blended with amorphous silica fine powder

Info

Publication number
JPH05194007A
JPH05194007A JP2742092A JP2742092A JPH05194007A JP H05194007 A JPH05194007 A JP H05194007A JP 2742092 A JP2742092 A JP 2742092A JP 2742092 A JP2742092 A JP 2742092A JP H05194007 A JPH05194007 A JP H05194007A
Authority
JP
Japan
Prior art keywords
fine powder
amorphous silica
silica fine
concrete
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2742092A
Other languages
Japanese (ja)
Other versions
JPH0733249B2 (en
Inventor
Naoki Maeda
直己 前田
Tatsuo Tadano
辰男 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeta Concrete Industry Ltd
Original Assignee
Maeta Concrete Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeta Concrete Industry Ltd filed Critical Maeta Concrete Industry Ltd
Priority to JP2742092A priority Critical patent/JPH0733249B2/en
Publication of JPH05194007A publication Critical patent/JPH05194007A/en
Publication of JPH0733249B2 publication Critical patent/JPH0733249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/101Burned rice husks or other burned vegetable material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To inexpensively produce amorphous silica fine powder from chaff as a raw material and to provide a high-strength concrete product blended with the amorphous silica fine powder. CONSTITUTION:Chaff immersed in a solution of hydrochloric acid is burnt, the ash is ground into fine powder to characteristically produce amorphous silica fine powder and the chaff immersed in a solution of hydrochloric acid is burnt, the ash is ground into fine powder and the fine powder is added to cement to characteristically provide a concrete product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、籾殻を原料とする非晶
質シリカ微粉末の製造方法、及びこの非晶質シリカ微粉
末を混入した高強度のコンクリート製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing amorphous silica fine powder using rice husks as a raw material, and a high-strength concrete product containing the amorphous silica fine powder.

【0002】[0002]

【従来の技術】従来、この種非晶質シリカ微粉末は、ア
ーク式電気炉によって、金属シリコンやフエロシリコン
合金等の珪素合金を精練する際の排気ガス中に含まれる
副産物として集じん装置により回収されるもので、これ
は一般にシリカヒュームと呼ばれている。
2. Description of the Related Art Conventionally, this type of amorphous silica fine powder is a dust collector as a by-product contained in exhaust gas when refining silicon alloys such as metallic silicon and ferrosilicon alloys by an arc type electric furnace. It is collected by the company and is generally called silica fume.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、従来
のシリカヒュームは副産物として得られるものであり、
品質的にバラツキが大きく、生産量のコントロールも難
しいとゝもに、高価であるといった諸欠点がある。従っ
て、このシリカヒュームをコンクリートに混入した場
合、コンクリート製品の強度が一定せず、又コストアッ
プにつながるとなるといった諸問題点があった。
However, the conventional silica fume is obtained as a by-product,
There are various drawbacks such as high price because the quality varies greatly and it is difficult to control the production volume. Therefore, when this silica fume is mixed into concrete, there are various problems that the strength of the concrete product is not constant and the cost is increased.

【0004】[0004]

【課題を解決するための手段】本願発明は、上記のよう
な従来の問題点を解決するためになされたもので、工業
的に利用されことが殆どなく、廃棄するために運賃をか
けて廃棄したり、或いは焼却していた米作地帯等で容易
に入手可能な籾殻を原料とする非晶質シリカ微粉末を提
供することを目的としたものであり、その要旨は、塩酸
溶液に浸漬せしめた籾殻を焼成するとゝもに、この焼成
灰を粉砕して微粉末としたことを特徴とする非晶質シリ
カ微粉末の製造方法、及び塩酸溶液に浸漬せしめた籾殻
を焼成するとゝもに、この焼成灰を粉砕して得た非晶質
シリカ微粉末がセメント内に混入された構成であること
を特徴とするコンクリート製品にある。
The present invention has been made in order to solve the above-mentioned conventional problems, and is rarely used industrially. It is intended to provide amorphous silica fine powder made from rice husk as a raw material, which can be easily obtained in the rice-growing area where it was burned or incinerated, and its gist is to soak it in a hydrochloric acid solution. When burning rice husks, the method for producing amorphous silica fine powder characterized by crushing the baked ash into fine powder, and burning rice husks dipped in hydrochloric acid solution also A concrete product characterized in that a fine powder of amorphous silica obtained by crushing the fired ash is mixed in cement.

【0005】[0005]

【実施例】以下、本願発明を図1乃至図4の実施例に基
づき詳細に説明する。なお、図1は本願発明に係る製造
工程を示すブロック図、図2は燃焼温度と燃焼時間によ
る結晶格子のX線回析スペクトル図、図3及び図4は同
粉砕工程の粉砕による粒度分布を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments of FIGS. 1 is a block diagram showing a manufacturing process according to the present invention, FIG. 2 is an X-ray diffraction spectrum diagram of a crystal lattice depending on a combustion temperature and a burning time, and FIGS. 3 and 4 are particle size distributions obtained by crushing in the crushing process. Show.

【0006】図において、1は原料となる籾殻で、この
籾殻1を前処理工程2において、約10%の塩酸溶液
(HCl)に短時間浸漬する。これにより、籾殻1の約
8割を占めるカリウム等のアルカリ有機成分を溶融せし
めることができる。そして、この前処理工程2におい
て、塩酸溶液を使用するのは、表1に示すように、他の
処理方法に比べて処理後の籾殻1に含まれるシリカ含有
率が高いためである。
In the figure, reference numeral 1 denotes a rice husk as a raw material. In the pretreatment step 2, this rice husk is immersed in a hydrochloric acid solution (HCl) of about 10% for a short time. This makes it possible to melt an alkaline organic component such as potassium, which accounts for about 80% of the rice husk 1. The reason why the hydrochloric acid solution is used in this pretreatment step 2 is that, as shown in Table 1, the content of silica contained in the treated rice husk 1 is higher than that in other treatment methods.

【0007】[0007]

【表1】 [Table 1]

【0008】3は焼成工程で、上記前処理工程2で処理
した籾殻1をロータリーキルン,シャフトキルン或いは
流動床炉等などの焼成装置で焼成し、籾殻1の焼成灰を
得るものであり、この焼成工程3における籾殻の焼成温
度は600〜700℃、焼成時間は1〜2時間であるこ
とが望ましい。なお、上記燃焼温度と燃焼時間は実験結
果により定めたものであるが、その実験例として、例え
ば図2に示すように、焼成灰は焼成温度が高すぎるとク
リストバライトという結晶(石英の結晶)になってしま
い、ポゾラン活性が小さくなってしまう。
Reference numeral 3 is a firing step, in which the rice husk 1 treated in the pretreatment step 2 is fired in a calcination device such as a rotary kiln, a shaft kiln or a fluidized bed furnace to obtain a calcined ash of the rice husk 1. The firing temperature of the rice husks in step 3 is preferably 600 to 700 ° C., and the firing time is preferably 1 to 2 hours. The burning temperature and the burning time are determined by the experimental results. As an experimental example, as shown in FIG. 2, for example, when the burning temperature is too high, the calcined ash is transformed into crystals called cristobalite (quartz crystal). And the pozzolanic activity becomes smaller.

【0009】すなわち、X線の回析と結晶格子の関係を
示す図2において、Aのケース(焼成温度600℃,燃
焼時間8hr)や、Bのケース(焼成温度700℃,焼
成時間8hr)の場合は非晶質でポゾラン活性を有する
が、これより高い焼成温度であるCのケース(焼成温度
800℃,燃焼時間4hr)では、回析角21〜22度
におけるX線の反射線(図のK部分)で明らかなよう
に、クリストバライト化現象が生じ、ポゾラン活性が小
さくなってしまうる。また、表2に示すように、焼成時
間が長すぎると表面積が小さくなり、活性指数が低下す
る傾向がある。ここで、ポゾラン活性とは、二酸化けい
素やアルミナ等の可溶性のけい酸等がセメントが水和す
る際に生成する水酸化カルシウムと常温のもとで徐々に
セメントと化合し、不活性の安定したけい酸カルシウム
等を生成する性質であり、その結果セメントペースト硬
化体が緻密になり、コンクリート強度が向上する。
That is, in FIG. 2 showing the relationship between the X-ray diffraction and the crystal lattice, the case A (firing temperature 600 ° C., burning time 8 hr) and the case B (firing temperature 700 ° C., firing time 8 hr) are used. In the case of C, which is amorphous and has pozzolanic activity, but has a higher firing temperature (firing temperature 800 ° C., burning time 4 hr), the X-ray reflection line at the diffraction angle of 21 to 22 degrees (see the figure As is clear in (K portion), the cristobalite phenomenon occurs and the pozzolanic activity becomes small. Further, as shown in Table 2, if the firing time is too long, the surface area tends to be small, and the activity index tends to decrease. Here, the pozzolanic activity means that the stable silicic acid such as silicon dioxide and alumina is gradually combined with the cement under normal temperature and calcium hydroxide generated when the cement is hydrated, and the stability of the inertness. It has the property of forming calcium silicate and the like, and as a result, the cement paste hardened body becomes dense and the concrete strength is improved.

【0010】[0010]

【表2】 [Table 2]

【0011】4は粉砕工程で、上記焼成工程3で得られ
た籾殻の焼成灰をボールミル粉砕により微粉末にする処
理工程である。なお、ミルの回転速度N(r.p.
m.)は32/ルートD(Dはボールミルの円筒の内径
m)により計算される値によっている。ミルの回転速度
をこの値に制御することにより、1〜5μmの粒径の非
晶質シリカ微粉末を最も多く得ることが出来る。すなわ
ち、焼成灰の粉砕時におけるミルの上記回転速度Nは実
験により決めたものであるが、この実験例として、例え
ば図3に示すように、ミルの回転速度Nが32/ルート
Dの場合には、1〜5μmの粒径のものが50.7%
(重量パーセント)を占めて最も多く、この1〜5μm
の粒径の微粉末はこれをコンクリートへ混入する際の混
練性能が最も優れている。
4 is a crushing step, which is a processing step in which the burned ash of the rice husks obtained in the above burning step 3 is crushed into fine powder by ball milling. The rotation speed N of the mill (rp.
m. ) Is based on a value calculated by 32 / root D (D is the inner diameter m of the cylinder of the ball mill). By controlling the rotation speed of the mill to this value, the largest amount of amorphous silica fine powder having a particle size of 1 to 5 μm can be obtained. That is, the rotation speed N of the mill at the time of crushing the calcined ash is determined by an experiment. As an example of this experiment, for example, when the rotation speed N of the mill is 32 / route D as shown in FIG. Is 50.7% with a particle size of 1-5 μm
(1% to 5 μm, occupying the most (weight percent)
The fine powder having a particle size of 10 is the best in the kneading performance when mixing it into concrete.

【0012】また、図4に示すものは、ミルの回転速度
Nが20/ルートDの場合の粒度分布を示し、この時に
は1μm以下の粒径のものが66.7%を占めて最も多
く、この粒径の微粉末はこれをコンクリートへ混入する
際に流動性が悪く、混練性能が劣る。したがって、ボー
ルミル粉砕においては、ミルの回転速度を小さくする
と、図4に示すように、ミル内のボールにより潰されて
微細粒径のものが多くなり、回転速度を大きくすると、
図3に示すように、粗粒になる傾向がある。実験結果と
して、微粉末の粒径が1〜5μmの範囲のものを多く得
る為には、ミルの回転速度Nを約32/ルートDにすれ
ばよい。そしてこの範囲の粒径の微粉末が高強度コンク
リートを得るのに適し、これより粒径が細かすぎると混
練時及び成形時の流動性が悪くなり、またこれより粒径
が粗すぎると充填効果が期待できず、高強度コンクリー
トが得られない。
Further, the one shown in FIG. 4 shows the particle size distribution when the rotation speed N of the mill is 20 / route D. At this time, particles having a particle size of 1 μm or less account for 66.7%, which is the largest. The fine powder having this particle size has poor fluidity when it is mixed with concrete, resulting in poor kneading performance. Therefore, in ball milling, if the rotation speed of the mill is reduced, as shown in FIG. 4, the particles in the mill are crushed to increase the number of fine particles, and if the rotation speed is increased,
As shown in FIG. 3, it tends to be coarse particles. As a result of the experiment, in order to obtain many fine powders having a particle size in the range of 1 to 5 μm, the rotation speed N of the mill should be about 32 / route D. And fine powder with a particle size in this range is suitable for obtaining high-strength concrete, if the particle size is too fine than this, the fluidity during kneading and molding becomes poor, and if the particle size is too coarse, the filling effect Can not be expected and high strength concrete cannot be obtained.

【0013】5はコンクリート混入工程で、上記粉砕工
程4により得られた非晶質シリカ微粉末をコンクリート
に混入する工程である。すなわち、コンクリートの混練
時にセメントに対して非晶質シリカ微粉末を水,骨材,
混和材等とともに混入して形成する。セメントに対する
非晶質シリカ微粉末の混合割合は約20%(重量比)が
望ましい。そして、この非晶質シリカ微粉末を混入した
コンクリートの圧縮強度は、表3に示すように、市販の
シリカヒュームを混入したコンクリートに比べて遜色の
ない、高強度コンクリートを得ることができる。
Reference numeral 5 is a concrete mixing step, which is a step of mixing the amorphous silica fine powder obtained in the crushing step 4 into concrete. That is, when the concrete is mixed, the amorphous silica fine powder is added to the cement with water, aggregate,
It is formed by mixing with an admixture. The mixing ratio of the amorphous silica fine powder to the cement is preferably about 20% (weight ratio). Further, as shown in Table 3, it is possible to obtain high-strength concrete in which the compressive strength of the concrete containing the amorphous silica fine powder is comparable to the concrete containing the commercially available silica fume.

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【発明の効果】本願発明は、上記のような構成であるか
ら、原料は大量に入手可能な籾殻であり、そして前処理
での塩酸処理を施した後、その焼成と粉砕といった比較
的容易な処理方法によって得ることができるものである
から、廉価に製造することが出来るとゝもに、品質が均
一であり、且つポゾラン活性に富む非晶質シリカ微粉末
を得ることができる。また、市販のボールミル等の粉砕
装置より適切な粒径のものに簡単に制御することができ
るとゝもに、これをコンクリート混入することにより、
一定強度の高強度コンクリートが得られるという諸効果
がある。
EFFECTS OF THE INVENTION In the present invention, the raw material is rice husk which can be obtained in a large amount because of the above-mentioned constitution, and after the hydrochloric acid treatment as the pretreatment is performed, the calcination and pulverization thereof are relatively easy. Since it can be obtained by a treatment method, it can be manufactured at low cost, and it is possible to obtain an amorphous silica fine powder having a uniform quality and a rich pozzolanic activity. Also, it is possible to easily control to a particle size that is more suitable than a crushing device such as a commercially available ball mill, and by mixing this with concrete,
There are various effects that high strength concrete with constant strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明に係る非晶質シリカ微粉末の製造工程
を示すブロック図である。
FIG. 1 is a block diagram showing a manufacturing process of amorphous silica fine powder according to the present invention.

【図2】燃焼温度と燃焼時間による結晶格子のX線回析
スペクトル図である。
FIG. 2 is an X-ray diffraction spectrum diagram of a crystal lattice according to combustion temperature and combustion time.

【図3】ミルの回転速度32/ルートD(但しDはミル
の内径m)時における粒径の分布図である。
FIG. 3 is a distribution diagram of particle diameters at a rotation speed of the mill of 32 / route D (where D is the inner diameter m of the mill).

【図4】ミルの回転速度30/ルートD(但しDはミル
の内径m)時における粒径の分布図である。
FIG. 4 is a distribution diagram of particle diameters at a rotation speed of the mill of 30 / route D (where D is the inner diameter m of the mill).

【符号の説明】[Explanation of symbols]

1 籾殻 2 前処理工程 3 焼成工程 4 粉砕工程 5 コンクリート混入工程 1 Rice husk 2 Pretreatment process 3 Firing process 4 Grinding process 5 Concrete mixing process

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩酸溶液に浸漬せしめた籾殻を焼成する
とゝもに、この焼成灰を粉砕して微粉末としたことを特
徴とする非晶質シリカ微粉末の製造方法。
1. A method for producing amorphous silica fine powder, characterized in that when the rice husk immersed in a hydrochloric acid solution is fired, the fired ash is crushed into fine powder.
【請求項2】 塩酸溶液に浸漬せしめた籾殻を焼成する
とゝもに、この焼成灰を粉砕して得た非晶質シリカ微粉
末がセメント内に混入された構成であることを特徴とす
るコンクリート製品。
2. A concrete characterized in that, when rice husks dipped in a hydrochloric acid solution are fired, amorphous silica fine powder obtained by crushing the fired ash is mixed in cement. Product.
JP2742092A 1992-01-17 1992-01-17 Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder Expired - Fee Related JPH0733249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2742092A JPH0733249B2 (en) 1992-01-17 1992-01-17 Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2742092A JPH0733249B2 (en) 1992-01-17 1992-01-17 Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder

Publications (2)

Publication Number Publication Date
JPH05194007A true JPH05194007A (en) 1993-08-03
JPH0733249B2 JPH0733249B2 (en) 1995-04-12

Family

ID=12220608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2742092A Expired - Fee Related JPH0733249B2 (en) 1992-01-17 1992-01-17 Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder

Country Status (1)

Country Link
JP (1) JPH0733249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444186B1 (en) * 2000-01-28 2002-09-03 Chk Group, Inc. Composition and method of forming low-carbon, amorphous siliceous ash from siliceous waste material
JP2004529054A (en) * 2001-02-19 2004-09-24 フンダソン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ Oxide extracted from plant material and extraction method
WO2007026680A1 (en) * 2005-08-31 2007-03-08 Kurimoto, Ltd. Amorphous silicon oxide powder and method for production thereof
JP2008214158A (en) * 2007-03-06 2008-09-18 Maywa Co Ltd Process for manufacturing amorphous silica from chaff
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
US7998448B2 (en) 2006-10-27 2011-08-16 Kurimoto, Ltd. Amorphous silica and its manufacturing method
WO2017022345A1 (en) * 2015-07-31 2017-02-09 勝義 近藤 Cement-based material for radioactive-waste disposal site

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311249A (en) * 2010-07-02 2012-01-11 侯美丽 Rice husk ash-containing concrete

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444186B1 (en) * 2000-01-28 2002-09-03 Chk Group, Inc. Composition and method of forming low-carbon, amorphous siliceous ash from siliceous waste material
JP2004529054A (en) * 2001-02-19 2004-09-24 フンダソン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ Oxide extracted from plant material and extraction method
WO2007026680A1 (en) * 2005-08-31 2007-03-08 Kurimoto, Ltd. Amorphous silicon oxide powder and method for production thereof
US8178067B2 (en) 2005-08-31 2012-05-15 Kurimoto, Ltd. Method of making amorphous silicon powder
JP5100385B2 (en) * 2005-08-31 2012-12-19 勝義 近藤 Method for producing amorphous silicon oxide powder
US7998448B2 (en) 2006-10-27 2011-08-16 Kurimoto, Ltd. Amorphous silica and its manufacturing method
JP2008214158A (en) * 2007-03-06 2008-09-18 Maywa Co Ltd Process for manufacturing amorphous silica from chaff
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
WO2017022345A1 (en) * 2015-07-31 2017-02-09 勝義 近藤 Cement-based material for radioactive-waste disposal site
KR20180002793A (en) 2015-07-31 2018-01-08 카츠요시 콘도 Cementitious materials for disposal of radioactive waste
JPWO2017022345A1 (en) * 2015-07-31 2018-04-05 勝義 近藤 Cement-based materials for radioactive waste disposal sites
US10807910B2 (en) 2015-07-31 2020-10-20 Katsuyoshi Kondoh Cementitious material for radioactive waste disposal facility

Also Published As

Publication number Publication date
JPH0733249B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
CN100497239C (en) Method for the treatment of fly ash
US3066031A (en) Cementitious material and method of preparation thereof
UA80001C2 (en) Process for producing blended cement with mineral supplements allowing for reducing carbon dioxide emission
CN109415257B (en) Fly ash, cement composition, and method for producing fly ash
CN111747672A (en) Superfine modified phosphorus slag powder and superfine composite admixture for concrete
US7537653B2 (en) Microsilica materials with improved pozzolanic activity
JPH05194007A (en) Production of amorphous silica fine powder and concrete blended with amorphous silica fine powder
JPH0158130B2 (en)
JP2006219348A (en) Hydraulic sintered material, cement composition and method of manufacturing hydraulic sintered material
JP6853438B2 (en) Method for Producing Highly Active Copper Slag Fine Powder, Highly Active Copper Slag Fine Powder and Cement Composition
JPH08268740A (en) Cement admixture, production of blended cement and device therefor
JP3673960B2 (en) Method for producing hydraulic powder
CN109476540B (en) Cement composition, method for producing same, and method for producing fly ash for cement composition
WO2002081398A2 (en) Additives for building industry obtained from by-products and process for their production
JP3016564B2 (en) Spherical cement and its production method
JPH0463008B2 (en)
JPH09241051A (en) Production of uncalcined aggregate
JPH04147923A (en) Production of globular particle
JPH0624728A (en) Production of cristobalite
JPH06115998A (en) Production of hydraulic composition
JP2002087854A (en) Low-heat cement consisting of clinker having high phosphorus content and blast furnace slag fine powder
CN114716173B (en) Resource utilization method for slag of circulating fluidized bed
JPH061654A (en) Manufacture of calcia clinker
JP7403252B2 (en) Cement products and methods of manufacturing cement products
JP3520561B2 (en) Method for producing dicalcium silicate fine powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees