JPH05190978A - Semiconductor photointegrated element - Google Patents

Semiconductor photointegrated element

Info

Publication number
JPH05190978A
JPH05190978A JP2057392A JP2057392A JPH05190978A JP H05190978 A JPH05190978 A JP H05190978A JP 2057392 A JP2057392 A JP 2057392A JP 2057392 A JP2057392 A JP 2057392A JP H05190978 A JPH05190978 A JP H05190978A
Authority
JP
Japan
Prior art keywords
semiconductor
conductivity type
gaas
multilayer film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2057392A
Other languages
Japanese (ja)
Other versions
JP2853432B2 (en
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4020573A priority Critical patent/JP2853432B2/en
Publication of JPH05190978A publication Critical patent/JPH05190978A/en
Application granted granted Critical
Publication of JP2853432B2 publication Critical patent/JP2853432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make only one time step suffice for crystal growth by a method wherein the conductivity type of the third semiconductor layer and the second semiconductor multilayer film reflector is changed to the second conductivity type so as to form a re-light emitting semiconductor laser while a bipolar transistor is formed in the remaining region. CONSTITUTION:The conductivity type of a p-Al0.4Ga0.6As 26, a p-GaAs/AlAs multilayer film reflector 27 and a p-GaAs 28 is changed downward, from n type to p type by diffusing Zn downward in an n-Al0.25Ga0.75As 19, an n GaAs/ AlAs multilayer film reflector 20 and an n-GaAs 21 only. The interval between upper and lower two multilayer film reflectors 20 and 12 is specified to be 2lambda while a p-InGaAs active layer 16 is to be interposed between the two reflectors 20 and 12 thereby enabling the layer 16 to be positioned on the center of the stationary wave raised in a resonator. Through these procedures, the collector of a bipolar transistor can be connected to one side of a surface light emitting laser by an n-contact electrode 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光インターコネクション
や光コンピュータに使われる半導体光集積素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical integrated device used in optical interconnection and optical computers.

【0002】[0002]

【従来の技術】これらの応用ではスマートピクセルと呼
ばれる発光や受光、光メモリや光閾値などの機能を持っ
た光機能素子が最小単位となって構成される。このよう
な光機能素子としては図2のようなものが報告されてい
る。A.Von Lehmen等によって1991年に
米国で開催されたCLEO’91のテクニカルダイジェ
スト(CMF7、46頁〜49頁)に詳細が述べられて
いる。GaAs基板の上にnpnフォトトランジスタが
作られ、その上にInGaAs量子井戸層を活性層とす
る面発光半導体レーザが作られている。面発光半導体レ
ーザの上側と下側の反射鏡はλ/4厚(λは半導体内で
の発振波長)でGaAsとAlAsが交互に積層された
半導体多層膜よりなる。この素子ではフォトトランジス
タに光を入射すると電流が面発光レーザに流れ、それに
よってレーザ光が出る。レーザ光はGaAs基板を通し
て下側に出る。
2. Description of the Related Art In these applications, an optical functional element having functions such as light emission and light reception, an optical memory and an optical threshold, which is called a smart pixel, is constituted as a minimum unit. As such an optical functional device, a device as shown in FIG. 2 has been reported. A. Details are described in the technical digest of CLEO'91 (CMF7, pp. 46-49) held in the United States in 1991 by Von Lehmen et al. An npn phototransistor is formed on a GaAs substrate, and a surface emitting semiconductor laser having an InGaAs quantum well layer as an active layer is formed on the npn phototransistor. The upper and lower reflecting mirrors of the surface emitting semiconductor laser are made of a semiconductor multilayer film in which GaAs and AlAs are alternately laminated with a thickness of λ / 4 (λ is an oscillation wavelength in the semiconductor). In this device, when light is incident on the phototransistor, a current flows through the surface emitting laser, which causes laser light to be emitted. The laser light goes out to the lower side through the GaAs substrate.

【0003】[0003]

【発明が解決しようとする課題】この素子の問題点は層
厚方向に素子が高くなってしまうことである。面発光レ
ーザに使う半導体多層膜反射鏡の反射率はレーザの発振
閾値電流を下げるためには99.9%ちかく必要であ
る。そして、そのためには何層もGaAs層とAlAs
層を積まねばならない。図2の例では面発光レーザの部
分だけで約7μmになる。このくらいの段差がつくと下
の(フォト)トランジスタを微細加工することは困難と
なる。図2の層構成では下側にトランジスタをさらに作
り込み、それによって図2の素子では実現できない光メ
モリなどの機能を盛り込むことも考えられるが、加工が
難しいので実際にはできなかった。
The problem with this device is that the device becomes taller in the layer thickness direction. The reflectance of the semiconductor multilayer film reflecting mirror used for the surface emitting laser is required to be 99.9% or so in order to lower the oscillation threshold current of the laser. And for that, many layers of GaAs and AlAs
You have to stack the layers. In the example of FIG. 2, it is about 7 μm only for the surface emitting laser portion. If such a step is formed, it becomes difficult to finely process the lower (photo) transistor. In the layer structure shown in FIG. 2, a transistor may be further formed on the lower side, and thereby a function such as an optical memory which cannot be realized by the element shown in FIG. 2 may be incorporated, but this is not possible because it is difficult to process.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものである。本発明による半導体光
集積素子は、半導体基板の上に第一導電型の第1の半導
体多層膜反射鏡、第一導電型の第1半導体層、第一導電
型とは反対の第二導電型の第2半導体層、第一導電型の
第3半導体層、および第一導電型の第2の半導体多層膜
反射鏡が形成され、前記第2半導体層のなかにそれより
も小さい禁制帯幅の活性半導体層が形成されており、そ
れらの一部の領域で第3半導体層と第2の半導体多層膜
反射鏡とを第二導電型を変えることによって面発光半導
体レーザが形成され、残りの領域にバイポーラトランジ
スタが形成されていることを特徴とする。
The present invention has been made to solve the above problems. The semiconductor optical integrated device according to the present invention comprises a first conductive type first semiconductor multilayer film reflecting mirror, a first conductive type first semiconductor layer, and a second conductive type opposite to the first conductive type on a semiconductor substrate. Of the second semiconductor layer, the third semiconductor layer of the first conductivity type, and the second semiconductor multilayer mirror of the first conductivity type are formed, and the forbidden band width smaller than that in the second semiconductor layer. An active semiconductor layer is formed, and a surface emitting semiconductor laser is formed by changing the second conductivity type of the third semiconductor layer and the second semiconductor multilayer film reflecting mirror in a partial region thereof, and the remaining region is formed. Is characterized in that a bipolar transistor is formed.

【0005】[0005]

【原理】本発明では面発光半導体レーザとバイポーラト
ランジスタとを空間的に異なる位置に作る。第3半導体
層と第2の半導体多層膜反射鏡を第二導電型を変えるこ
とによってそこに面発光半導体レーザを形成し、残りの
領域にバイポーラトランジスタを形成することができ
る。それらを内部で配線すれば各種の機能が実現でき
る。このような半導体光集積素子では各半導体層を1回
の結晶成長で作るようにすることが大切である。結晶成
長を2回以上、使うような方法は2回目以降、成長時に
様々な問題が起こり、素子の歩止まり低下を引き起こ
す。スマートピクセルの数を非常に多数必要とするよう
な応用分野を想定しているのでこの点から結晶成長は1
回にとどめることが必要となる。本発明では結晶成長は
1回ですむ。
[Principle] In the present invention, a surface emitting semiconductor laser and a bipolar transistor are formed at spatially different positions. By changing the second conductivity type of the third semiconductor layer and the second semiconductor multilayer film reflecting mirror, a surface emitting semiconductor laser can be formed therein, and a bipolar transistor can be formed in the remaining region. Various functions can be realized by wiring them internally. In such a semiconductor optical integrated device, it is important to form each semiconductor layer by one crystal growth. The method of using the crystal growth twice or more causes various problems during the growth after the second time, which causes a decrease in the yield of the device. Since the application field that requires a very large number of smart pixels is assumed, the crystal growth is 1 from this point.
It is necessary to stay only once. In the present invention, the crystal growth only needs to be done once.

【0006】[0006]

【実施例】図1は本発明の一実施例を示す断面図であ
る。半絶縁性GaAs基板11の上にMBE法で各半導
体層を形成する。12はn−GaAs/AlAsの多層
膜反射鏡(24.5周期、ドーピング濃度は3x1018
cm-3、GaAs、AlAsの膜厚はλ/4に設定され
ている。λは半導体内での波長であり、素子の外では1
μmとなるようにしてある)、13はn−Al0.4 Ga
0.6 As(ドーピング濃度は3x1018cm-3、膜厚は
0.15μm)、14はn型グレーディド層(ドーピン
グ濃度は3x1018cm-3、膜厚は200A)である。
このn型グレーディド層のAl組成xは上方向にいくに
したがって0.4から0.25に変えてある。ベース−
コレクタ間をアブラプトからグレーディッドにすること
によりトランジスタ特性の向上が図られるからである。
15はアンドープのp- −Al0.25Ga0.75As(ドー
ピング濃度は1015cm-3以下、膜厚は500A)であ
る。MBEではアンドープ層はp- で濃度は1015cm
-3以下となる。
1 is a sectional view showing an embodiment of the present invention. Each semiconductor layer is formed on the semi-insulating GaAs substrate 11 by the MBE method. Numeral 12 is a multilayer mirror of n-GaAs / AlAs (24.5 period, doping concentration is 3 × 10 18).
The film thickness of cm −3 , GaAs, and AlAs is set to λ / 4. λ is the wavelength inside the semiconductor, and 1 outside the element
μm), 13 is n-Al 0.4 Ga
0.6 As (doping concentration 3 × 10 18 cm −3 , film thickness 0.15 μm), 14 is an n-type graded layer (doping concentration 3 × 10 18 cm −3 , film thickness 200 A).
The Al composition x of the n-type graded layer is changed from 0.4 to 0.25 as it goes upward. Base-
This is because the transistor characteristics can be improved by changing the grade between the collector and the collector.
Reference numeral 15 is undoped p -Al 0.25 Ga 0.75 As (doping concentration is 10 15 cm −3 or less, film thickness is 500 A). In MBE, the undoped layer is p and the concentration is 10 15 cm
-3 or less.

【0007】16はアンドープのp- −InGaAs活
性層(膜厚は100A)、17はアンドープのp- −A
0.25Ga0.75As(膜厚は500A)、18はp−A
0. 25Ga0.75As(ドーピング濃度は1x1019cm
-3、膜厚は100A)、19はn−Al0.4 Ga0.6
s(ドーピング濃度は3x1018cm-3、膜厚は0.1
5μm)、20はn−GaAs/AlAs多層膜反射鏡
(15周期、ドーピング濃度は3x1018cm-3、Ga
As、AlAsの膜厚はλ/4に設定されている。λは
半導体内での波長であり、素子の外では1μmとなるよ
うにしてある)、21はn−GaAs(ドーピング濃度
は1x1019cm-3、膜厚は1000A)、22、24
はAuGe−Niからなるn−コンタクト電極である。
23、25はp−コンタクト電極である。
Reference numeral 16 is an undoped p -- InGaAs active layer (thickness is 100 A), and 17 is an undoped p -- A.
l 0.25 Ga 0.75 As (film thickness is 500 A), 18 is p-A
l 0. 25 Ga 0.75 As (doping concentration 1x10 19 cm
-3 , film thickness 100 A), 19 is n-Al 0.4 Ga 0.6 A
s (doping concentration is 3 × 10 18 cm −3 , film thickness is 0.1
5 μm), 20 is an n-GaAs / AlAs multilayer mirror (15 cycles, doping concentration is 3 × 10 18 cm −3 , Ga
The film thickness of As and AlAs is set to λ / 4. λ is a wavelength inside the semiconductor, and is set to 1 μm outside the element), 21 is n-GaAs (doping concentration is 1 × 10 19 cm −3 , film thickness is 1000 A), 22, 24
Is an n-contact electrode made of AuGe-Ni.
23 and 25 are p-contact electrodes.

【0008】26はp−Al0.4 Ga0.6 As、27は
p−GaAs/AlAs多層膜反射鏡、28はp−Ga
Asであるが、これらは元々のn−Al0.25Ga0.75
s19、n−GaAs/AlAs多層膜反射鏡20、n
−GaAs21にこの部分だけ上側からZnを拡散する
ことによって導電型をn型からp型に変換してある。
26 is p-Al 0.4 Ga 0.6 As, 27 is p-GaAs / AlAs multilayer film reflecting mirror, 28 is p-Ga.
As, but these are the original n-Al 0.25 Ga 0.75 A
s19, n-GaAs / AlAs multilayer mirror 20, n
The conductivity type is converted from the n-type to the p-type by diffusing Zn from the upper side only in the -GaAs 21.

【0009】上下2つの多層膜反射鏡の間隔は2λでp
- −InGaAs活性層16はその中間に来るようにし
てある。これによってp- −InGaAs活性層16は
共振器内に立つ定在波の腹の位置に置くことができる。
The interval between the upper and lower two multilayer film reflecting mirrors is 2λ and p
- -InGaAs active layer 16 are to come in between. This allows the p -InGaAs active layer 16 to be placed at the antinode of the standing wave standing in the resonator.

【0010】バイポーラトランジスタのエミッタは5μ
m角、コレクタは25μm角であり電流利得は約100
である。また面発光レーザの直径は10μmである。発
振波長は1μm、閾値電流は約1mAである。バイポー
ラトランジスタのコレクタと面発光レーザの(−)側が
n−コンタクト電極24で結ばれているので等価回路と
しては図2の構成と同じとなる。素子の高さはバイポー
ラトランジスタ、面発光レーザとも同じであり、従来の
ような問題は発生しない。したがって数μmといった微
細なプロセスが可能となる。
The emitter of the bipolar transistor is 5μ
m-square, collector is 25μm-square and current gain is about 100
Is. The surface emitting laser has a diameter of 10 μm. The oscillation wavelength is 1 μm and the threshold current is about 1 mA. Since the collector of the bipolar transistor and the (-) side of the surface emitting laser are connected by the n-contact electrode 24, the equivalent circuit has the same configuration as that of FIG. The height of the device is the same as that of the bipolar transistor and the surface emitting laser, and the problem as in the past does not occur. Therefore, a fine process of several μm is possible.

【0011】[0011]

【発明の効果】本発明によれば段差の大きくついたとこ
ろでのプロセスが不要となり、1回の成長で面発光半導
体レーザとバイポーラトランジスタようのウェハーがで
き、それらを内部で様々に結線することにより各種の光
機能素子が実現できる。尚、実施例ではGaAs系で説
明したが他のInP系などの材料でも、もちろん適用可
能である。
EFFECTS OF THE INVENTION According to the present invention, there is no need for a process where there is a large step, and a wafer such as a surface emitting semiconductor laser and a bipolar transistor can be formed by one growth, and by connecting them internally variously. Various optical functional devices can be realized. In the embodiment, the GaAs-based material has been described, but other InP-based materials can of course be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来例を示す断面図。FIG. 2 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

11 半絶縁性GaAs基板 12 n−GaAs/AlAs多層膜反射鏡 13 n−Al0.4 Ga0.6 As 14 n型グレーディド層 15 p- −Al0.25Ga0.75As 16 p- −InGaAs活性層 17 p- −Al0.25Ga0.75As 18 p−Al0.25Ga0.75As 19 n−Al0.4 Ga0.6 As 20 n−GaAs/AlAs多層膜反射鏡 21 n−GaAs 22,24 n−コンタクト電極 23,25 p−コンタクト電極 26 p−Al0.4 Ga0.6 As 27 p−GaAs/AlAs多層膜反射鏡 28 p−GaAs11 semi-insulating GaAs substrate 12 n-GaAs / AlAs multilayer film reflective mirror 13 n-Al 0.4 Ga 0.6 As 14 n-type graded layer 15 p − − Al 0.25 Ga 0.75 As 16 p − − InGaAs active layer 17 p − Al 0.25 Ga 0.75 As 18 p-Al 0.25 Ga 0.75 As 19 n-Al 0.4 Ga 0.6 As 20 n-GaAs / AlAs multilayer mirror 21 n-GaAs 22, 24 n-contact electrode 23, 25 p-contact electrode 26 p-Al 0.4 Ga 0.6 As 27 p-GaAs / AlAs multilayer film reflecting mirror 28 p-GaAs

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の上に第一導電型の第1の半
導体多層膜反射鏡、第一導電型の第1半導体層、第一導
電型とは反対の第二導電型の第2半導体層、第一導電型
の第3半導体層、および第一導電型の第2の半導体多層
膜反射鏡が形成され、前記第2半導体層のなかにそれよ
りも小さい禁制帯幅の活性半導体層が形成されており、
それらの一部の領域で第3半導体層と第2の半導体多層
膜反射鏡とを第二導電型に変えることによって面発光半
導体レーザが形成され、残りの領域にバイポーラトラン
ジスタが形成されていることを特徴とする半導体光集積
素子。
1. A first semiconductor multilayer mirror of a first conductivity type on a semiconductor substrate, a first semiconductor layer of a first conductivity type, and a second semiconductor of a second conductivity type opposite to the first conductivity type. Layer, a third semiconductor layer of the first conductivity type, and a second semiconductor multilayer film mirror of the first conductivity type are formed, and an active semiconductor layer having a smaller forbidden band width than the second semiconductor layer is formed in the second semiconductor layer. Has been formed,
A surface emitting semiconductor laser is formed by changing the third semiconductor layer and the second semiconductor multilayer film reflecting mirror to the second conductivity type in some of these regions, and a bipolar transistor is formed in the remaining region. A semiconductor optical integrated device characterized by:
JP4020573A 1992-01-08 1992-01-08 Semiconductor optical integrated device Expired - Fee Related JP2853432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4020573A JP2853432B2 (en) 1992-01-08 1992-01-08 Semiconductor optical integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4020573A JP2853432B2 (en) 1992-01-08 1992-01-08 Semiconductor optical integrated device

Publications (2)

Publication Number Publication Date
JPH05190978A true JPH05190978A (en) 1993-07-30
JP2853432B2 JP2853432B2 (en) 1999-02-03

Family

ID=12030946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020573A Expired - Fee Related JP2853432B2 (en) 1992-01-08 1992-01-08 Semiconductor optical integrated device

Country Status (1)

Country Link
JP (1) JP2853432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848088A (en) * 1995-07-11 1998-12-08 Seiko Epson Corporation Surface emission type semiconductor for laser with optical detector, method of manufacturing thereof, and sensor using the same
JP2007503710A (en) * 2003-08-22 2007-02-22 ザ ボード オブ トラスティース オブ ザ ユニバーシティ オブ イリノイ Semiconductor device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848088A (en) * 1995-07-11 1998-12-08 Seiko Epson Corporation Surface emission type semiconductor for laser with optical detector, method of manufacturing thereof, and sensor using the same
JP2007503710A (en) * 2003-08-22 2007-02-22 ザ ボード オブ トラスティース オブ ザ ユニバーシティ オブ イリノイ Semiconductor device and method

Also Published As

Publication number Publication date
JP2853432B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US5724376A (en) Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US5903586A (en) Long wavelength vertical cavity surface emitting laser
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
EP0737376B1 (en) Integrated laser power monitor
US5317170A (en) High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays without a substrate
EP0709939B1 (en) Light emitting device and its fabrication method
US5283447A (en) Integration of transistors with vertical cavity surface emitting lasers
US5451767A (en) Optical modulator gate array including multi-quantum well photodetector
US5361273A (en) Semiconductor optical surface transmission device
US5978398A (en) Long wavelength vertical cavity surface emitting laser
US4910571A (en) Optical semiconductor device
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
US9190810B2 (en) Three-terminal vertical cavity surface emitting laser (VCSEL) and a method for operating a three-terminal VCSEL
JP3016302B2 (en) Pnpn semiconductor device and its driving circuit
US7221693B2 (en) Surface-emitting type semiconductor laser, optical module, and optical transmission device
JP2710171B2 (en) Surface input / output photoelectric fusion device
US5214663A (en) Semiconductor laser
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JP2853432B2 (en) Semiconductor optical integrated device
JP2757633B2 (en) Surface emitting semiconductor laser
GB2347558A (en) Array of wafer bonded vertical cavity surface emitting lasers
JPH07335976A (en) Surface emission laser device with light receiving element
US5541443A (en) Active optical logic device incorporating a surface-emitting laser
KR102465334B1 (en) VCSEL with Improved Yield and Operating Efficiency
JPH0590716A (en) Structure of surface-emission type semiconductor laser array

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020

LAPS Cancellation because of no payment of annual fees