JPH05192678A - Monitor of microorganism biota - Google Patents

Monitor of microorganism biota

Info

Publication number
JPH05192678A
JPH05192678A JP4008659A JP865992A JPH05192678A JP H05192678 A JPH05192678 A JP H05192678A JP 4008659 A JP4008659 A JP 4008659A JP 865992 A JP865992 A JP 865992A JP H05192678 A JPH05192678 A JP H05192678A
Authority
JP
Japan
Prior art keywords
microorganism
aeration tank
microorganisms
amount
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4008659A
Other languages
Japanese (ja)
Other versions
JP3103418B2 (en
Inventor
Kiyoshi Taguchi
清 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04008659A priority Critical patent/JP3103418B2/en
Publication of JPH05192678A publication Critical patent/JPH05192678A/en
Application granted granted Critical
Publication of JP3103418B2 publication Critical patent/JP3103418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To provide a monitor of a microorganism biota effective in control of an industrial waste water disposal equipment not to mention a sewage disposal plant by equipping a microorganism detector, a video switching device, a picture interface device and a picture processor and monitoring the microorganism biota in the inside of an aeration tank from the change in proliferation quantity of microorganisms of the downstream side and the inside of the aeration tank. CONSTITUTION:A monitor of a microorganism biota is equipped with a picture processor 1 constituted of microorganism detectors 8 provided in the upstream and downstream sides in the inside of an aeration tank 12, a video switching device 4 which inputs a moving image therefrom and also outputs a picture selected among the inputted pictures, a picture interface device 5 which converts the analog signal of a video signal into a digital signal, a microorganism quantity arithmetic unit 6 for calculating the microorganism quantity from picture information and a microorganism monitor 7 for detecting the change in proliferation quantity of microorganisms from the calculated result. The monitor of a microorganism biota is constituted so that the microorganism biota in the inside of the aeration tank 12 is monitored from the change in the quantity of microorganisms on the downstream side of the aeration tank 2 and the proliferation quantity of microorganisms in the aeration tank 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は下水処理場や廃水処理施
設などにおける被処理水中の微生物相の監視を行う微生
物相監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbial flora monitoring device for monitoring microbial flora in treated water in a sewage treatment plant, a wastewater treatment facility, or the like.

【0002】[0002]

【従来の技術】通常の下水処理場では主として活性汚泥
法による下水処理方式が採用されている。この下水処理
方式は、曝気槽内の下水に空気と活性汚泥を加えて活性
汚泥中の微生物の作用により下水中の基質濃度除去を行
なって下水の浄化(BOD負荷低下)を行なう処理方式
である。
2. Description of the Related Art Sewage treatment systems using an activated sludge method are mainly used in ordinary sewage treatment plants. This sewage treatment system is a treatment system in which air and activated sludge are added to the sewage in the aeration tank to remove the substrate concentration in the sewage by the action of microorganisms in the activated sludge to purify the sewage (reduce BOD load). ..

【0003】一般的に、基質濃度除去過程における微生
物は、曝気槽入口付近では高BODとなってズーグレア
類などの凝集性微生物が増殖し易く、曝気槽出口では低
BODとなってスフェロティルス類などの糸状性微生物
が増殖し易い。糸状性微生物がある一定値以上増殖する
と、バルキング現象を起こして沈降性汚泥が得られなく
なり処理水質が著しく低下する。そのため下水処理管理
者は常に曝気槽内の糸状性微生物の管理を行なってい
る。この管理は曝気槽内の汚泥をサンプリングして顕微
鏡などによる観察を行うことであるので、大変な手間と
時間を費やしている。
Generally, the microorganisms in the process of removing the substrate concentration have a high BOD near the inlet of the aeration tank, and aggregating microorganisms such as zooglares easily proliferate, and have a low BOD at the outlet of the aeration tank, resulting in spherotilus. Filamentous microorganisms such as tend to proliferate. When the filamentous microorganism grows above a certain value, a bulking phenomenon occurs and sedimentation sludge cannot be obtained, resulting in a marked decrease in treated water quality. Therefore, the sewage treatment manager always manages filamentous microorganisms in the aeration tank. Since this management is to sample the sludge in the aeration tank and observe it with a microscope, it takes a lot of time and effort.

【0004】また、最近オンライン画像処理装置による
曝気槽内微生物監視方式が報告されているが、この方式
では曝気槽内測定個所が1ケ所であるため曝気槽入口か
ら出口までの微生物の挙動が把握出来ない。
Further, recently, a method for monitoring microorganisms in the aeration tank by an online image processing device has been reported. However, in this method, since there is only one measurement point in the aeration tank, the behavior of microorganisms from the aeration tank inlet to the outlet can be grasped. Can not.

【0005】[0005]

【発明が解決しようとする課題】ところで、曝気槽内の
基質濃度は入口付近で適度な空気と活性汚泥により基質
吸着が行なわれ、出口では糸状性微生物量は適度な値に
維持される。しかし、返送汚泥量や曝気量が不適切の場
合、曝気槽内DOやMLSS濃度の不完全な状態が発生
し、糸状性微生物が曝気槽中央部でも増殖する状態が発
生する。この様に糸状性微生物の増殖環境は曝気槽内D
OやMLSS濃度により位置が特定出来ない場合が多
い。従って、従来方式のように曝気槽内の測定個所が1
ケ所の場合、糸状性微生物が発生していても検出不可能
であったり、増殖量が把握出来ないという欠点があっ
た。
The substrate concentration in the aeration tank is appropriately adsorbed by air and activated sludge near the inlet, and the amount of filamentous microorganisms is maintained at an appropriate value at the outlet. However, if the amount of sludge to be returned or the amount of aeration is inappropriate, an incomplete state of DO or MLSS concentration in the aeration tank occurs, and a state in which filamentous microorganisms grow even in the central part of the aeration tank. In this way, the growth environment of filamentous microorganisms is
In many cases, the position cannot be specified depending on the O or MLSS concentration. Therefore, the number of measurement points in the aeration tank is 1 as in the conventional method.
In the case of a place, there are drawbacks that even if filamentous microorganisms are generated, they cannot be detected or the amount of growth cannot be grasped.

【0006】本発明は上記欠点を解消するためになされ
たもので、その目的は、曝気槽内入口から出口までの間
に2ケ所以上の微生物検出装置を設置し、曝気槽上流か
ら下流までの間の糸状性微生物の増殖量の把握と、曝気
槽内糸状性微生物の相対量により微生物相の変化を把握
することにより返送汚泥量や曝気量の判断をし、さらに
はバルキング予知を行なうことのできる微生物相監視装
置を提供することにある。
The present invention has been made in order to solve the above-mentioned drawbacks, and an object thereof is to install two or more microorganism detecting devices between the inlet and the outlet of the aeration tank, and to install the microorganisms from the upstream side to the downstream side of the aeration tank. It is possible to determine the amount of sludge to be returned and the amount of aeration by grasping the amount of growth of filamentous microorganisms during the period and the change in microflora by the relative amount of filamentous microorganisms in the aeration tank, and to perform bulking prediction. An object of the present invention is to provide a microflora monitoring device that can be used.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の微生物相監視装置は、曝気槽内の上流側お
よび下流側に設置された微生物検出装置と、この微生物
検出装置からの動画像を入力するとともにこの入力画像
の中から選択された画像を出力する映像切換装置と、映
像信号であるアナログ信号をディジタル信号に変換する
画像インタフェース装置と、前記画像情報から微生物量
を演算する微生物量演算装置およびこの微生物量演算装
置の演算結果より微生物増殖量の変化を検出する微生物
監視装置とからなる画像処理装置を備え、前記曝気槽下
流側の微生物量と当該曝気槽内の微生物増殖量の変化か
ら当該曝気槽内の微生物相の監視を行なうことを特徴と
する。
In order to achieve the above-mentioned object, a microbial flora monitoring apparatus of the present invention comprises a microbial detection apparatus installed upstream and downstream in an aeration tank, and a microbial detection apparatus A video switching device for inputting a moving image and outputting an image selected from the input images, an image interface device for converting an analog signal which is a video signal into a digital signal, and calculating the amount of microorganisms from the image information. An image processing device comprising a microorganism amount calculation device and a microorganism monitoring device for detecting a change in the amount of growth of microorganisms based on the calculation result of the microorganism amount calculation device, wherein the amount of microorganisms on the downstream side of the aeration tank and the growth of microorganisms in the aeration tank It is characterized in that the microflora in the aeration tank is monitored from changes in the amount.

【0008】[0008]

【作用】本発明の微生物相監視装置によると、曝気槽上
流から下流までの間の糸状性微生物の増殖量と、曝気槽
内の糸状性微生物相の変化を把握することができるの
で、返送汚泥量や曝気量を正確に判断できるとともにバ
ルキング予知を行なうことができる。
According to the microflora monitoring device of the present invention, it is possible to grasp the growth amount of the filamentous microorganisms from the upstream to the downstream of the aeration tank and the change of the filamentous microflora in the aeration tank, and thus the returned sludge The amount and aeration amount can be accurately determined, and bulking prediction can be performed.

【0009】[0009]

【実施例】本発明の実施例を図を参照して説明する。図
1は本発明の一実施例の構成図であり、同図において、
1は画像処理装置で,エンジニアリングワークステーシ
ョンであり、演算処理部、記憶部、入力処理部、キーボ
ード、マウス、CRTより構成され映像情報を画像処理
する装置、2はCRT、3は切換制御装置、4は映像切
換装置で,A及びB位置に設置されたそれぞれの微生物
検出装置8からの入力に対し切換制御装置3からの画像
選択信号により指定された映像信号が出力される切換回
路で構成されている。5は映像アナログ信号をディジタ
ル信号に変換する画像インタフェース装置、6は微生物
量演算装置、7は微生物監視装置であり,両装置は画像
処理装置1に内蔵され、それぞれ糸状性微生物量と糸状
性微生物増殖量の計算を行い、その監視をする。8は微
生物検出装置で防水式水中顕微鏡構造になっており、微
生物密閉部、CCDカメラで構成した撮像部及び光照射
部からなり、曝気槽水中に固定して設置され、一般的な
工業用テレビカメラと同じ原理で曝気槽内微生物映像を
同軸ケーブルを通して映像切換装置4に入力する。微生
物検出装置設置場所は流入下水路に近い曝気槽の上流側
のA位置及び下流側のB位置に設置する。10は流入下
水路、11は返送汚泥管、12は曝気槽、13は沈殿池
である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. In FIG.
Reference numeral 1 is an image processing apparatus, an engineering workstation, which is an apparatus for processing image information of video information, which is composed of an arithmetic processing unit, a storage unit, an input processing unit, a keyboard, a mouse, and a CRT, 2 is a CRT, 3 is a switching control device, A video switching device 4 is composed of a switching circuit for outputting a video signal designated by an image selection signal from the switching control device 3 in response to inputs from the respective microorganism detecting devices 8 installed at positions A and B. ing. Reference numeral 5 is an image interface device for converting a video analog signal into a digital signal, 6 is a microorganism amount computing device, and 7 is a microorganism monitoring device. Both of these devices are built in the image processing device 1, and the amounts of filamentous microorganisms and filamentous microorganisms are respectively provided. Calculate the amount of proliferation and monitor it. Reference numeral 8 is a microorganism detection device, which has a waterproof underwater microscope structure, and is composed of a microorganism sealing part, an image pickup part composed of a CCD camera and a light irradiation part, which is fixedly installed in the aeration tank water, and is a general industrial TV. The image of microorganisms in the aeration tank is input to the image switching device 4 through the coaxial cable by the same principle as that of the camera. Microorganism detection devices are installed at positions A on the upstream side and B on the downstream side of the aeration tank near the inflow sewer. Reference numeral 10 is an inflow sewer, 11 is a returning sludge pipe, 12 is an aeration tank, and 13 is a sedimentation tank.

【0010】次に、本実施例の作用について説明する。
微生物検出装置8の微生物密閉部に曝気槽微生物が汚泥
と共に閉じ込められると、この閉じ込められた微生物は
光照射部からの光により照射され、その画像を撮像部の
CCDテレビカメラで撮像し、その映像は動画として同
軸ケーブルで映像切換装置4に伝送される。
Next, the operation of this embodiment will be described.
When the aeration tank microorganisms are confined in the microorganism sealing unit of the microorganism detecting device 8 together with the sludge, the confined microorganisms are irradiated by the light from the light irradiation unit, and the image is captured by the CCD television camera of the image capturing unit, and the image thereof is obtained. Is transmitted as a moving image to the video switching device 4 by a coaxial cable.

【0011】映像切換装置4では微生物検出装置8から
A及びB位置の映像(以下A映像、B映像という)が入
力されるが、A映像の出力後一定時間経由してB映像が
出力される。さらに、一定時間経過後A映像が出力する
ように切換制御装置3により制御される。切換制御装置
3より微生物量演算装置6にA及びB位置の微生物検出
装置8,8の切換信号が入力されるが、これは微生物量
演算装置6が画像処理する場合に同期を取る必要がある
ためである。選択された映像は画像インタフェース装置
5により映像アナログ信号からディジタル信号に変換さ
れ、画像処理装置1に入力された情報は画像処理アルゴ
リズムに従って演算処理される。
In the image switching device 4, the images at the A and B positions (hereinafter referred to as A image and B image) are input from the microorganism detecting device 8, but the B image is output after a certain time has elapsed after the output of the A image. .. Further, the switching control device 3 controls so that the A image is output after a lapse of a certain time. The switching control device 3 inputs a switching signal for the microorganism detecting devices 8, 8 at the A and B positions to the microorganism amount calculating device 6, which must be synchronized when the microorganism amount calculating device 6 performs image processing. This is because. The selected video is converted from a video analog signal into a digital signal by the image interface device 5, and the information input to the image processing device 1 is arithmetically processed according to an image processing algorithm.

【0012】微生物量演算装置6ではこの画像処理アル
ゴリズムが実行されるが、以下、図3のフロー図により
説明する。
The image processing algorithm is executed in the microorganism quantity computing device 6, which will be described below with reference to the flow chart of FIG.

【0013】まず、画像が入力されると線形状抽出画像
処理が実行される。この内容は原画像入力に線強調フィ
ルタ処理した後、差分フィルタ処理を行なう。次に、フ
ロック辺縁部抽出処理が実行される。この処理は原画像
入力と線形状抽出処理後の画像に線形状平滑化処理した
後、広域空間フィルタ処理を行なって2値化処理する。
次に、フロック中心部抽出処理を実行する。これは原画
像入力から背景補正処理し、2値化処理した後線形状除
去処理をする。フロック辺縁部抽出とフロック中心部抽
出した後、両者をフロック合成する。
First, when an image is input, line shape extraction image processing is executed. This content is subjected to a line filter processing on the original image input and then a difference filter processing. Next, a floc edge extraction process is executed. In this process, the image after the input of the original image and the line shape extraction processing is subjected to the line shape smoothing processing, and then the wide area spatial filtering processing is performed to perform the binarization processing.
Next, a floc center portion extraction process is executed. In this processing, background correction processing is performed from the original image input, binarization processing is performed, and then line shape removal processing is performed. After extracting the flock edge portion and the flock center portion, both are subjected to flock synthesis.

【0014】次に、線形状抽出された画像よりフロック
合成した画像を減算して微小領域除去及び細線化処理を
行なって線形状部分の面積をカウントして糸状性微生物
を計量する。
Next, the floc-synthesized image is subtracted from the image extracted from the linear shape to remove the minute areas and to perform thinning processing to count the area of the linear shape portion and measure the filamentous microorganisms.

【0015】図5及び図6に画像処理した一例を示す。
すなわち、図5は線形状抽出された画像を示し、この画
像からフロック合成処理されたメッシュ部分を差し引い
て図6の様な糸状性微生物画像を得る。この画像の糸状
性部分の面積をカウントする事により糸状性微生物量が
計測出来る。
FIG. 5 and FIG. 6 show examples of image processing.
That is, FIG. 5 shows an image of which the line shape has been extracted, and the filamentous microbial image as shown in FIG. 6 is obtained by subtracting the mesh part subjected to the flock synthesis processing from this image. The amount of filamentous microorganisms can be measured by counting the area of the filamentous portion of this image.

【0016】次に、微生物検出装置8のA,B両画像入
力の切換処理を図2のフロー図を参照して説明する。ま
ず、曝気槽上流側に設置された微生物検出装置8のA画
像を入力し、糸状性微生物量を前記の要領で計算しAs
としてメモリに格納する。同様にして曝気槽下流側に設
置された微生物検出装置8のB画像を入力し、糸状性微
生物量を計算しBs としてメモリに格納する。これをn
回サンプリングしAs1…Asn及びBs1…Bsnを得る。
Next, the switching process of inputting both A and B images of the microorganism detecting device 8 will be described with reference to the flow chart of FIG. First, type A image of a microorganism detection apparatus 8 installed in the aeration tank upstream, to calculate the filamentous microorganism amount in the manner of the A s
Is stored in memory as. Similarly, the B image of the microorganism detecting device 8 installed on the downstream side of the aeration tank is input, the amount of filamentous microorganisms is calculated, and stored as B s in the memory. This is n
Sampling is performed twice to obtain A s1 ... A sn and B s1 ... B sn .

【0017】次に、微生物監視装置7に前記で得られた
糸状性微生物量Asn,Bsnを入力し、曝気槽内糸状性微
生物の増殖量を求める。これを図4により説明する。す
なわち、図4の上式
Next, the amounts of filamentous microorganisms Asn and Bsn obtained above are input to the microorganism monitoring device 7 to determine the growth amount of filamentous microorganisms in the aeration tank. This will be described with reference to FIG. That is, the upper formula of FIG.

【数1】 によりn回測定時の平均値が規定値S1 を超えたとき
に、バルキング予知警報とする。
[Equation 1] Therefore, when the average value of n times of measurements exceeds the specified value S 1 , a bulking prediction warning is issued.

【0018】また、図4の下式Further, the following equation in FIG.

【数2】 により曝気槽上流側から下流側への糸状性微生物増殖量
を求める。このままでも曝気槽内微生物量の挙動は可能
であるが、上流側から下流側への微生物移動を時間的変
化として扱う場合は、前記Bsiを曝気槽流体移動時間
(T)後の値を使用すれば可能である。規定値S2 を超
えた場合はバルキング予知警報とする。
[Equation 2] The amount of filamentous microbial growth from the upstream side to the downstream side of the aeration tank is calculated by. The behavior of the amount of microorganisms in the aeration tank is still possible as it is, but when treating the movement of microorganisms from the upstream side to the downstream side as a temporal change, the value after the aeration tank fluid movement time (T) is used as B si. It is possible if you do. If the specified value S 2 is exceeded, a bulking prediction warning is given.

【0019】上述したように、本実施例では曝気槽内糸
状性微生物量により活性汚泥の微生物状態を直接管理す
る事が出来るため下水処理制御に極めて有効な手段とな
る。しかも、糸状性微生物量のサンプリング平均値を使
用するため測定誤差を避ける事ができる。また、曝気槽
の上流側と下流側の糸状性微生物の増殖量により曝気槽
内微生物の挙動が把握しやすく曝気槽制御対象であるD
O制御や返送汚泥量制御への支援が適確に行なえる。
As described above, in this embodiment, the microbial state of the activated sludge can be directly controlled by the amount of filamentous microorganisms in the aeration tank, which is an extremely effective means for controlling sewage treatment. Moreover, since the sampling average value of the amount of filamentous microorganisms is used, measurement error can be avoided. In addition, the behavior of the microorganisms in the aeration tank can be easily grasped by the growth amounts of the filamentous microorganisms on the upstream side and the downstream side of the aeration tank, which is an aeration tank control target.
Support for O control and return sludge amount control can be performed accurately.

【0020】なお、本実施例では微生物検出装置を2台
使用しているが、映像切換装置の使用により画像処理装
置1台で複数台の微生物検出装置が接続可能となり、微
生物相の詳細監視が可能となり、経済的な微生物相監視
装置の構築が可能である。また、本実施例では糸状性微
生物量の監視であるが、その他の微生物又は汚泥フロッ
クの監視も可能であることは勿論である。さらに、本発
明は上記実施例のような下水処理分野に限らず、活性汚
泥法の処理を行なう産業排水処理分野においても適用可
能である。
In this embodiment, two microorganism detecting devices are used, but by using the image switching device, a plurality of microorganism detecting devices can be connected with one image processing device, and detailed monitoring of the microflora can be performed. It becomes possible and an economical microflora monitoring device can be constructed. Further, in the present embodiment, the amount of filamentous microorganisms is monitored, but it goes without saying that other microorganisms or sludge flocs can also be monitored. Furthermore, the present invention is applicable not only to the field of sewage treatment as in the above embodiment, but also to the field of industrial wastewater treatment in which activated sludge treatment is performed.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば返
送汚泥量や曝気量を正確に判断できるとともにバルキン
グ現象による処理水質悪化か、キャリーオーバによる単
なる汚泥過負荷による水質悪化なのかの判定が簡単に可
能となるので、下水処理場は勿論産業廃水処理施設の管
理に有効な微生物相監視装置を提供することができる。
As described above, according to the present invention, it is possible to accurately determine the amount of sludge to be returned and the amount of aeration, and it is possible to determine whether the treated water quality is deteriorated due to the bulking phenomenon or the water quality is deteriorated due to mere sludge overload due to carryover. Therefore, it is possible to provide a microbial flora monitoring device effective for managing industrial wastewater treatment facilities as well as sewage treatment plants.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明で適用される微生物量のサンプリング方
法を示すフロー図。
FIG. 2 is a flowchart showing a method for sampling the amount of microorganisms applied in the present invention.

【図3】本発明で適用される画像処理アルゴリズムのフ
ロー図。
FIG. 3 is a flowchart of an image processing algorithm applied in the present invention.

【図4】本発明によるバルキング予知を示す判定式を示
した図。
FIG. 4 is a diagram showing a judgment formula indicating bulking prediction according to the present invention.

【図5】本発明による画像処理の一例を示す図。FIG. 5 is a diagram showing an example of image processing according to the present invention.

【図6】本発明による画像処理の一例を示す図。FIG. 6 is a diagram showing an example of image processing according to the present invention.

【符号の説明】[Explanation of symbols]

1…画像処理装置、2…CRT、3…切換制御装置、4
…映像切換装置、5…画像インタフェース装置、6…微
生物量演算装置、7…微生物監視装置、8…微生物検出
装置、10…流入下水路、11…返送汚泥管、12…曝
気槽、13…沈殿池。
1 ... Image processing device, 2 ... CRT, 3 ... Switching control device, 4
... video switching device, 5 ... image interface device, 6 ... microorganism amount calculation device, 7 ... microorganism monitoring device, 8 ... microorganism detection device, 10 ... inflow sewer, 11 ... return sludge pipe, 12 ... aeration tank, 13 ... sedimentation pond.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 曝気槽内の上流側および下流側に設置さ
れた微生物検出装置と、この微生物検出装置からの動画
像を入力するとともにこの入力画像の中から選択された
画像を出力する映像切換装置と、映像信号であるアナロ
グ信号をディジタル信号に変換する画像インタフェース
装置と、前記画像情報から微生物量を演算する微生物量
演算装置およびこの微生物量演算装置の演算結果より微
生物増殖量の変化を検出する微生物監視装置とからなる
画像処理装置を備え、前記曝気槽下流側の微生物量と当
該曝気槽内の微生物増殖量の変化から当該曝気槽内の微
生物相の監視を行なうことを特徴とする微生物相監視装
置。
1. A microorganism detecting device installed upstream and downstream in an aeration tank, and a video switch for inputting a moving image from this microorganism detecting device and outputting an image selected from this input image. A device, an image interface device for converting an analog signal which is a video signal into a digital signal, a microbial amount computing device for computing a microbial amount from the image information, and a change in microbial growth amount is detected from a computation result of the microbial amount computing device. And a microorganism monitoring device for monitoring the microbial flora in the aeration tank based on changes in the amount of microorganisms on the downstream side of the aeration tank and the amount of growth of microorganisms in the aeration tank. Phase monitoring device.
JP04008659A 1992-01-21 1992-01-21 Microflora monitoring device Expired - Fee Related JP3103418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04008659A JP3103418B2 (en) 1992-01-21 1992-01-21 Microflora monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04008659A JP3103418B2 (en) 1992-01-21 1992-01-21 Microflora monitoring device

Publications (2)

Publication Number Publication Date
JPH05192678A true JPH05192678A (en) 1993-08-03
JP3103418B2 JP3103418B2 (en) 2000-10-30

Family

ID=11699062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04008659A Expired - Fee Related JP3103418B2 (en) 1992-01-21 1992-01-21 Microflora monitoring device

Country Status (1)

Country Link
JP (1) JP3103418B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340373A1 (en) * 1982-11-10 1985-02-14 Matsushita Electric Works, Ltd., Kadoma, Osaka TIME SWITCH
KR100352210B1 (en) * 1999-12-20 2002-09-12 이영재 Real time monitoring apparatus of microbe in under water
GB2482998A (en) * 2007-05-10 2012-02-22 Patrick T O'regan Jr Controlling a water treatment process via sensors
CN108469770A (en) * 2017-12-22 2018-08-31 中山市和智电子科技有限公司 A kind of sewage disposal debugging system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340373A1 (en) * 1982-11-10 1985-02-14 Matsushita Electric Works, Ltd., Kadoma, Osaka TIME SWITCH
KR100352210B1 (en) * 1999-12-20 2002-09-12 이영재 Real time monitoring apparatus of microbe in under water
GB2482998A (en) * 2007-05-10 2012-02-22 Patrick T O'regan Jr Controlling a water treatment process via sensors
CN108469770A (en) * 2017-12-22 2018-08-31 中山市和智电子科技有限公司 A kind of sewage disposal debugging system

Also Published As

Publication number Publication date
JP3103418B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
CN116233370B (en) Intelligent video monitoring method based on water quality monitoring
JP3103418B2 (en) Microflora monitoring device
CN114849316A (en) Automatic control system for intelligent backwashing filtration
CN114904319A (en) Wastewater treatment availability test system and method based on Internet of things
JP3323157B2 (en) Water treatment state monitoring device
JP7171445B2 (en) water treatment system
KR870002270A (en) Device for measuring concentration of filamentous microorganisms in mixed solution including microorganisms
JPH0462798B2 (en)
JPH0649195B2 (en) Microorganism detection device
KR20020087802A (en) The system for monitoring and analyzing of the quality of water and atmosphere
JP2530866B2 (en) Controller for activated sludge process
Nisar et al. Application of imaging techniques for monitoring flocs in activated sludge
Yong et al. An approach for the segmentation and quantification of activated sludge floc blobs
JPS6253792A (en) Apparatus for detecting microorganism phase
JPH079000A (en) Apparatus for evaluating agglomeration condition of sludge
JPH02229597A (en) Method for recognizing image of activated sludge
JP3852505B2 (en) Sludge retention measuring device
Yu On-line evaluating the SS removals for chemical coagulation using digital image analysis and artificial neural networks
JPH0636187B2 (en) Image processing device
JPH0671598B2 (en) Image recognition method for activated sludge
JPH06296958A (en) Device for supporting operation of purification equipment in stored water
CN108675439A (en) A method of selection sewage disposal process regulation measure
JP2007146422A (en) Water intake system
JPH0628453A (en) Microorganism recognizing device and monitoring method by the device
JPH08197084A (en) Biological phase diagnosis support system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees