JPH05190882A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH05190882A
JPH05190882A JP4019450A JP1945092A JPH05190882A JP H05190882 A JPH05190882 A JP H05190882A JP 4019450 A JP4019450 A JP 4019450A JP 1945092 A JP1945092 A JP 1945092A JP H05190882 A JPH05190882 A JP H05190882A
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
semiconductor substrate
cell element
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4019450A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Hirose
佳嗣 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4019450A priority Critical patent/JPH05190882A/en
Publication of JPH05190882A publication Critical patent/JPH05190882A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable packaging density to be improved and the surface to be flat while preventing deterioration of electrical characteristics in a solar cell where a plurality of solar cells, where a light-reception region is formed nearly in parallel to the surface of a semiconductor substrate and a surface electrode layer and a rear surface electrode layer are formed at the surface side and the rear surface side of the semiconductor substrate, are connected in series. CONSTITUTION:The title item is provided with one stage 14 which is formed by cutting both side surfaces of a solar cell element 10 from the front and rear surfaces, the other stage part, and a first wiring means 17 which is extended to the stage part 14 from a surface electrode layer 12, an electrode plate 31 where a rear surface electrode layer 13 is joined, and a second wiring mean 34 where an edge part of the first wiring means 17 and that of an electrode plate 32 of the other solar cell element 20 which is laid out being adjacent to it are connected directly below the other stage part 25 of the element 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ソーラーカーなどに搭
載される太陽電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell mounted on a solar car or the like.

【0002】[0002]

【従来の技術】ソーラーカーなどに搭載されたり、家屋
の屋根などに設置されたりする太陽電池の典型的なもの
は、直列接続される複数の太陽電池素子から成ってい
る。個々の太陽電池素子は、平板状の半導体基板の表面
から所定の深さにpn接合の受光領域を形成し、この半
導体基板の表面側には櫛の歯状や交叉指状の表面電極層
を形成すると共に、裏面側には板状の裏面電極層を形成
したサンドイッチ構造となっている。従って、サンドイ
ッチ構造の太陽電池素子を直列接続するには、一方の端
部では裏面電極層を前段の素子の表面電極層に接続する
と共に、反対側の端部では表面電極層を後段の素子の裏
面電極層に接続するという面倒な接続が必要になる。
2. Description of the Related Art A typical solar cell mounted on a solar car or installed on a roof of a house comprises a plurality of solar cell elements connected in series. Each solar cell element forms a light receiving region of a pn junction at a predetermined depth from the surface of a flat semiconductor substrate, and a comb-teeth-shaped or cross-fingered surface electrode layer is formed on the surface of this semiconductor substrate. In addition to being formed, it has a sandwich structure in which a plate-shaped back electrode layer is formed on the back surface side. Therefore, in order to connect the solar cell elements of the sandwich structure in series, the back electrode layer is connected to the surface electrode layer of the preceding element at one end, and the surface electrode layer of the latter element is connected at the opposite end. A troublesome connection of connecting to the back electrode layer is required.

【0003】[0003]

【発明が解決しようとする課題】このような直列接続方
法の一つとして、一端部を隣接素子の他端部に積み重ね
ていくという屋根瓦式の構造が知られている。この屋根
瓦式の構造では実装密度が高まる反面、各素子の表面が
平坦にならないため表面に共通の保護カバーを装着しに
くくなるなどの欠点がある。
A roof tile type structure in which one end is stacked on the other end of an adjacent element is known as one of such series connection methods. Although this roof tile type structure increases the mounting density, it has a drawback that it is difficult to mount a common protective cover on the surface because the surface of each element is not flat.

【0004】他の直列接続構造として、実開昭62ー1
97869号公報に開示されているように、隣接素子間
の表面電極層と裏面電極層とをビームリードでジグザグ
に接続してゆくという構造が知られている。しかしなが
ら、この構造では、素子間の配線に必要な空間が比較的
大きくなって実装密度の低下を招くと共に、ビームリー
ドの厚みのぶん表面の端部が隆起するため表面に共通の
保護カバーを装着しにくくなるという難点がある。さら
に、この構造では、素子間の配線に加えて素子相互の配
列を保つための保持機構が別途必要になるという問題も
ある。
As another series connection structure, the actual construction of Sho 62-1
As disclosed in Japanese Patent Publication No. 97869, there is known a structure in which a front electrode layer and a rear electrode layer between adjacent elements are connected in zigzag by beam leads. However, with this structure, the space required for wiring between elements is relatively large, which leads to a decrease in mounting density, and the end of the surface is raised by the thickness of the beam leads, so a common protective cover is attached to the surface. There is a drawback that it is difficult to do. Further, this structure has a problem that a holding mechanism for maintaining the mutual arrangement of the elements is required in addition to the wiring between the elements.

【0005】他の直列接続構造として、特開昭54ー1
01687号公報に開示されたものが知られている。す
なわち、図4に示すように、半導体基板51aの表面側
にこの基板とは逆の導電型の拡散層51bを形成した太
陽電池素子51と、半導体基板52aの表面側に逆導電
型の拡散層52bを形成した太陽電池素子52とを直列
接続するために、各素子の一端部を表面から切欠くと共
に他の端部は裏面から切欠くことによって段部を形成
し、それぞれの段部に電極51c,52c,51d,5
2dを形成し、隣接素子間の電極51dと電極52cと
を接続するようにした構造である。
Another series connection structure is disclosed in Japanese Patent Laid-Open No. 54-1.
The one disclosed in Japanese Patent Publication No. 016787 is known. That is, as shown in FIG. 4, a solar cell element 51 in which a diffusion layer 51b having a conductivity type opposite to that of the semiconductor substrate 51a is formed on the surface side of the semiconductor substrate 51a, and a diffusion layer of opposite conductivity type on the surface side of the semiconductor substrate 52a. In order to connect in series with the solar cell element 52 in which 52b is formed, one end of each element is cut out from the front surface and the other end is cut out from the back surface to form a step, and an electrode is formed on each step. 51c, 52c, 51d, 5
2d is formed so that the electrode 51d and the electrode 52c between adjacent elements are connected to each other.

【0006】しかしながら、図4に示した従来の直列接
続構造では直列接続構造の簡易化が図られる一方、入射
光で生成された電子・正孔対を基板の厚み方向に走行さ
せるという縦型構造の基本形態が崩れてしまい、電気特
性の低下を招くという問題がある。すなわち、素子51
に着目すれば、電極51c寄りのpn接合内で生成され
た電子・正孔対のうちの一方は、半導体基板51aの内
部を表面とほぼ平行に電極51dまでの長い距離を走行
しなければならずこの走行途中で電流がジュール熱に変
換されてしまい光電変換効率の低下をまねく。逆に、電
極51d寄りのpn接合内で生成された電子・正孔対の
うちの他方は、半導体基板51aの内部を表面にほぼ平
行に電極51cまでの長い距離を走行しなければなら
ず、ジュール発熱による光電変換効率の低下をまねく。
However, while the conventional serial connection structure shown in FIG. 4 simplifies the serial connection structure, a vertical structure in which electron-hole pairs generated by incident light travel in the thickness direction of the substrate. However, there is a problem in that the basic form of is destroyed and the electrical characteristics are deteriorated. That is, the element 51
Paying attention to, one of the electron-hole pairs generated in the pn junction near the electrode 51c must travel a long distance to the electrode 51d in the semiconductor substrate 51a substantially parallel to the surface. In the meantime, the electric current is converted into Joule heat during this traveling, resulting in a decrease in photoelectric conversion efficiency. On the contrary, the other of the electron-hole pairs generated in the pn junction near the electrode 51d has to travel a long distance to the electrode 51c substantially parallel to the surface inside the semiconductor substrate 51a, This causes a decrease in photoelectric conversion efficiency due to Joule heat generation.

【0007】上記ジュール熱への変換の問題に加えて、
拡散層の直下を互いに逆向きに長区間にわたって走行す
る電子・正孔対の再結合の比率が増大し、これに伴い光
電気変換効率が一層低下するという問題もある。
In addition to the above problem of conversion into Joule heat,
There is also a problem that the rate of recombination of electron-hole pairs traveling in the opposite directions to each other immediately below the diffusion layer for a long section increases, and the photoelectric conversion efficiency further decreases accordingly.

【0008】[0008]

【課題を解決するための手段】本発明の太陽電池を構成
するために直列接続される各素子は、半導体基板の表面
とほぼ平行に受光領域が形成され、この半導体基板の表
面側と裏面側のそれぞれに表面電極層と裏面電極層が形
成された縦型の構造を呈している。各素子の両側面には
表面から切欠いて形成した一方の段部と、裏面側から切
欠いて形成した他方の段部とが形成される。表面電極層
から上記一方の段部まで第1の配線手段が延在され、裏
面電極層は電極板に接合され、上記第1の配線手段の端
部とこの端部に隣接して配置される他の素子の電極板の
端部とがこの他の素子の他方の段部において第2の配線
手段によって連結される。
In each of the elements connected in series to form the solar cell of the present invention, a light receiving region is formed substantially parallel to the front surface of the semiconductor substrate, and the front surface side and the back surface side of the semiconductor substrate are formed. Each of these has a vertical structure in which a front electrode layer and a back electrode layer are formed. On both side surfaces of each element, one step portion cut out from the front surface and the other step portion cut out from the back surface side are formed. The first wiring means extends from the front surface electrode layer to the one step portion, the back surface electrode layer is bonded to the electrode plate, and the end portion of the first wiring means is arranged adjacent to this end portion. The end of the electrode plate of the other element is connected to the other step of the other element by the second wiring means.

【0009】[0009]

【作用】この発明の太陽電池素子は、電子・正孔対を基
板の厚み方向に走行させる縦型構造の形態を保っている
ため、図2に示した横型構造のように、ジュール発熱や
キャリアの再結合による光電変換効率の低下が有効に防
止される。また、素子間の結線が表面から切欠いた一方
の段部と裏面から切欠いた他方の段部との間で第2の配
線手段(ビームリードなど)によって行われるため、実
装密度が向上する。以下、本発明の詳細を実施例と共に
説明する。
The solar cell element of the present invention maintains the form of a vertical structure in which electron-hole pairs travel in the thickness direction of the substrate, and therefore, as in the horizontal structure shown in FIG. It is possible to effectively prevent a decrease in photoelectric conversion efficiency due to recombination of Further, since the connection between the elements is performed by the second wiring means (beam lead or the like) between one step portion notched from the front surface and the other step portion notched from the back surface, the mounting density is improved. Hereinafter, details of the present invention will be described together with examples.

【0010】図1は、本発明の一実施例の太陽電池を構
成する太陽電池素子の構造を示す断面図である。この太
陽電池素子10は、半導体基板11の表面とほぼ平行に
点線で示すpn接合による受光領域が形成され、この半
導体基板11の表面側と裏面側のそれぞれに櫛歯状の表
面電極層12と板状の裏面電極層13が形成されてい
る。
FIG. 1 is a sectional view showing the structure of a solar cell element that constitutes a solar cell according to an embodiment of the present invention. In this solar cell element 10, a light receiving region by a pn junction shown by a dotted line is formed substantially parallel to the surface of the semiconductor substrate 11, and a comb-teeth-shaped surface electrode layer 12 is formed on each of the front surface side and the back surface side of the semiconductor substrate 11. A plate-shaped back electrode layer 13 is formed.

【0011】素子10の一方の側面には半導体基板11
を表面から切欠くことにより一方の段部14が形成され
ると共に、この一方の側面に対向する他方の側面には半
導体基板11を裏面側から切欠くことにより他方の段部
15が形成されている。表面電極層12の端部と段部1
4とに跨がって絶縁層16形成され、この絶縁層16の
上に表面電極層12への積層部分を有する電極層17が
形成されている。
A semiconductor substrate 11 is provided on one side surface of the element 10.
One step portion 14 is formed by cutting out from the front surface, and the other step portion 15 is formed by cutting out the semiconductor substrate 11 from the back surface side on the other side surface opposite to this one side surface. There is. Edge part and step part 1 of the surface electrode layer 12
4, an insulating layer 16 is formed so as to extend over the insulating layer 16, and an electrode layer 17 having a portion laminated on the surface electrode layer 12 is formed on the insulating layer 16.

【0012】図2は、図1の太陽電池素子を複数直列接
続した本発明の一実施例の太陽電池の接続部の構造を示
す部分断面図である。まず、セラミックなどの電気絶縁
性の基板30上に一定の間隔で金属板31と32が固定
される。次に、右側の電極板31上に太陽電池素子10
の裏面電極層13が半田層33を介して接合される。続
いて、箔状のリード34の両端が太陽電池素子10の段
部14まで延長された電極層17と電極板32の右端部
分とに熱圧着などによって接続される。次に、電極板3
2上に太陽電池素子20の裏面電極層23が半田層35
を介して接合される。このように、半田付けなどによる
電極板への太陽電池素子の装着と、箔状リードの熱圧着
などによる隣接素子間の接続とが交互に反復されること
により、所望個数の太陽電池素子が絶縁性の基板30上
に直列接続される。最後に、各素子の表面に接着剤層4
1を介して共通の保護カバー40が装着される。
FIG. 2 is a partial cross-sectional view showing the structure of the connecting portion of the solar cell of one embodiment of the present invention in which a plurality of the solar cell elements of FIG. 1 are connected in series. First, metal plates 31 and 32 are fixed at a constant interval on an electrically insulating substrate 30 such as ceramic. Next, the solar cell element 10 is placed on the right electrode plate 31.
The back electrode layer 13 is bonded via the solder layer 33. Subsequently, both ends of the foil-shaped lead 34 are connected to the electrode layer 17 extended to the step portion 14 of the solar cell element 10 and the right end portion of the electrode plate 32 by thermocompression bonding or the like. Next, the electrode plate 3
2 and the back electrode layer 23 of the solar cell element 20 on the solder layer 35.
Are joined through. In this way, the desired number of solar cell elements are insulated by alternately repeating the mounting of the solar cell elements on the electrode plate by soldering and the connection between adjacent elements such as thermocompression bonding of the foil leads. Connected in series on the flexible substrate 30. Finally, the adhesive layer 4 is formed on the surface of each element.
A common protective cover 40 is attached via 1.

【0013】図3は、本発明の他の実施例の太陽電池の
直列接続部の構造を示す部分断面図である。本図におい
て図1,2と同一の参照符号を付した要素は、これらの
図で説明したものと同一の構成要素である。
FIG. 3 is a partial cross-sectional view showing the structure of a series connection portion of a solar cell according to another embodiment of the present invention. In this figure, elements designated by the same reference numerals as those in FIGS. 1 and 2 are the same components as those described in these figures.

【0014】この実施例では、表面電極層12がそのま
ま段部14まで延長されると共に、この段部の垂直面で
の断線を防止するために素子10の表面と段部との間に
傾斜面が形成されている。また、電極板32の端部が隣
接する素子10の段部と同一の高さになるように隆起さ
れると共に、素子10の端部が接着剤層36を介してこ
の隆起した端部に接着される。この太陽電池素子の配列
時には、太陽電池素子10がその裏面電極層13との間
に固化状態の半田の薄層33を介在させながら電極板3
1上に載置されると共に、太陽電池素子20がその裏面
電極層23との間に半田の薄層35を介在させながら電
極板32上に載置される。
In this embodiment, the surface electrode layer 12 is extended as it is to the step portion 14, and a sloped surface is provided between the surface of the element 10 and the step portion in order to prevent disconnection on the vertical surface of the step portion. Are formed. Further, the end of the electrode plate 32 is raised so as to have the same height as the step of the adjacent element 10, and the end of the element 10 is adhered to the raised end via the adhesive layer 36. To be done. At the time of arranging the solar cell elements, the solar cell elements 10 and the back electrode layer 13 have the thin plate 33 of solder in the solidified state interposed therebetween and the electrode plate 3
The solar cell element 20 is placed on the electrode plate 32 while interposing the thin layer 35 of solder between the solar cell element 20 and the back electrode layer 23.

【0015】このような素子の配列が終了したのちに、
紙面に垂直な方向から細い板状や線状の半田片37が段
部14と段部25と電極板32の隆起部分とで囲まれる
空隙内に挿入され、電気炉内などで全体の加熱が行わ
れ、半田層33、35及び半田片37の融解と固化とに
よる半田付けが行われる。この実施例によれば、各太陽
電池素子の電極板への半田付けによる接合と、半田片3
7による各素子の直列接続を同時に完成させることがで
きる。
After the arrangement of such elements is completed,
A thin plate-shaped or linear solder piece 37 is inserted into a space surrounded by the stepped portion 14, the stepped portion 25 and the raised portion of the electrode plate 32 from a direction perpendicular to the paper surface, and the entire heating is performed in an electric furnace or the like. The soldering is performed by melting and solidifying the solder layers 33, 35 and the solder pieces 37. According to this embodiment, the connection of each solar cell element to the electrode plate by soldering and the solder piece 3
The serial connection of each element by 7 can be completed simultaneously.

【0016】[0016]

【発明の効果】以上詳細に説明したように、本発明の太
陽電池によれば、直列接続される各素子が縦型構造の形
態を保っているため、図2に示した従来構造のように、
ジュール発熱やキャリアの再結合による光電変換効率の
低下が有効に防止される。
As described above in detail, according to the solar cell of the present invention, since each element connected in series maintains the form of the vertical structure, the solar cell of the conventional structure shown in FIG. ,
The decrease in photoelectric conversion efficiency due to Joule heat generation and carrier recombination is effectively prevented.

【0017】また、素子間の結線が表面から切欠いた一
方の段部と裏面から切欠いた他方の段部との間で第2の
配線手段(ビームリードなど)によって行われるため、
実装密度が向上する。
Further, since the connection between the elements is performed by the second wiring means (beam lead or the like) between one step portion notched from the front surface and the other step portion notched from the back surface.
Mounting density is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の太陽電池を構成する素子の
構造を示す断面図である。
FIG. 1 is a cross-sectional view showing a structure of an element constituting a solar cell according to an embodiment of the present invention.

【図2】図1の太陽電池素子を複数直列接続した本発明
の一実施例の太陽電池の接続部の構造を示す部分断面図
である。
FIG. 2 is a partial cross-sectional view showing a structure of a connecting portion of a solar cell according to an embodiment of the present invention in which a plurality of solar cell elements of FIG. 1 are connected in series.

【図3】太陽電池素子を複数直列接続した本発明の他の
実施例の太陽電池の接続部の構造を示す部分断面図であ
る。
FIG. 3 is a partial cross-sectional view showing a structure of a connecting portion of a solar cell according to another embodiment of the present invention in which a plurality of solar cell elements are connected in series.

【図4】従来の太陽電池素子の構造を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a structure of a conventional solar cell element.

【符号の説明】[Explanation of symbols]

10,20 太陽電池素子 11,21 半導体基板 12,22 表面電極層 13,23 裏面電極層 14 一方の段部 15 他方の段部 17 電極層( 第1の配線手段) 31,32 電極板 34 リード( 第2の配線手段) 10,20 Solar cell element 11,21 Semiconductor substrate 12,22 Front electrode layer 13,23 Back electrode layer 14 One step 15 Other step 17 Electrode layer (first wiring means) 31,32 Electrode plate 34 Lead (Second wiring means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の表面とほぼ平行に受光領域が
形成され、この半導体基板の表面側と裏面側のそれぞれ
に表面電極層と裏面電極層が形成された太陽電池が複数
直列接続される構造の太陽電池において、 太陽電池素子の一方の側面を表面から切欠いて形成した
一方の段部と、 この一方の側面に対向する他方の側面を裏面側から切欠
いて形成した他方の段部と、 表面側電極層から前記一方の段部まで延在される第1の
配線手段と、 裏面側電極層が接合される電極板と、 前記第1の配線手段の端部とこの端部に隣接して配置さ
れる他の太陽電池素子の前記電極板の端部とをこの他の
太陽電池素子の前記他方の段部の直下において連結する
第2の配線手段とを備えたことを特徴とする太陽電池。
1. A plurality of solar cells in which a light receiving region is formed substantially parallel to the surface of a semiconductor substrate, and a front electrode layer and a back electrode layer are formed on each of the front surface side and the back surface side of the semiconductor substrate are connected in series. In the solar cell having the structure, one step portion formed by cutting out one side surface of the solar cell element from the surface, and the other step portion formed by cutting out the other side surface facing this one side surface from the back surface side, First wiring means extending from the front surface side electrode layer to the one step portion, an electrode plate to which the back surface side electrode layer is joined, an end portion of the first wiring means and adjacent to this end portion. And a second wiring means for connecting an end portion of the electrode plate of another solar cell element arranged as a part of the other solar cell element immediately below the other step portion of the other solar cell element. battery.
JP4019450A 1992-01-08 1992-01-08 Solar cell Pending JPH05190882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4019450A JPH05190882A (en) 1992-01-08 1992-01-08 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4019450A JPH05190882A (en) 1992-01-08 1992-01-08 Solar cell

Publications (1)

Publication Number Publication Date
JPH05190882A true JPH05190882A (en) 1993-07-30

Family

ID=11999650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4019450A Pending JPH05190882A (en) 1992-01-08 1992-01-08 Solar cell

Country Status (1)

Country Link
JP (1) JPH05190882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262358B1 (en) * 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
CN110379880A (en) * 2019-08-07 2019-10-25 常州时创能源科技有限公司 A kind of cascaded structure of solar battery sheet
JP2021039984A (en) * 2019-08-30 2021-03-11 パナソニック株式会社 Solar cell module, and manufacturing method of solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262358B1 (en) * 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
CN110379880A (en) * 2019-08-07 2019-10-25 常州时创能源科技有限公司 A kind of cascaded structure of solar battery sheet
JP2021039984A (en) * 2019-08-30 2021-03-11 パナソニック株式会社 Solar cell module, and manufacturing method of solar cell module

Similar Documents

Publication Publication Date Title
US7238966B2 (en) Light-receiving panel or light-emitting panel, and manufacturing method thereof
CN108258074B (en) Solar cell assembly
CN101204004B (en) Scalable photovoltaic cell and solar panel manufacturing with improved wiring
EP1081770B1 (en) Thin-film solar cell module and method of manufacturing the same
KR101183743B1 (en) Solar cell module and method for its production
US7977567B2 (en) Photovoltaic module and the use thereof
US20120060895A1 (en) Photovoltaic module string arrangement and shading protection therefor
EP1041647A1 (en) Photovoltaic module and power generation system
JP3787705B2 (en) Semiconductor laser diode device and manufacturing method thereof
US5017243A (en) Solar cell and a production method therefor
CN113421940B (en) Solar cell module and preparation method thereof
KR101349586B1 (en) Solar cell module
CN110707110B (en) battery module
JP2008147260A (en) Interconnector, solar cell string, solar cell module, and method for manufacturing solar cell module
CN116154028A (en) Photovoltaic cell unit and application thereof
CN118099240A (en) Back contact battery assembly, manufacturing method thereof and photovoltaic power generation system
US20120167959A1 (en) Photovoltaic module having a planar cell connector
JPH05190882A (en) Solar cell
TW201709542A (en) Photovoltaic module and method for interconnecting photovoltaic cells to produce said module
JP3602721B2 (en) Solar cell module
JP2009081217A (en) Solar battery module
US20240170594A1 (en) Solar cell string and method for producing a solar cell string
CN117501457A (en) Improved parallel solar cell string assembly for use in photovoltaic modules
JP2009212396A (en) Solar-battery module and production method thereof
EP2096682A1 (en) Solar cell module and method for manufacturing the same