JPH05189659A - Method and device for calculating rate of central air-conditioning device - Google Patents

Method and device for calculating rate of central air-conditioning device

Info

Publication number
JPH05189659A
JPH05189659A JP309092A JP309092A JPH05189659A JP H05189659 A JPH05189659 A JP H05189659A JP 309092 A JP309092 A JP 309092A JP 309092 A JP309092 A JP 309092A JP H05189659 A JPH05189659 A JP H05189659A
Authority
JP
Japan
Prior art keywords
computer
load side
amount
charge
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP309092A
Other languages
Japanese (ja)
Other versions
JPH071511B2 (en
Inventor
Kyoichi Sekiguchi
恭一 関口
Akira Kabeta
昭 壁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Building Systems Engineering Co Ltd
Priority to JP309092A priority Critical patent/JPH071511B2/en
Publication of JPH05189659A publication Critical patent/JPH05189659A/en
Publication of JPH071511B2 publication Critical patent/JPH071511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To provide automatic rate calculating method and device capable of optionally operating individual load side apparatuses (e.g. fan coil units) by improving a central air-conditioning equipment utilizing an absorption type water cooling/heating machine having inexpensive energy cost. CONSTITUTION:Plural fan coil units (1aa to 1a3) having the same or similar load pattern (a load rate and a load time band) are operated as one piping system and monitored and controlled by a computer 12 through a motor-operated valve 2a, the working electric energy, gas flow rate and consumed amount of water of respective apparatuses constituting the air-conditioning equipment are detected and inputted to the computer, running cost is calculated and the quantity of energy used by respective load side apparatuses is calculated, and the running cost is proportionally distributed in accordance with the quantity of used energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細分化された負荷側機
器を備えたセントラル冷暖房装置において、多数の負荷
側機器ごとに適正な料金を自動的に算出する方法、およ
び自動的に算出する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically calculating an appropriate fare for each of a large number of load side devices in a central cooling and heating apparatus equipped with subdivided load side devices, and to calculate the charge automatically. It relates to the device.

【0002】[0002]

【従来の技術】集合住宅やテナントビルなどの空調を行
う場合、空調負荷が細分化され、かつそれらの空調負荷
の時間帯が雑多であって、監視,制御が困難である。集
合住宅においては、居住している多数の家族のそれぞれ
が独自の生活様式を有しているので空調負荷のパターン
が多様であることは避け難い。テナントビルにおいては
集合住宅に比してこうした問題が少ないとされてきた
が、最近ではテナントビルにおいても空調負荷のパター
ンが多様化する傾向にある。このように、細分化された
空調負荷のそれぞれが多様なパターンを有しているとい
う条件下においては、従来一般に電動式パッケージエア
コンを用いた個別空調方式が用いられていて、セントラ
ル冷暖房は適用できないとされていた。その理由は、多
様化した空調時間帯や負荷変動に対応して緻密な監視,
制御が困難なこと、および、多数の空調負荷のそれぞれ
について個別に、適正な料金を算出できないことであっ
た。
2. Description of the Related Art When air-conditioning an apartment house or a tenant building, the air-conditioning load is subdivided, and the time zones of these air-conditioning loads are numerous, making monitoring and control difficult. In an apartment complex, it is inevitable that the patterns of air-conditioning load are diverse, because each of the many living families has their own lifestyle. It has been said that such problems are less common in tenant buildings than in multi-family housing, but recently, the patterns of air-conditioning loads are also diversifying in tenant buildings. As described above, under the condition that each of the subdivided air conditioning loads has various patterns, the individual air conditioning system using the electric package air conditioner is generally used, and central cooling and heating cannot be applied. Was said. The reason is that precise monitoring is performed in response to diversified air conditioning time zones and load fluctuations.
It was difficult to control, and it was not possible to calculate an appropriate charge individually for each of a large number of air conditioning loads.

【0003】[0003]

【発明が解決しようとする課題】集合住宅やテナントビ
ルにおける個別空調方式とセントラル冷暖房方式とを比
較すると、個別空調方式は一般に設備コストもランニン
グコストも割高である。また、ビル全体としての受電容
量も大きく設定しなければならない。また、個別空調方
式ではビルの外壁に多数の屋外機が設置されてビルの美
観を損ねるという問題も有る。セントラル冷暖房方式は
経済的に有利であるにも拘らず、使い勝手の面から昨今
のビル空調にマッチしないとして敬遠されている。この
ように、集合住宅の各家庭やテナントビルの各入居者
が、多少のコスト高を承知で使い勝手の良いことを求め
るのは、現状ではやむを得ないことではあるが、エネル
ギー資源の節約という社会的な要請に背くものである。
特に、エネルギー資源に乏しい我国の産業を考え合わせ
ると、国家的養成に背くものと言っても過言ではない。
本発明は上述の事情に鑑みて為されたものであって、集
合住宅やテナントビルなどのように負荷が細分化されて
いる冷暖房設備において、集中熱源機として、ランニン
グコストが安く、ビル全体の受電容量を抑制し得る吸収
式冷温水機を用い、かつ、各居住者のそれぞれが負荷側
機器を自由に操作することができ、しかも各負荷側機器
ごとに適正な料金を自動的に算出し得る方法、および、
上記の方法を実施するに好適な算出装置を提供すること
を目的とする。
Comparing the individual air-conditioning system and the central heating and cooling system in an apartment house or a tenant building, the individual air-conditioning system is generally expensive in terms of equipment cost and running cost. Also, the power receiving capacity of the entire building must be set large. In addition, the individual air-conditioning system has a problem in that a large number of outdoor units are installed on the outer wall of the building and the appearance of the building is impaired. Although the central heating and cooling system is economically advantageous, it has been shunned as it does not match the modern building air conditioning because of its usability. In this way, it is unavoidable at present that each household in an apartment complex or each resident in a tenant building is aware of the high cost and demands ease of use. It is against the request.
It is no exaggeration to say that this is against national training, especially considering the industry of Japan, which lacks energy resources.
The present invention has been made in view of the above circumstances, in a heating and cooling equipment where the load is subdivided such as an apartment house or a tenant building, as a central heat source device, the running cost is low, Using an absorption chiller-heater capable of suppressing the power receiving capacity, each resident can freely operate the load side equipment, and an appropriate charge is automatically calculated for each load side equipment. How to get, and
It is an object of the present invention to provide a calculation device suitable for carrying out the above method.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに創作した本発明の基本的原理は、多数の空調負荷
(例えばファンコイルユニット)を、空調時間帯が類似
しているもの毎のグループに区分して配管系を構成し、
グループ単位の監視、制御を行うとともに、消費電力料
金,ガス料金,水道料金等を合計したランニングコスト
を、上記多数の空調負荷(例えばファンコイルユニッ
ト)毎の利用エネルギ量に比例配分するものである。上
述の原理に基づく具体的な手法として本発明に係る方法
は、グループ毎に区分した多数の負荷側機器をグループ
毎に接続した複数の配管系と、上記複数の配管系のそれ
ぞれに設けられた電動弁と、上記多数の負荷側機器に冷
温水を供給する複数の吸収式冷温水機およびその補機よ
りなる機器と、以上に述べた各機器の運転戻り信号を入
力されるとともに、該各機器に対して運転指令信号を出
力するセントラル冷暖房装置の料金を算定する方法であ
って、前記の各機器が消費した電力をコンピュータに入
力して金額に換算し、同じく、消費した水道水量を前記
のコンピュータに入力して金額に換算し、同じく、消費
した燃料ガス量を前記のコンピュータに入力して金額に
換算し、前記各機器に要した付帯経費を前記のコンピュ
ータに入力し、上記の入力値に基づいて、前記のコンピ
ュータにより当該冷暖房設備のランニングコストを算出
し、一方、前記負荷側機器の戻り信号に基づいて、多数
の負荷側機器のそれぞれについて利用したエネルギ量を
算出し、前記のランニングコストに、要すれば係数を乗
じて、多数の負荷側機器それぞれの利用エネルギ量に比
例配分することを特徴とする。
The basic principle of the present invention created to achieve the above object is to provide a large number of air conditioning loads (for example, fan coil units) for each of which air conditioning time zones are similar. The piping system is divided into groups,
The monitoring and control are performed on a group basis, and the running cost, which is the total of the power consumption charge, gas charge, water charge, etc., is proportionally distributed to the amount of energy used for each of the large number of air conditioning loads (for example, fan coil units). .. The method according to the present invention as a concrete method based on the above-described principle is provided in each of the plurality of piping systems in which a large number of load side devices divided into groups are connected to each other in each group. A motor-operated valve, a device including a plurality of absorption chiller-heaters for supplying cold / hot water to the large number of load-side devices and its auxiliary device, and operation return signals of the above-mentioned devices are input, and A method of calculating a charge for a central heating and cooling device that outputs an operation command signal to a device, in which the power consumed by each device is input to a computer and converted into an amount of money, and similarly, the amount of tap water consumed is Of the amount of fuel gas consumed is converted into the amount of money by inputting into the computer, and incidental expenses required for each device are input into the computer, Based on the input value described above, the running cost of the cooling and heating equipment is calculated by the computer, while the amount of energy used for each of the load side devices is calculated based on the return signal of the load side device. The running cost is multiplied by a coefficient if necessary, and is proportionally distributed to the amount of energy used by each of a number of load side devices.

【0005】また、上記の発明方法を実施するために構
成した本発明に係る料金の算定装置は、グループ毎に区
分した多数の負荷側機器をグループ毎に接続した複数の
配管系と、上記複数の配管系のそれぞれに設けられた電
動弁と、上記多数の負荷側機器に冷温水を供給する複数
の吸収式冷温水機およびその補機よりなる機器と、以上
に述べた各機器の運転戻り信号を入力されるとともに、
該各機器に対して運転指令信号を出力するセントラル冷
暖房装置の料金を算出する装置であって、上記の各機器
が消費する電力を検出する電力量計と、水道水量を検出
する水量計と、燃料ガス量を検出するガス流量計とを具
備しており、上記電力量計の出力信号と、水量計の出力
信号と、ガス流量計の出力信号とを入力されて、電気料
金,水道料金およびガス料金を算出する演算機能を有す
るとともに、多数の負荷側機器のそれぞれについて、利
用エネルギ量を算出する演算機能を有し、かつ、料金合
計を各負荷側機器の利用エネルギについて比例配分する
演算機能を有するコンピュータを具備していることを特
徴とする。
Further, the charge calculating apparatus according to the present invention, which is configured to carry out the above-mentioned method of the present invention, comprises a plurality of pipe systems in which a large number of load side devices divided into groups are connected to each other, Motorized valves provided in each of the pipe systems, a plurality of absorption chiller-heaters for supplying cold / hot water to the large number of load-side devices and their auxiliary devices, and return of operation of each device described above. As the signal is input,
A device that calculates a charge for a central cooling and heating device that outputs an operation command signal to each device, a watt hour meter that detects the power consumed by each of the above devices, and a water meter that detects the amount of tap water, A gas flow meter for detecting the amount of fuel gas is provided, and the output signal of the watt hour meter, the output signal of the water flow meter, and the output signal of the gas flow meter are input, and the electricity rate, water rate, and In addition to having a calculation function for calculating gas charges, it has a calculation function for calculating the amount of energy used for each of a large number of load side devices, and a function for proportionally distributing the total charge to the energy used by each load side device. It is characterized by comprising a computer having.

【0006】[0006]

【作用】上記の算出装置を用いて前記の算出方法を実施
すると、電気料金,ガス料金,水道料金などのランニン
グコストが自動的に集計されるとともに、多数の負荷側
機器(例えばファンコイルユニット)毎に利用したエネ
ルギ量が算出され、かつ、前記のランニングコストが上
記の利用エネルギ量について比例配分されて、適正な料
金が自動的に算出される。
When the above calculation method is performed using the above calculation device, running costs such as electricity charges, gas charges, and water charges are automatically added up, and a large number of load side devices (for example, fan coil units) The amount of energy used for each is calculated, and the running cost is proportionally distributed with respect to the amount of energy used, and an appropriate charge is automatically calculated.

【0007】[0007]

【実施例】図1は本発明に係る料金算出装置を備えたセ
ントラル冷暖房設備の1実施例を示す系統図である。吸
収式冷温水機の負荷側機器としてのファンコイルユニッ
トは多数配置されている。本発明において多数とは10
以上の整数を言うものとする。これら多数のファンコイ
ルユニットを、その使用条件に基づいて同一ないし類似
の負荷パターン(すなわち負荷率と負荷時間帯との関係
状態)に区分し、同一ないし類似の負荷パターンを有す
るファンコイルユニット1a1,同1a2,同1a3をグ
ループaとして一つの配管系を形成し、電動弁2aおよ
び流量計3を介して可変流量形の冷温水2次ポンプ4の
吐出口に接続する。この冷温水2次ポンプ4は冷温水往
ヘッダ5から冷温水を供給され、後述のごとく前記流量
計3を介して多数の負荷側機器(ファンコイルユニッ
ト)に冷温水を圧送して循環させる。負荷側機器を流通
した冷温水は2次冷温水戻り温度センサ6を経て冷温水
還ヘッダ7に流入する。図示の1b1,1b2,1b
3は、相互に負荷パターンの類似するファンコイルユニ
ットであって一つの配管系として接続され、電動弁2b
を介してbグループとして前記流量計3の下流側に分岐
接続されている。同様に、負荷パターンの類似するファ
ンコイルユニット1c1,1c2,1c3は、cグループ
として電動弁2cを介して前記流量計3の下流側に分岐
接続されている。前記流量計3の出力信号は流量調節計
8を介して動力回路盤9のインバータ10に接続され、
インタフェイス盤11を介してコンピュータ12に入力
される。同様に、前記の電動弁2a,同2b,同2cの
開閉指令信号および開閉戻り信号もインタフェイス盤1
1を介してコンピュータ12に接続されている。上記の
コンピュータ12には、前記ファンコイルユニットの能
力および冷温水流量、並びに、次に詳述する吸収式冷温
水機15の能力を予め入力しておく。本実施例(図1)
においては、前記冷温水還ヘッダ7と冷温水往ヘッダ5
との間に5基の吸収式冷温水機15が並列に接続されて
いる。これら5基の吸収式冷温水機15のそれぞれは、
冷温水1次ポンプ16を備えており、かつ、冷却水ポン
プ17を介して冷却塔18に接続されている。そして、
これらの機器で消費される電力Eは発振式電力量計19
によりインターフェイス盤11を介してコンピュータ1
2に入力される。また消費されるガスGは発振式ガス流
量計20で、消費される水Wは発振式水量計21で、そ
れぞれインタフェイス盤11を介してコンピュータ12
に入力される。これらのデータは、後述の空調エネルギ
ー課金計算、冷温水可変流量制御、および冷温水発生機
の運転台数制御に用いられる。前記のコンピュータ12
には居住者リスト、各居住者のファンコイルユニットの
配分、電気,ガス,水道のエネルギー単価、および料金
計算式を入力し、記憶させておく。以上のように構成さ
れた装置(図1)において、各居住者が各居住区内に設
けられているファンコイルユニットのスイッチ(図示せ
ず)を任意に操作すると、その運転戻り信号をコンピュ
ータ12が検知し、吸収式冷温水機15とその補機に対
して運転指令を出力し、電動弁に対しては開指令を出力
する。複数基(本例において5機)の吸収式冷温水機1
5は、負荷総量の大小に応じて必要台数だけ運転する。
すなわち、戻り信号を入力されたファンコイルユニット
の能力の合計量をその時点における総負荷量とし、この
総負荷量に比して必要かつ充分な台数(端数は切り上げ
て計算して算出する)の吸収式冷温水機15を運転す
る。その算定方法の1例を次に示す。ファンコイルユニ
ットの総数を200台とし、それぞれのファンコイルユ
ニットの能力を、FCU−1,FCU−2,FCU−3
………FCU−200と表わすことにする。そして、各
ファンコイルユニットの能力が、 であり、 α1+α2+…………α200=αt とする。一方、吸収式冷温水機15の1基の能力をQk
cal/hとすると、その数は5基であるから、 Q×5=Qt…………………(1) ここで、αtとQtとは必ずしも同値ではないので、 K=Qt/αt………………(2) という係数Kを設ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing one embodiment of a central cooling and heating facility equipped with a charge calculation device according to the present invention. Many fan coil units are arranged as load side devices of the absorption chiller-heater. In the present invention, a large number is 10
Let us say the above integers. These many fan coil units are divided into the same or similar load patterns (that is, the relational state between the load factor and the load time zone) based on the usage conditions, and the fan coil units 1a 1 having the same or similar load patterns. , 1a 2 and 1a 3 are formed as a group a and connected to the discharge port of the variable flow type cold / hot water secondary pump 4 via the motor-operated valve 2a and the flowmeter 3. The cold / hot water secondary pump 4 is supplied with cold / hot water from the cold / hot water outgoing header 5, and pumps cold / hot water to a large number of load side devices (fan coil units) for circulation through the flow meter 3 as described later. The cold / hot water flowing through the load side device flows into the cold / hot water return header 7 via the secondary cold / hot water return temperature sensor 6. 1b 1 , 1b 2 , 1b shown
3 is a fan coil unit having similar load patterns, which are connected as one piping system, and are electrically operated valve 2b.
It is branched and connected to the downstream side of the flowmeter 3 as a group b via. Similarly, the fan coil units 1c 1 , 1c 2 and 1c 3 having similar load patterns are branched and connected to the downstream side of the flowmeter 3 as a group c via an electric valve 2c. The output signal of the flow meter 3 is connected to the inverter 10 of the power circuit board 9 via the flow controller 8.
It is input to the computer 12 via the interface board 11. Similarly, the opening / closing command signal and the opening / closing return signal of the motor-operated valves 2a, 2b, 2c are also used for the interface board 1.
1 to the computer 12. To the computer 12, the capacity of the fan coil unit, the flow rate of cold / hot water, and the capacity of the absorption chiller / heater 15 to be described in detail below are input in advance. Example (FIG. 1)
In the above, the cold / hot water return header 7 and the cold / hot water forward header 5
And five absorption chiller-heaters 15 are connected in parallel between and. Each of these five absorption-type water heaters / coolers 15
A cold / hot water primary pump 16 is provided and is connected to a cooling tower 18 via a cooling water pump 17. And
Electric power E consumed by these devices is an oscillating power meter 19
To the computer 1 via the interface board 11
Entered in 2. The consumed gas G is an oscillating gas flow meter 20, and the consumed water W is an oscillating water meter 21, which is supplied to a computer 12 via an interface board 11.
Entered in. These data are used for the air conditioning energy billing calculation, the cold / hot water variable flow rate control, and the number of operating cold / hot water generators, which will be described later. The computer 12
The resident list, the fan coil unit allocation of each resident, the energy unit price of electricity, gas, and water, and the charge calculation formula are input and stored. In the device (FIG. 1) configured as described above, when each resident arbitrarily operates a switch (not shown) of the fan coil unit provided in each living area, the operation return signal is sent to the computer 12 Is detected, and an operation command is output to the absorption chiller-heater 15 and its accessories, and an opening command is output to the motor-operated valve. Multiple (5 in this example) absorption chiller-heater 1
In No. 5, the required number of units are operated according to the size of the total load.
That is, the total amount of capacity of the fan coil units to which the return signal is input is set as the total load amount at that time, and the necessary and sufficient number of units (fractions are rounded up and calculated) is compared to this total load amount. The absorption chiller / heater 15 is operated. An example of the calculation method is shown below. The total number of fan coil units is 200, and the capacity of each fan coil unit is FCU-1, FCU-2, FCU-3.
......... It will be referred to as FCU-200. And the capacity of each fan coil unit is And α 1 + α 2 + ………… α 200 = αt. On the other hand, the capacity of one of the absorption chiller / heater 15 is
If cal / h, the number is 5, so Q × 5 = Qt ……………… (1) Here, since αt and Qt are not necessarily the same value, K = Qt / αt… …………… (2) The coefficient K is set.

【0008】ここで、FCU−1,FCU−5,FCU
−12に戻り信号が有ったとすると、 α1+α5+α12…………(3) 従って、吸収式冷温水機の必要運転台数は、K×(α1
+α5+α12)/Qとなり、この値を切り上げた数字
を要求運転台数Nとする。
Here, FCU-1, FCU-5, FCU
If there is a return signal at −12, α1 + α5 + α12 (3) Therefore, the required number of operating absorption-type water heaters / coolers is K × (α1
+ Α5 + α12) / Q, and a number obtained by rounding up this value is set as the required operation number N.

【0009】上記の要求運転台数Nの算出は、各機器が
標準条件で定格の能力を発揮するものと仮定して、負荷
側機器が必要とするカロリーを熱源機器1基の能力で除
したものである。しかし、実際の運転状態においては各
機器が定格状態で作動するとは限らず、若干の余裕を以
って作動している場合が多い。従って、必ずしも上記の
運転台数Nの吸収式冷温水機15を運転しなくても良い
場合が有る。例えば外気温が余り高くないときに冷房運
転を行ったり、外気温が余り低くない時に暖房運転を行
う場合は、前記のようにして算出した台数Nを運転しな
くても足りる。このような、運転状態における余裕の程
度の状態(負荷率)は、2次冷温水戻り温度センサ6に
よって検出される2次冷温水の戻り温度によって判断し
得る。すなわち、定格状態における2次冷温水は冷温水
往ヘッダ5から7℃で流出し、冷温水還ヘッダ7に12
℃で流入する。この冷温水ヘッダ7に流入する2次冷温
水の戻り温度が12℃よりも低ければ運転状態に余裕が
有り、12℃よりも高ければ余裕が無いことになる。そ
こで、2次冷温水戻り温度に基づいて算出する必要運転
台数N′を、次のように設定する。冷房運転の場合、 実際の運転においては、前述した要求運転台数Nと、上
記の温度による必要運転台数N′とをコンピュータ12
が比較演算し、いずれか低い方の値をとって吸収式冷温
水機15の運転台数を決定し、運転指令信号を出力して
運転の監視・制御を行う。また、前記と同様にして暖房
運転の場合は、 なお、定格運転状態における暖房時の2次冷温水は60
℃で流出し、55.5℃で流入する。暖房運転の場合
も、前述した冷房運転の場合と同様にNとN′との内で
いずれか小さい方の値をとる。なお、冷,暖房いずれの
場合においても、条件の境界付近での頻繁な運転台数の
変化を避ける(N台目またはN′台目の吸収式冷温水機
15の頻繁な発停動作を防止する)ため、不感時間を設
けることが望ましい。また、吸収式冷温水機の運転台数
制御については、5基の吸収式冷温水機15およびその
付属機器の運転時間累計が平均化するよう、運転の優先
順位を変更するローテーション機能を設けることも、公
知技術を適用して行い得る。さらに、いずれかの吸収式
冷温水機15およびその付属機器が故障した場合は、該
故障機をスキップして次の吸収式冷温水機を運転するス
キップ動作機能を付加しておくことが望ましい。
The above-mentioned calculation of the required operating number N is obtained by dividing the calorie required by the load side device by the capacity of one heat source device on the assumption that each device exhibits the rated capacity under standard conditions. Is. However, in the actual operating state, each device does not always operate in the rated state, and in many cases, it operates with some margin. Therefore, there is a case where it is not always necessary to operate the above-mentioned operation number N of the absorption chiller-heaters 15. For example, when the cooling operation is performed when the outside air temperature is not too high, or when the heating operation is performed when the outside air temperature is not too low, it is not necessary to operate the number N calculated as described above. Such a marginal state (load factor) in the operating state can be determined by the return temperature of the secondary cold / hot water which is detected by the secondary cold / hot water return temperature sensor 6. That is, the secondary cold / hot water in the rated state flows out from the cold / hot water forward header 5 at 7 ° C.
Flow in at ° C. If the return temperature of the secondary cold / hot water flowing into the cold / hot water header 7 is lower than 12 ° C, there is a margin in the operating state, and if it is higher than 12 ° C, there is no margin. Therefore, the required number of operating units N ′ calculated based on the secondary cold / hot water return temperature is set as follows. In the case of cooling operation, In the actual operation, the required number N of operations and the required number N'of the above temperature N'are calculated by the computer 12.
Performs a comparison calculation to determine the operating number of the absorption chiller-heater 15 by taking the lower value, and outputs an operation command signal to monitor and control the operation. Also, in the same way as above, in the case of heating operation, The secondary cold / hot water during heating in the rated operating state is 60
It flows out at 0 ° C and flows in at 55.5 ° C. Also in the heating operation, as in the case of the cooling operation described above, the smaller value of N and N'is taken. In both cases of cooling and heating, frequent changes in the number of operating units near the boundary of conditions are avoided (the frequent start / stop operation of the Nth or N'th absorption chiller-heater 15 is prevented. Therefore, it is desirable to provide a dead time. Further, regarding the control of the number of operating operation of the absorption chiller-heater, a rotation function for changing the priority of operation may be provided so that the accumulated operating time of the five absorption chiller-heaters 15 and its accessories is averaged. Any known technique may be applied. Further, when any one of the absorption chiller-heater 15 and its associated equipment fails, it is desirable to add a skip operation function of skipping the malfunctioning machine and operating the next absorption chiller-heater.

【0010】次に、電動弁2a,2b〜の開閉制御、お
よび同弁の開閉制御による冷温水の流量制御について説
明する。多数(本例において200個)のファンコイル
ユニット1a1,1a2,1a3,1b1,1b2〜の内の
何れかが運転されると、この運転を開始したファンコイ
ルユニットの運転戻り信号がコンピュータ12に入力さ
れる。該コンピュータ12には、前述のごとく総べての
ファンコイルユニットに関する各種の情報が入力されて
いて、運転戻り信号を受けたファンコイルユニットが属
している配管系グループに接続されている電動弁(2
a,もしくは2b,又は2c〜の内の、いずれか1個以
上)のみを開弁させ、他の電動弁は閉じておく。各電動
弁の開閉状態が決定されると、冷温水の流量は開状態に
ある電動弁の必要流量の合計となり、可変流量形の冷温
水2次ポンプ4はインバータ10により次に述べるよう
にして可変流量制御される。すなわち、コンピュータ1
2は流量調節計8に対して、必要流量に相当する制御用
アナログ信号を出力し、又は、ポンプの回転速度−流量
特性に基づいてインバータ10に対して必要回転速度に
相当する制御用アナログ信号を出力する。また、ファン
コイルユニットの運転戻り信号、電動弁の開閉戻り信
号、吸収式冷温水機とその補機器の運転状態(運転・停
止・故障など)戻り信号はインタフェイス盤11を介し
て瞬時にコンピュータ12が入力検知できるようになっ
ているので、画面表示装置13によって運転状態を表示
することができる。上記の表示は図であっても表であっ
ても良い。図2は監視画面の1例である。どのような形
で運転状態を表示させるかは任意に設定することができ
る。また、プリンタ14によってプリントアウトしても
良い。このようにして冷暖房設備を構成している各種機
器の一括監視が可能である。
Next, the opening / closing control of the motor-operated valves 2a and 2b, and the flow control of the cold / hot water by the opening / closing control of the valves will be described. When any one of a large number (200 in this example) of fan coil units 1a 1 , 1a 2 , 1a 3 , 1b 1 , 1b 2 is operated, the operation return signal of the fan coil unit that started this operation Is input to the computer 12. Various kinds of information about all the fan coil units are input to the computer 12 as described above, and the motor-operated valve connected to the piping group to which the fan coil unit that receives the operation return signal belongs ( Two
Only one of a, 2b, or 2c) is opened, and the other motor-operated valves are closed. When the open / closed state of each motor-operated valve is determined, the flow rate of the cold / hot water becomes the sum of the required flow rates of the motor-operated valves in the open state, and the variable-flow / cool-water secondary pump 4 is operated by the inverter 10 as described below. Variable flow rate control. That is, computer 1
2 outputs a control analog signal corresponding to the required flow rate to the flow rate controller 8 or a control analog signal corresponding to the required rotation speed to the inverter 10 based on the rotation speed-flow rate characteristic of the pump. Is output. In addition, the operation return signal of the fan coil unit, the opening / closing return signal of the motor-operated valve, the operation state (operation / stop / failure, etc.) return signal of the absorption chiller-heater and its auxiliary equipment are instantly transmitted via the interface board 11 to the computer. Since the input 12 can be detected, the operating condition can be displayed by the screen display device 13. The above display may be a diagram or a table. FIG. 2 is an example of the monitoring screen. It is possible to arbitrarily set how the operating state is displayed. Alternatively, the printer 14 may print it out. In this way, it is possible to collectively monitor various devices that constitute the heating and cooling equipment.

【0011】上述のようにして運転状態を監視し制御す
ると同時に、次に述べるようにして冷暖房料金に関する
課金算定を自動的に行わせる。各居住者がファンコイル
ユニットを操作して運転状態にすると、コンピュータ1
2はその運転戻り信号によってこれを検知し、当該ファ
ンコイルユニットの運転時間タイマをカウントし始め
る。このタイマは、当該ファンコイルユニットが停止状
態になるとカウントを停止する。上記のタイマは、料金
決算の決算日に至るまで積算を続け、料金決算日に運転
時間にファンコイルユニットの能力を乗じ、当該ファン
コイルユニットの利用熱量を算出する。その具体的な方
法は次のごとくである。ファンコイルユニットFCU−
1の時間当たり熱量をα1kcal/hとし、その使用
時間をt1hとする。ファンコイルユニットFCU−2
の時間当たり熱量をα2kcal/hとし、その使用時
間をt2hとする。ファンコイルユニットFCU−3の
時間当たり熱量をα3kcal/hとし、以下同様にし
てFCU−4からFCU−199までについて時間当た
り熱量と使用時間とを定めて、ファンコイルユニットF
CU−200の時間当たり熱量をα200kcal/hと
し、その使用時間をt200hとする。これにより、各フ
ァンコイルユニットの冷暖房利用料金(ランニングコス
ト原価)は、電気料金+ガス料金+水道料金+付帯経費
を、当該ファンコイルユニットの時間当たり熱量×使用
時間について比例配分して求められる。すなわち、 (電気料金+ガス料金+水道料金+付帯経費)×(当該
ファンコイルユニットの時間当たり熱量×当該ファンコ
イルユニットの使用時間)÷(α11+α22+α33
+…………+α200200)となる。 居住者が複数のファンコイルユニットを利用している場
合は、予めコンピュータ12に入力しておけば、居住者
ごとの冷暖房利用料金を自動的に算出してプリンタ14
で打ち出すことができる。
At the same time that the operating state is monitored and controlled as described above, at the same time, the billing calculation for the heating and cooling charges is automatically performed as described below. When each resident operates the fan coil unit to put it in an operating state, the computer 1
2 detects this by the operation return signal and starts counting the operation time timer of the fan coil unit. This timer stops counting when the fan coil unit is stopped. The timer continues to accumulate until the settlement date of the bill settlement date, and the operating time is multiplied by the capacity of the fan coil unit on the bill settlement date to calculate the amount of heat used by the fan coil unit. The specific method is as follows. Fan coil unit FCU-
The heat quantity per hour of 1 is α 1 kcal / h, and its usage time is t 1 h. Fan coil unit FCU-2
The heat quantity per hour is α 2 kcal / h, and the usage time is t 2 h. The heat quantity per hour of the fan coil unit FCU-3 is set to α 3 kcal / h, and similarly, the heat quantity per hour and the usage time are determined for FCU-4 to FCU-199 in the same manner.
The heat quantity per hour of CU-200 is α 200 kcal / h, and its usage time is t 200 h. As a result, the air-conditioning usage charge (running cost cost) of each fan coil unit is obtained by proportionally distributing the electricity charge + gas charge + water charge + incidental expenses with respect to the heat quantity per hour of the fan coil unit x the usage time. That is, (electricity charge + gas charge + water charge + incidental expenses) x (heat amount per hour of the fan coil unit x usage time of the fan coil unit) / (α 1 t 1 + α 2 t 2 + α 3 t 3
+ ………… + α 200 t 200 ). When a resident uses a plurality of fan coil units, if the resident uses the computer 12 in advance, the cooling / heating usage charge for each resident is automatically calculated and the printer 14 is used.
Can be launched with.

【0012】[0012]

【発明の効果】以上説明したように、本発明の料金算出
装置を用いて本発明の料金算出方法を実施すると、集合
住宅やテナントビルなどのように負荷が細分化されてい
るセントラル冷暖房設備において、集中熱源機として、
ランニングコストの安い吸収式冷温水機を用い、かつ、
居住者のそれぞれが負荷側機器を自由に操作することが
でき、しかも、自由に操作して運転された多数の負荷側
機器のそれぞれが利用したエネルギ量に基づく適正な料
金を自動的に算出することができる。
As described above, when the charge calculating method of the present invention is carried out using the charge calculating device of the present invention, in a central heating and cooling facility whose load is subdivided such as an apartment house or a tenant building. , As a central heat source machine,
Using an absorption type hot and cold water machine with low running cost, and
Each resident can freely operate the load side device, and automatically calculates an appropriate charge based on the amount of energy used by each of the many load side devices that were operated and operated freely. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例における吸収式冷温水機を用
いた冷暖房設備の配管および制御系統図である。
FIG. 1 is a piping and control system diagram of cooling and heating equipment using an absorption chiller-heater according to an embodiment of the present invention.

【図2】上記実施例に係る吸収式冷温水機を用いた冷暖
房設備における監視画面の平面図である。
FIG. 2 is a plan view of a monitoring screen in a cooling and heating facility using the absorption chiller-heater according to the above embodiment.

【符号の説明】[Explanation of symbols]

1a1,1a2,1a3,1b1,1b2,1b3,1c1
1c2,1c3…負荷側機器としてのファンコイルユニッ
ト、2a,2b,2c…電動弁、3…流量計、4…冷温
水2次ポンプ、5…冷温水往ヘッダ、6…2次冷温水戻
り温度センサ、7…冷温水還ヘッダ、8…流量調節計、
9…動力回路盤、10…インバータ、11…インタフェ
イス盤、12…コンピュータ、13…画面表示装置、1
4…プリンタ、15…吸収式冷温水機、16…冷温水1
次ポンプ、17…冷却水ポンプ、18…冷却塔、19…
発振式電力量計、20…発振式水量計、21…発振式ガ
ス流量計。
1a 1 , 1a 2 , 1a 3 , 1b 1 , 1b 2 , 1b 3 , 1c 1 ,
1c 2 , 1c 3 ... Fan coil unit as load side device, 2a, 2b, 2c ... Motorized valve, 3 ... Flowmeter, 4 ... Cold / hot water secondary pump, 5 ... Cold / hot water forward header, 6 ... Secondary cold / hot water Return temperature sensor, 7 ... Cold and hot water return header, 8 ... Flow controller,
9 ... Power circuit board, 10 ... Inverter, 11 ... Interface board, 12 ... Computer, 13 ... Screen display device, 1
4 ... Printer, 15 ... Absorption type hot / cold water machine, 16 ... Cold / hot water 1
Next pump, 17 ... Cooling water pump, 18 ... Cooling tower, 19 ...
Oscillation type electricity meter, 20 ... Oscillation type water meter, 21 ... Oscillation type gas flow meter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 グループ毎に区分した多数の負荷側機器
をグループ毎に接続した複数の配管系と、 上記複数の配管系のそれぞれに設けられた電動弁と、 上記多数の負荷側機器に冷温水を供給する複数の吸収式
冷温水機およびその補機よりなる機器と、 以上に述べた各機器の運転戻り信号を入力されるととも
に、該各機器に対して運転指令信号を出力するセントラ
ル冷暖房装置の料金を算定する方法であって、 前記の各機器が消費した電力をコンピュータに入力して
金額に換算し、 同じく、消費した水道水量を前記のコンピュータに入力
して金額に換算し、 同じく、消費した燃料ガス量を前記のコンピュータに入
力して金額に換算し、 前記各機器に要した付帯経費を前記のコンピュータに入
力し、 上記の入力値に基づいて、前記のコンピュータにより当
該冷暖房設備のランニングコストを算出し、 一方、前記負荷側機器の戻り信号に基づいて、多数の負
荷側機器のそれぞれについて利用したエネルギ量を算出
し、 前記のランニングコストに、要すれば係数を乗じて、多
数の負荷側機器それぞれの利用エネルギ量に比例配分す
ることを特徴とする、セントラル冷暖房装置の料金算出
方法。
1. A plurality of piping systems in which a large number of load side devices divided into groups are connected to each group, a motor-operated valve provided in each of the plurality of pipe systems, and a cooling temperature for the plurality of load side devices. A central heating and cooling system that supplies a plurality of absorption chiller-heaters for supplying water and its auxiliary equipment, and the operation return signal of each of the above-mentioned equipment, and outputs an operation command signal to each of the equipment. A method for calculating the charge of a device, which comprises inputting the electric power consumed by each of the above-mentioned devices into a computer and converting it into a monetary amount, and also entering the amount of tap water consumed into the above-mentioned computer and converting it into a monetary amount, , The amount of fuel gas consumed is converted into the amount of money by inputting to the computer, incidental expenses required for each device are input to the computer, and based on the input value, the computer The running cost of the cooling and heating equipment is calculated by the computer, while the amount of energy used for each of the load side devices is calculated based on the return signal of the load side device, and if the running cost is required, A method of calculating a charge for a central cooling and heating apparatus, characterized by multiplying a coefficient and proportionally distributing the amount of energy used by each of a large number of load side devices.
【請求項2】 グループ毎に区分した多数の負荷側機器
をグループ毎に接続した複数の配管系と、 上記複数の配管系のそれぞれに設けられた電動弁と、 上記多数の負荷側機器に冷温水を供給する複数の吸収式
冷温水機およびその補機よりなる機器と、 以上に述べた各機器の運転戻り信号を入力されるととも
に、該各機器に対して運転指令信号を出力するセントラ
ル冷暖房装置の料金を算出する装置であって、 上記の各機器が消費する電力を検出する電力量計と、水
道水量を検出する水量計と、燃料ガス量を検出するガス
流量計とを具備しており、 上記電力量計の出力信号と、水量計の出力信号と、ガス
流量計の出力信号とを入力されて、電気料金,水道料金
およびガス料金を算出する演算機能を有するとともに、
多数の負荷側機器のそれぞれについて、利用エネルギ量
を算出する演算機能を有し、かつ、料金合計を各負荷側
機器の利用エネルギについて比例配分する演算機能を有
するコンピュータを具備していることを特徴とする、セ
ントラル冷暖房装置の料金算出装置。
2. A plurality of piping systems in which a large number of load side devices divided into groups are connected to each group, a motor-operated valve provided in each of the plurality of pipe systems, and a cooling temperature of the plurality of load side devices. A central heating and cooling system that supplies a plurality of absorption chiller-heaters for supplying water and its auxiliary equipment, and the operation return signal of each of the above-mentioned equipment, and outputs an operation command signal to each of the equipment. A device for calculating the charge of the device, comprising an electricity meter for detecting the power consumed by each of the above devices, a water meter for detecting the amount of tap water, and a gas flow meter for detecting the amount of fuel gas. The output signal of the watt-hour meter, the output signal of the water meter, and the output signal of the gas flow meter are input, and a calculation function for calculating the electricity rate, water rate, and gas rate is provided, and
A computer having an arithmetic function for calculating the amount of energy used for each of a large number of load side devices, and a computer having an arithmetic function for proportionally distributing the total charge to the energy used by each load side device. The charge calculation device for the central heating and cooling system.
【請求項3】 前記のコンピュータは、前記多数の負荷
側機器のそれぞれについて、その能力を記憶する記憶回
路と、その運転時間を算定するタイマ回路とを有してお
り、上記の能力に運転時間を乗じて負荷側機器ごとに利
用エネルギ量を算出するものであることを特徴とする、
請求項2に記載したセントラル冷暖房装置の料金算出装
置。
3. The computer has a memory circuit for storing the capacity of each of the plurality of load side devices and a timer circuit for calculating the operating time thereof, and the operating time is calculated for the above capacity. Is used to calculate the amount of energy used for each load-side device,
The charge calculation device for a central heating and cooling device according to claim 2.
JP309092A 1992-01-10 1992-01-10 Central air-conditioning system charge calculation method and charge calculation device Expired - Lifetime JPH071511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP309092A JPH071511B2 (en) 1992-01-10 1992-01-10 Central air-conditioning system charge calculation method and charge calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP309092A JPH071511B2 (en) 1992-01-10 1992-01-10 Central air-conditioning system charge calculation method and charge calculation device

Publications (2)

Publication Number Publication Date
JPH05189659A true JPH05189659A (en) 1993-07-30
JPH071511B2 JPH071511B2 (en) 1995-01-11

Family

ID=11547651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP309092A Expired - Lifetime JPH071511B2 (en) 1992-01-10 1992-01-10 Central air-conditioning system charge calculation method and charge calculation device

Country Status (1)

Country Link
JP (1) JPH071511B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325657A (en) * 2000-05-17 2001-11-22 Mitsubishi Electric Corp System and method for accounting
JP2002109040A (en) * 2000-07-28 2002-04-12 Asahi Chuo Kk Management method and management system for multiple dwelling house
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system
WO2013187996A1 (en) * 2012-06-14 2013-12-19 Ecofactor, Inc. System and method for optimizing use of individual hvac units in multi-unit chiller-based systems
JP2014105979A (en) * 2012-11-30 2014-06-09 Osaka Gas Co Ltd Bathroom heater drier
US8840033B2 (en) 2010-05-26 2014-09-23 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US8886488B2 (en) 2007-09-17 2014-11-11 Ecofactor, Inc. System and method for calculating the thermal mass of a building
US9057649B2 (en) 2007-09-17 2015-06-16 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US9134710B2 (en) 2008-07-07 2015-09-15 Ecofactor, Inc. System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency
CN105023361A (en) * 2015-08-04 2015-11-04 河南恒瑞消防工程有限公司 Multifunctional convenience service terminal
US9188994B2 (en) 2010-08-20 2015-11-17 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
US9194597B2 (en) 2009-05-12 2015-11-24 Ecofactor, Inc. System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat
US9244470B2 (en) 2008-07-14 2016-01-26 Ecofactor, Inc. System and method for using a wireless device as a sensor for an energy management system
US9279594B2 (en) 2009-05-11 2016-03-08 Ecofactor, Inc. System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption
CN107218708A (en) * 2017-07-18 2017-09-29 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner
US10584890B2 (en) 2010-05-26 2020-03-10 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
CN112330885A (en) * 2020-10-09 2021-02-05 广东美的暖通设备有限公司 Central air conditioner charging method, system, charging management equipment and storage medium
CN115388517A (en) * 2022-07-27 2022-11-25 宁波奥克斯电气股份有限公司 Household charging method and device for multi-connected air conditioner and multi-connected air conditioner

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325657A (en) * 2000-05-17 2001-11-22 Mitsubishi Electric Corp System and method for accounting
JP2002109040A (en) * 2000-07-28 2002-04-12 Asahi Chuo Kk Management method and management system for multiple dwelling house
US10612983B2 (en) 2007-09-17 2020-04-07 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US9939333B2 (en) 2007-09-17 2018-04-10 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US8886488B2 (en) 2007-09-17 2014-11-11 Ecofactor, Inc. System and method for calculating the thermal mass of a building
US9057649B2 (en) 2007-09-17 2015-06-16 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US9134710B2 (en) 2008-07-07 2015-09-15 Ecofactor, Inc. System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency
US10254775B2 (en) 2008-07-07 2019-04-09 Ecofactor, Inc. System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency
US10289131B2 (en) 2008-07-14 2019-05-14 Ecofactor, Inc. System and method for using a wireless device as a sensor for an energy management system
US9244470B2 (en) 2008-07-14 2016-01-26 Ecofactor, Inc. System and method for using a wireless device as a sensor for an energy management system
US10534382B2 (en) 2008-07-14 2020-01-14 Ecofactor, Inc. System and method for using a wireless device as a sensor for an energy management system
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system
US9982905B2 (en) 2009-05-11 2018-05-29 Ecofactor, Inc. System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption
US9279594B2 (en) 2009-05-11 2016-03-08 Ecofactor, Inc. System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption
US9194597B2 (en) 2009-05-12 2015-11-24 Ecofactor, Inc. System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat
US10018371B2 (en) 2009-05-12 2018-07-10 Ecofactor, Inc. System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat
US9709292B2 (en) 2010-05-26 2017-07-18 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US10584890B2 (en) 2010-05-26 2020-03-10 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US8840033B2 (en) 2010-05-26 2014-09-23 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US10393398B2 (en) 2010-08-20 2019-08-27 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
US9188994B2 (en) 2010-08-20 2015-11-17 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
WO2013187996A1 (en) * 2012-06-14 2013-12-19 Ecofactor, Inc. System and method for optimizing use of individual hvac units in multi-unit chiller-based systems
US10048706B2 (en) 2012-06-14 2018-08-14 Ecofactor, Inc. System and method for optimizing use of individual HVAC units in multi-unit chiller-based systems
JP2014105979A (en) * 2012-11-30 2014-06-09 Osaka Gas Co Ltd Bathroom heater drier
CN105023361A (en) * 2015-08-04 2015-11-04 河南恒瑞消防工程有限公司 Multifunctional convenience service terminal
CN107218708A (en) * 2017-07-18 2017-09-29 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner
CN112330885A (en) * 2020-10-09 2021-02-05 广东美的暖通设备有限公司 Central air conditioner charging method, system, charging management equipment and storage medium
CN115388517A (en) * 2022-07-27 2022-11-25 宁波奥克斯电气股份有限公司 Household charging method and device for multi-connected air conditioner and multi-connected air conditioner

Also Published As

Publication number Publication date
JPH071511B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JPH05189659A (en) Method and device for calculating rate of central air-conditioning device
KR101216085B1 (en) Heat pump
KR101134687B1 (en) Heating control system for multiplex housing
JPS6037374B2 (en) Measurement control method in heating/cooling control measurement device and scale setting method for the device
KR20120021777A (en) Heat pump
RU42291U1 (en) CENTRAL HEATING SYSTEM
CN206695276U (en) A kind of pressure difference by-pass governing device with Storage Unit
US4187982A (en) Apparatus for increasing the transmission capacity of remote heating grids
JPH05172386A (en) Method and device for controlling monitor of absorptive water cooler and heater
JPH05196277A (en) Operation controlling method for absorption type cold-hot water machine
KR20070005829A (en) Air conditioning system and its operating method
JPH05180489A (en) Method and apparatus for controller chilled/warm water flow of central air conditioning facility
GB2534941A (en) Service supply systems
JPS6011041A (en) Operation control device for heat source equipment
JP3747055B2 (en) Charge apportionment method for hot water storage system for apartment houses
CN101598378A (en) Air conditioning control device and air conditioning control method
JP3953271B2 (en) Information communication system and gas consumption calculation method for each application
RU2647774C1 (en) Thermal item with additional premises
JP2001325657A (en) System and method for accounting
JPH05340570A (en) Designing method of air-conditioning system equipped with heat accumulating tank
KR200370859Y1 (en) Water Supply System for Heating and Domestic Hot Water
CN112303868A (en) Heat recycling system and method for air conditioner outdoor unit
KR100603962B1 (en) Water Supply System for Heating and Domestic Hot Water
JP4977442B2 (en) Hot water heater
JP3281956B2 (en) Thermal storage optimal operation management device