JPH05188220A - Three color separating prism - Google Patents

Three color separating prism

Info

Publication number
JPH05188220A
JPH05188220A JP4004646A JP464692A JPH05188220A JP H05188220 A JPH05188220 A JP H05188220A JP 4004646 A JP4004646 A JP 4004646A JP 464692 A JP464692 A JP 464692A JP H05188220 A JPH05188220 A JP H05188220A
Authority
JP
Japan
Prior art keywords
dichroic mirror
prism
refractive index
layer group
color separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4004646A
Other languages
Japanese (ja)
Inventor
Masaru Tatsuwaki
大 逹▲わき▼
Yasushi Atsuta
裕史 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4004646A priority Critical patent/JPH05188220A/en
Publication of JPH05188220A publication Critical patent/JPH05188220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the three color-separating prism which has a high degree of freedom in shape and design and has good color separating performance in the constitution of the three color-separating prism having no air gaps. CONSTITUTION:The prism has three pieces of prism members 1, 2, 3, a 1st dichroic mirror 4 which reflects a green wavelength band at <=30 deg. incident angle and a 2nd dichroic mirror 5 which reflects a red wavelength band at >=30 deg. incident angle. The half-value wavelength width of the P polarized light and S polarized light of the reflection wavelength band of the 2nd dichroic mirror 5 is set narrower than the half-value wavelength width of the P polarized light of the reflection wavelength band of the 1st dichroic mirror 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビジョンカメラなど
のカラー固体撮像装置に用いられる3色分解プリズムに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-color separation prism used in a color solid-state image pickup device such as a television camera.

【0002】[0002]

【従来の技術】近年、固体撮像素子を3個用いる3板式
カラーカメラ(以下、3板カメラという)が開発されて
おり、この種のカメラには撮像光束を青、緑、赤の3原
色に色分解する3色分解プリズムが用いられる。
2. Description of the Related Art In recent years, a three-plate color camera (hereinafter referred to as a three-plate camera) that uses three solid-state image pickup devices has been developed. In this type of camera, an image pickup light flux is divided into three primary colors of blue, green and red. A three-color separation prism for color separation is used.

【0003】図4は従来多く用いられている3色分解プ
リズムの断面図で、特公昭38−23724号公報に記
載されたもので、以下、ギャップ型プリズムと呼ぶこと
とする。
FIG. 4 is a cross-sectional view of a three-color separating prism which has been widely used in the past, which is described in Japanese Patent Publication No. 38-23724 and is hereinafter referred to as a gap type prism.

【0004】図4において41、42、43はプリズム
部材であり、44は青色の波長帯の光束を反射する第1
のダイクロイックミラー、45は赤色の波長帯の光束を
反射する第2のダイクロイックミラーで、プリズム部材
41、42の間には数十ミクロン間隔のエアーギャップ
46が設けられる。47は入射する光束の光軸を示す。
In FIG. 4, reference numerals 41, 42 and 43 are prism members, and 44 is a first reflection member for reflecting a light beam in the blue wavelength band.
Is a second dichroic mirror that reflects a light beam in the red wavelength band, and an air gap 46 is provided between the prism members 41 and 42 at intervals of several tens of microns. Reference numeral 47 denotes the optical axis of the incident light beam.

【0005】これに対し、プリズム部材全てを密着接合
したエアーギャップを設けない簡素な構成の3色分解プ
リズム(以下、ギャップレスプリズムという)が、例え
ば特開昭50−159618号公報において提案されて
いる。
On the other hand, a three-color separation prism (hereinafter referred to as a gapless prism) having a simple structure in which all the prism members are adhered and joined and no air gap is provided has been proposed in, for example, Japanese Patent Laid-Open No. 50-159618. ..

【0006】図5に、このギャップレス構造の3色分解
プリズムの断面図を示す。図において、61、62、6
3はプリズム部材であり、すべて密着接合され、64は
第1のダイクロイックミラー、65は第2のダイクロイ
ックミラー、66はギャップレスプリズムに入射する光
束である。
FIG. 5 shows a sectional view of the three-color separation prism having the gapless structure. In the figure, 61, 62, 6
Reference numeral 3 is a prism member, all of which are closely joined, 64 is a first dichroic mirror, 65 is a second dichroic mirror, and 66 is a light beam incident on a gapless prism.

【0007】入射光束66は第1のダイクロイックミラ
ーによって青色光束67aに色分解され、入射面68に
て全反射した後光束出射面69aより出射する。第1の
ダイクロイックミラー64を透過した光束は第2のダイ
クロイックミラー65で赤色光束67bと緑色光束67
cとに色分解される。赤色光束67b、緑色光束67c
は共に全反射されずに光束出射面69b、69cより出
射する。図5における点線は撮像光束の通過する領域
で、前記撮像光束がけられてはいけない。70a、70
bは第1、第2のダイクロイックミラー64、65への
入射角を示す。
The incident light beam 66 is color-separated into a blue light beam 67a by the first dichroic mirror, is totally reflected by the incident surface 68, and is then emitted from the light beam emitting surface 69a. The light flux transmitted through the first dichroic mirror 64 is red light flux 67b and green light flux 67 at the second dichroic mirror 65.
The color is separated into c and. Red luminous flux 67b, green luminous flux 67c
Are not totally reflected, and are emitted from the light flux emission surfaces 69b and 69c. The dotted line in FIG. 5 is a region through which the imaging light flux passes, and the imaging light flux must not be eclipsed. 70a, 70
b indicates the incident angle on the first and second dichroic mirrors 64 and 65.

【0008】[0008]

【発明が解決しようとする課題】一般に、ダイクロイッ
クミラーの分光特性は入射角依存性を有し、入射角によ
って半値波長位置が変化したり、入射光の偏光状態によ
って特性が変化するという挙動を示す。
Generally, the spectral characteristic of a dichroic mirror has an incident angle dependency, and the behavior is such that the half-value wavelength position changes depending on the incident angle and the characteristic changes depending on the polarization state of the incident light. ..

【0009】前者については予め入射角がわかっておれ
ば、分光特性の設計において修正可能であるが、後者に
ついては解消することが困難である。この偏光状態によ
る分光特性の変化は、P偏光とS偏光の特性によって表
わせ、両者の特性の半値波長の幅をもって色彩への影響
が量的に把握できる。
The former can be corrected in the design of the spectral characteristics if the incident angle is known in advance, but the latter is difficult to solve. This change in the spectral characteristic due to the polarization state is represented by the characteristics of the P-polarized light and the S-polarized light, and the influence on the color can be quantitatively grasped by the width of the half-value wavelength of both characteristics.

【0010】図5のギャップレスプリズムでは、入射角
70bが図4のギャップ型プリズムの場合に比べて大き
くなるため、第2のダイクロイックミラー65の入射角
依存性の影響は大きく、従って大きな偏光特性を有する
ことになる。逆に入射角70bを小さくすると、出射面
69bでの光束67bの位置がプリズム部材64の方に
寄り過ぎてしまう結果、出射する光束にけられが生じた
り、撮像素子、特にパッケージサイズの大きいものが取
り付けられないといった問題になる。
In the gapless prism of FIG. 5, since the incident angle 70b is larger than that of the gap type prism of FIG. 4, the influence of the incident angle dependency of the second dichroic mirror 65 is large, so that a large polarization characteristic is obtained. Will have. On the contrary, if the incident angle 70b is reduced, the position of the light flux 67b on the exit surface 69b will be too close to the prism member 64, and as a result, the outgoing light flux will be eclipsed or the image pickup element, especially the one having a large package size. Will not be installed.

【0011】つまり、ギャップレスプリズムにおいて、
入射角70bは大きい方が、コンパクトなプリズム形状
の設計や撮像素子の取り付けにとっては好都合だが、第
2のダイクロイックミラー65の偏光特性にとっては不
都合となる。
That is, in the gapless prism,
A large incident angle 70b is convenient for the design of a compact prism shape and mounting of the image pickup device, but it is inconvenient for the polarization characteristic of the second dichroic mirror 65.

【0012】本発明はかかる点に鑑み、ギャップレス構
成であるにもかかわらず、第2のダイクロイックミラー
の入射角を大きく設定でき、かつ偏光特性の影響を受け
にくくして、良好な色分解性能を実現できる3色分解プ
リズムを提供することを目的とする。
In view of the above points, the present invention has a gapless structure, but the incident angle of the second dichroic mirror can be set to a large value, and it is less affected by the polarization characteristics, thus achieving good color separation performance. It is an object of the present invention to provide a realizable three-color separation prism.

【0013】[0013]

【課題を解決するための手段】本発明では、入射側より
第1、第2、第3の少なくとも3個のプリズム部材を備
え、前記第1のプリズム部材に入射した光束の緑色波長
帯域を、光軸入射角30°以下で反射させた後に入射面
で全反射させて前記第1のプリズム部材から出射させる
第1のダイクロイックミラーと、前記第1のダイクロイ
ックミラーを透過した光束の青色、または赤色の波長帯
域を光軸入射角30°以上で反射させた後に、直進させ
て前記第2のプリズム部材から出射させるとともに、透
過した光束を直進させ前記第3のプリズム部材から出射
させる第2のダイクロイックミラーを備え、前記第2の
ダイクロイックミラーの反射透過境界のP偏光とS偏光
の特性の半値波長幅を、前記第1のダイクロイックミラ
ーの反射波長帯のP偏光の半値波長幅よりも狭くする。
According to the present invention, at least three first, second, and third prism members are provided from the incident side, and the green wavelength band of the light beam incident on the first prism member is A first dichroic mirror, which is reflected at an incident angle of 30 ° or less on the optical axis and then is totally reflected by an incident surface to be emitted from the first prism member, and a blue or red light beam transmitted through the first dichroic mirror. Second dichroic in which the wavelength band of is reflected at an incident angle of the optical axis of 30 ° or more and then straightly travels to be emitted from the second prism member, and the transmitted light flux is straightly traveled to be emitted from the third prism member. And a half-value wavelength width of the characteristics of P-polarized light and S-polarized light at the reflection / transmission boundary of the second dichroic mirror, which is equal to P of the reflection wavelength band of the first dichroic mirror. It is narrower than the half-value wavelength width of polarized light.

【0014】[0014]

【作用】上記手段により、入射角の比較的小さい第1の
ダイクロイックミラーにおいて、偏光特性を小さく抑え
つつ緑色波長帯域を十分に反射する分光特性を設定で
き、入射角の大きい第2のダイクロイックミラーにおい
て、そこに生じる偏光特性が緑色波長帯域の範囲内に収
まるように分光特性を設定する。これにより、第2のダ
イクロイックミラーの偏光特性の影響は現れなくなり、
入射光の偏光状態に関わらず、安定した色分解性能が得
られる。この結果、第2のダイクロイックミラーの入射
角をより大きくした、エアギャップのないプリズム形状
が可能となる。
By the above means, in the first dichroic mirror having a relatively small incident angle, it is possible to set the spectral characteristic for sufficiently reflecting the green wavelength band while suppressing the polarization characteristic, and in the second dichroic mirror having a large incident angle. The spectral characteristic is set so that the polarization characteristic generated there is within the range of the green wavelength band. As a result, the influence of the polarization characteristic of the second dichroic mirror does not appear,
Stable color separation performance can be obtained regardless of the polarization state of incident light. As a result, a prism shape without an air gap, which makes the incident angle of the second dichroic mirror larger, becomes possible.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は実施例における3色分解プリズムの
断面図であり、1、2、3はプリズム部材、4は第1の
ダイクロイックミラー、5は第2のダイクロイックミラ
ーである。プリズム部材1、2、3は密着接合し、エア
ーギャップは設けない。6は撮像レンズ(図では省略)
を通過した入射光束であり、これを第1のダイクロイッ
クミラー4にて緑色光束7aに色分解し、出射面8aか
ら出射させる。
FIG. 1 is a sectional view of a three-color separation prism in the embodiment, in which 1, 2, 3 are prism members, 4 is a first dichroic mirror, and 5 is a second dichroic mirror. The prism members 1, 2 and 3 are closely joined and no air gap is provided. 6 is an imaging lens (not shown)
Which is an incident light beam that has passed through the first dichroic mirror 4 and is separated into a green light beam 7a by the first dichroic mirror 4 and emitted from the emission surface 8a.

【0017】また第1のダイクロイックミラーを透過し
た光束は第2のダイクロイックミラー5で色分解し、青
色光束7bは出射面8bから、赤色光束7cは出射面8
cから出射させる。
The light beam transmitted through the first dichroic mirror is color-separated by the second dichroic mirror 5, and the blue light beam 7b is emitted from the emission surface 8b and the red light beam 7c is emitted from the emission surface 8.
It is emitted from c.

【0018】偏光特性が問題にならないレベルにするた
めにはダイクロイックミラーの入射角は30度以下が望
ましく、第1のダイクロイックミラー4の入射角9aは
30度以下に設定する。しかし、第2のダイクロイック
ミラー5の入射角9bは30度よりも大きくする方が、
プリズム形状の設計や固体撮像素子パッケージ10bの
取り付け面の確保において有利であり、本実施例では3
8度とする。
The incident angle of the dichroic mirror is preferably 30 degrees or less so that the polarization characteristic does not matter, and the incident angle 9a of the first dichroic mirror 4 is set to 30 degrees or less. However, if the incident angle 9b of the second dichroic mirror 5 is larger than 30 degrees,
This is advantageous in designing the prism shape and securing the mounting surface of the solid-state imaging device package 10b.
8 degrees.

【0019】10a、10cも固体撮像素子パッケージ
であり、11a、11b、11cはそれぞれパッケージ
内の撮像素子を示す。
10a and 10c are also solid-state image pickup device packages, and 11a, 11b and 11c respectively indicate image pickup devices in the package.

【0020】図2は、本実施例の第1のダイクロイック
ミラー4の分光特性図であり、図において21はP偏光
特性、22はS偏光特性、23はP偏光とS偏光の平均
値の特性(以下、(P+S)/2特性という)、24は
リップルである。このダイクロイックミラーで反射分離
する波長領域を点線矢印で示す。
FIG. 2 is a spectral characteristic diagram of the first dichroic mirror 4 of the present embodiment. In the figure, 21 is a P polarization characteristic, 22 is an S polarization characteristic, and 23 is a characteristic of an average value of P polarization and S polarization. (Hereinafter, referred to as (P + S) / 2 characteristic), 24 is a ripple. The dotted line arrow indicates the wavelength region in which the dichroic mirror reflects and separates.

【0021】本実施例では(P+S)/2特性を示す曲
線23において、半値波長の位置を、短波長側を約48
6nm、長波長側を約577nmと設定し、P偏光特性の半
値波長幅は70nmとなる。
In this embodiment, in the curve 23 showing the (P + S) / 2 characteristic, the position of the half value wavelength is about 48 on the short wavelength side.
6 nm and the long wavelength side are set to about 577 nm, and the half-value wavelength width of the P-polarization characteristic is 70 nm.

【0022】この分光特性は、青色の長波長側の特性と
緑色の短波長側、長波長側の両特性、および赤色の短波
長側の特性を決定する機能を果たし、次のような光学多
層膜による構成とする。
This spectral characteristic serves to determine the characteristic on the long wavelength side of blue, both the characteristic on the short wavelength side of green and the characteristic on the long wavelength side of green, and the characteristic on the short wavelength side of red. The structure will be a film.

【0023】すなわち、高屈折率物質と低屈折率物質で
構成する19層以上25層以下の交互多層膜であり、被
着体側から数えて奇数番目の層は低屈折率物質で、偶数
番目の層は高屈折率物質で構成し、各層の光学的膜厚n
iiは以下の条件; nii=1.57λ/4 (i =2〜(n−1)の範囲内の偶数番目の層) nii=2.85λ/4 (i =1、3、n番目の層) nii=0.32λ/4 (i =5、(n−3)番目の層) nii=0.41λ/4 (i :1〜nの範囲内の前記以外の奇数番目の層) (ni:第 i 層の構成物質の屈折率) (λ:可視光における設計基準波長) (n:ダイクロイックミラーの層数) を満たす光学多層膜とすればよい。
That is, it is an alternating multilayer film of 19 or more and 25 or less layers composed of a high-refractive index material and a low-refractive index material, and the odd-numbered layers counted from the adherend side are low-refractive-index materials and even-numbered layers. The layers are composed of high refractive index materials, and the optical thickness n of each layer
i d i is the following condition; n i d i = 1.57λ / 4 (even layer within the range of i = 2 to (n-1)) n i d i = 2.85λ / 4 (i = 1, 3, n-th layer) n i d i = 0.32λ / 4 (i = 5, (n-3) -th layer) n i d i = 0.41λ / 4 (i: 1 to n An optical multilayer film satisfying the following: (odd layer other than the above in the range) (n i : refractive index of constituent material of i-th layer) (λ: design reference wavelength in visible light) (n: number of dichroic mirror layers) do it.

【0024】具体例でいえば、プリズム硝材のd線に対
する屈折率(nd)を1.59、設計基準波長λを53
0nm、入射角を26.5度、多層膜層数を19層、高屈
折率物質の屈折率を2.20、低屈折率物質の屈折率を
1.46とする。この時の各層の光学的膜厚niiは以
下のようにする; nii=208.0nm (i =2、4、6、8、10、12、14、16、18層) nii=377.6nm (i =1、3、19層) nii= 42.4nm (i =5、17層) nii= 54.3nm (i =7、9、11、13、15層) 本ダイクロイックミラーでは、奇数層すなわち低屈折率
物質層の光学的膜厚のみを変化させて調整を行っている
ため、製造時の光学的膜厚の制御および調整が比較的容
易となる。なおダイクロイックミラーの各光学的膜厚n
iiは、前記値を基準値として±10%程度の範囲であ
れば良好な分光特性を示す。最外層の光学的膜厚は前記
以上の光学的膜厚であればよい。
As a specific example, the refractive index (n d ) of the prism glass material with respect to the d-line is 1.59, and the design reference wavelength λ is 53.
0 nm, the incident angle is 26.5 degrees, the number of multilayer layers is 19, the refractive index of the high refractive index material is 2.20, and the refractive index of the low refractive index material is 1.46. The optical film thickness n i d i of each layer at this time is as follows: n i d i = 208.0 nm (i = 2, 4, 6, 8, 10, 12, 14, 16, 18 layers) n i d i = 377.6nm (i = 1,3,19 layer) n i d i = 42.4nm ( i = 5,17 layer) n i d i = 54.3nm ( i = 7,9,11 , 13, 15 layers) In the present dichroic mirror, adjustment is performed by changing only the optical film thickness of the odd-numbered layer, that is, the low refractive index material layer. It will be easy. The optical film thickness n of the dichroic mirror
i d i shows good spectral characteristics in the range of about ± 10% with the above value as a reference value. The optical film thickness of the outermost layer may be the above optical film thickness.

【0025】なお図2において長波長領域でリップル2
4が出現しているが、3色分解プリズムを使用する撮像
装置では、通常、赤外光カットフィルターを用いて長波
長側の近赤外光の透過光量を抑制するため、リップル2
4の影響はきわめて小さくなり実用上問題はない。
In FIG. 2, the ripple 2 in the long wavelength region is
No. 4 has appeared, but in an image pickup apparatus using a three-color separation prism, an infrared light cut filter is usually used to suppress the amount of transmitted near-infrared light on the long wavelength side.
The effect of No. 4 is extremely small, and there is no practical problem.

【0026】図3は、本実施例の第2のダイクロイック
ミラー5の分光特性図であり、図において、31はP偏
光特性、32はS偏光特性、33はP偏光とS偏光の平
均値の特性である。点線矢印は、P偏光とS偏光の特性
の半値波長幅を示し、P偏光特性31の半値波長の位置
を約500nm、S偏光特性32の半値波長位置を約56
5nmとする。
FIG. 3 is a spectral characteristic diagram of the second dichroic mirror 5 of this embodiment. In the figure, 31 is a P polarization characteristic, 32 is an S polarization characteristic, and 33 is an average value of P polarization and S polarization. It is a characteristic. The dotted arrow indicates the half-value wavelength width of the characteristics of P-polarized light and S-polarized light. The position of the half-value wavelength of the P-polarization characteristic 31 is about 500 nm, and the half-value wavelength position of the S-polarization characteristic 32 is about 56 nm.
5 nm.

【0027】P偏光とS偏光の特性の半値波長幅は65
nmであり、第1のダイクロイックミラー4のP偏光の半
値波長幅70nm以下に抑える。そして青色の波長領域で
十分な反射特性を持ち、赤色の波長領域で十分な透過特
性を持つように設定し、次のような光学多層膜による構
成とする。
The half-value wavelength width of the characteristics of P-polarized light and S-polarized light is 65.
nm, and the half-value wavelength width of the P-polarized light of the first dichroic mirror 4 is suppressed to 70 nm or less. Then, it is set so as to have sufficient reflection characteristics in the blue wavelength region and sufficient transmission characteristics in the red wavelength region, and the following optical multilayer film is formed.

【0028】すなわち、高屈折率物質と低屈折率物質で
構成する17層以上23層以下の交互多層膜であり、被
着体側から数えて奇数番目の層は低屈折率物質で、偶数
番目の層は高屈折率物質で構成し、各層の光学的膜厚n
iiは以下の条件; nii=0.56λ/4 ( i =2、(m−1)番目の層) nii=0.92λ/4 ( i =5、(m−4)番目の層) nii=1.00λ/4 ( i :1〜mの範囲内の前記以外の層) (ni:第 i 層の構成物質の屈折率) ( λ:可視光における設計基準波長) ( m:ダイクロイックミラーの層数) を満たす光学多層膜で構成すればよい。
That is, it is an alternating multi-layered film of 17 or more and 23 or less layers composed of a high-refractive index material and a low-refractive index material, and the odd-numbered layers counted from the adherend side are low-refractive-index materials and even-numbered layers. The layers are composed of high refractive index materials, and the optical thickness n of each layer
i d i is the following condition; n i d i = 0.56λ / 4 (i = 2, (m-1) th layer) n i d i = 0.92λ / 4 (i = 5, (m- 4) th layer) n i d i = 1.00λ / 4 (i: layers other than the above in the range of 1 to m) (n i : refractive index of constituent material of i th layer) (λ: visible light The design reference wavelength in (): (m: number of layers of dichroic mirror).

【0029】具体例でいえば、プリズム硝材のd線に対
する屈折率(nd)を1.59、設計基準波長λを52
0nm、入射角を38.0度、多層膜の層数を17層、高
屈折率物質の屈折率を2.20、低屈折率物質の屈折率
を1.46とした。各層の光学的膜厚niiは以下のよ
うになる; nii= 73.2nm (i =2、16層) nii=119.7nm (i =5、13層) nii=130.0nm (i =1、3、4、6〜12、14、15、17層 ) なおダイクロイックミラーの各光学的膜厚niiは、前
記値を基準値として±10%程度の範囲であれば良好な
分光特性を示す。最外層の光学的膜厚は前記以上の光学
的膜厚であればよい。なお、ダイクロイックミラーは一
般に光束の入射角が同じであるならば、反射分離する波
長領域を短波長領域にした方が入射角依存性の影響が少
なくなる。したがって本実施例では、第2のダイクロイ
ックミラーは、青色光束を反射し赤色光束を透過する特
性とした。
As a specific example, the refractive index (n d ) of the prism glass material for the d-line is 1.59, and the design reference wavelength λ is 52.
The incident angle was 0 nm, the incident angle was 38.0 degrees, the number of layers of the multilayer film was 17, the refractive index of the high refractive index substance was 2.20, and the refractive index of the low refractive index substance was 1.46. The optical film thickness n i d i of each layer is as follows: n i d i = 73.2 nm (i = 2, 16 layers) n i d i = 119.7 nm (i = 5, 13 layers) n i d i = 130.0 nm (i = 1, 3, 4, 6 to 12, 14, 15, 17 layers) The optical film thickness n i d i of the dichroic mirror is ± 10 with the above value as a reference value. In the range of about%, good spectral characteristics are exhibited. The optical film thickness of the outermost layer may be the above optical film thickness. In general, in the dichroic mirror, if the incident angles of the light beams are the same, the influence of the incident angle dependency is reduced when the wavelength region in which the light is reflected and separated is set to the short wavelength region. Therefore, in this embodiment, the second dichroic mirror has a characteristic of reflecting the blue light beam and transmitting the red light beam.

【0030】以上、入射角の比較的小さい第1のダイク
ロイックミラーにおいて、偏光特性を小さく抑えつつ緑
色波長帯域を十分に反射する分光特性を設定する。次に
入射角の大きい第2のダイクロイックミラーにおいて、
そこに生じる偏光特性が緑色波長帯域の範囲内に収まる
ように分光特性を設定する。
As described above, in the first dichroic mirror having a relatively small incident angle, the spectral characteristic is set so as to sufficiently reflect the green wavelength band while suppressing the polarizing characteristic to be small. Next, in the second dichroic mirror with a large incident angle,
The spectral characteristic is set so that the polarization characteristic generated there is within the range of the green wavelength band.

【0031】これにより、第2のダイクロイックミラー
の偏光特性の影響は現れにくくなり、入射光の偏光状態
に関わらず、安定した色分解性能が得られる。プリズム
部材2の出射面8aを大きく確保でき、撮像素子の取り
付けが容易になるとともに、プリズム形状の設計の自由
度が増す。つまり、エアーギャップを設けない3色分解
プリズムにおいて、よりコンパクトで、撮像素子が装着
しやすく、かつ良好な色分解性能が得られる。
As a result, the influence of the polarization characteristic of the second dichroic mirror is less likely to appear, and stable color separation performance can be obtained regardless of the polarization state of incident light. A large exit surface 8a of the prism member 2 can be secured, mounting of the image sensor becomes easy, and the degree of freedom in designing the prism shape increases. That is, in the three-color separation prism having no air gap, the three-color separation prism is more compact, the image pickup element can be easily mounted, and good color separation performance can be obtained.

【0032】[0032]

【発明の効果】本発明の3色分解プリズムは、ギャップ
レス構成であるにもかかわらず、第2のダイクロイック
ミラーの入射角を大きく設定でき、かつ偏光特性の影響
を受けにくくする結果、撮像素子の取り付けやプリズム
寸法に関わるプリズム形状設計を容易にし、良好な色分
解性能を実現できる3色分解プリズムを得ることが可能
となり、本発明の工業的価値は高い。
Although the three-color separation prism of the present invention has the gapless structure, the incident angle of the second dichroic mirror can be set to a large value and the influence of the polarization characteristic is lessened. The three-color separation prism capable of facilitating mounting and prism shape design related to the prism size and realizing good color separation performance can be obtained, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における3色分解プリズムの断
面構成図
FIG. 1 is a sectional configuration diagram of a three-color separation prism in an embodiment of the present invention.

【図2】同実施例における第1のダイクロイックミラー
の分光特性図
FIG. 2 is a spectral characteristic diagram of a first dichroic mirror in the example.

【図3】同実施例における第2のダイクロイックミラー
の分光特性図
FIG. 3 is a spectral characteristic diagram of a second dichroic mirror in the example.

【図4】従来の3色分解プリズムの一例であるギャップ
型プリズムの断面構成図
FIG. 4 is a cross-sectional configuration diagram of a gap type prism which is an example of a conventional three-color separation prism.

【図5】従来の3色分解プリズムの一例であるギャップ
レスプリズムの断面構成図
FIG. 5 is a cross-sectional configuration diagram of a gapless prism that is an example of a conventional three-color separation prism.

【符号の説明】[Explanation of symbols]

1、2、3 プリズム部材 4、5 ダイクロイックミラー 6 撮像光束(入射光) 7a、7b、7c 色分解光束 8a、8b、8c 光束出射面 9a、9b 入射角 10a、10b、10c 固体撮像素子パッケージ 21 P偏光の分光特性 22 S偏光の分光特性 23 P偏光とS偏光の平均分光特性 24 リップル 31 P偏光の分光特性 32 S偏光の分光特性 33 P偏光とS偏光の平均分光特性 41、42、43 プリズム部材 44、45 ダイクロイックミラー 46 エアーギャップ 47 撮像光束(入射光) 61、62、63 プリズム部材 64、65 ダイクロイックミラー 66 撮像光束(入射光) 67a、67b、67c 色分解された光束 68 全反射面 69a、69b、69c 光束出射面 70a、70b 入射角 1, 2 and 3 Prism member 4, 5 Dichroic mirror 6 Imaging light flux (incident light) 7a, 7b, 7c Color separation light flux 8a, 8b, 8c Light flux exit surface 9a, 9b Incident angle 10a, 10b, 10c Solid-state imaging device package 21 Spectral characteristics of P-polarized light 22 Spectral characteristics of S-polarized light 23 Average spectral characteristics of P-polarized light and S-polarized light 24 Ripple 31 Spectral characteristics of P-polarized light 32 Spectral characteristics of S-polarized light 33 Average spectral characteristics of P-polarized light and S-polarized light 41, 42, 43 Prism member 44, 45 Dichroic mirror 46 Air gap 47 Imaging light flux (incident light) 61, 62, 63 Prism member 64, 65 Dichroic mirror 66 Imaging light flux (incident light) 67a, 67b, 67c Color separated light flux 68 Total reflection surface 69a, 69b, 69c Luminous flux exit surface 70a, 70b Incident angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入射側より第1、第2、第3の少なくとも
3個のプリズム部材を備え、前記第1のプリズム部材に
入射した光束の緑色波長帯域を、光軸入射角30°以下
で反射させた後に入射面で全反射させて前記第1のプリ
ズム部材から出射させる第1のダイクロイックミラー
と、前記第1のダイクロイックミラーを透過した光束の
青色、または赤色の波長帯域を光軸入射角30°以上で
反射させた後に、直進させて前記第2のプリズム部材か
ら出射させるとともに、透過した光束を直進させ前記第
3のプリズム部材から出射させる第2のダイクロイック
ミラーを備え、前記第2のダイクロイックミラーの反射
透過境界のP偏光とS偏光の特性の半値波長幅を、前記
第1のダイクロイックミラーの反射波長帯のP偏光の半
値波長幅よりも狭くしたことを特徴とする3色分解プリ
ズム。
1. At least three prism members, first, second and third, are provided from the incident side, and a green wavelength band of a light beam incident on the first prism member is set at an optical axis incident angle of 30 ° or less. A first dichroic mirror that is reflected and then totally reflected on an incident surface to be emitted from the first prism member, and a blue or red wavelength band of a light flux transmitted through the first dichroic mirror is an optical axis incident angle. A second dichroic mirror is provided which, after being reflected at 30 ° or more, advances straight to be emitted from the second prism member, and advances the transmitted light flux straight to be emitted from the third prism member. The half-value wavelength width of the characteristics of P-polarized light and S-polarized light at the reflection / transmission boundary of the dichroic mirror is made narrower than the half-value wavelength width of P-polarized light in the reflection wavelength band of the first dichroic mirror. A three-color separation prism characterized by that.
【請求項2】第1のダイクロイックミラーは、基板側よ
り内側調整層群、基本周期層群、外側調整層群を基本構
造として低屈折率層と高屈折率層から成り、前記基本周
期層群は、低屈折率層の光学長(nd)を高屈折率層の
光学長よりも小さくした2種類の積層構造とし、かつ前
記内側調整層群の層数を前記外側調整層群の層数よりも
多くした光学多層膜としたことを特徴とする請求項1記
載の3色分解プリズム。
2. A first dichroic mirror is composed of a low refractive index layer and a high refractive index layer with the inner adjusting layer group, the basic periodic layer group and the outer adjusting layer group as a basic structure from the substrate side. Is a two-layered structure in which the optical length (nd) of the low refractive index layer is smaller than the optical length of the high refractive index layer, and the number of layers of the inner adjusting layer group is smaller than that of the outer adjusting layer group. The three-color separation prism according to claim 1, wherein the optical multi-layer film is increased.
【請求項3】第2のダイクロイックミラーは、基板側よ
り内側調整層群、基本周期層群、外側調整層群を基本構
造として低屈折率層と高屈折率層から成り、前記基本周
期層群は、低屈折率層と高屈折率層との光学長を等しく
した2種類の積層構造とし、かつ前記内側調整層群と前
記外側調整層群とは、等しい層数で互いに対称な積層構
造とした光学多層膜としたことを特徴とする請求項1記
載の3色分解プリズム。
3. A second dichroic mirror is composed of a low refractive index layer and a high refractive index layer with an inner adjusting layer group, a basic periodic layer group and an outer adjusting layer group as a basic structure from the substrate side. Is a laminated structure of two types in which the optical lengths of the low refractive index layer and the high refractive index layer are equal, and the inner adjustment layer group and the outer adjustment layer group have the same number of layers and are symmetrical to each other. The three-color separation prism according to claim 1, wherein the three-color separation prism is formed of the optical multilayer film.
JP4004646A 1992-01-14 1992-01-14 Three color separating prism Pending JPH05188220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004646A JPH05188220A (en) 1992-01-14 1992-01-14 Three color separating prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004646A JPH05188220A (en) 1992-01-14 1992-01-14 Three color separating prism

Publications (1)

Publication Number Publication Date
JPH05188220A true JPH05188220A (en) 1993-07-30

Family

ID=11589731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004646A Pending JPH05188220A (en) 1992-01-14 1992-01-14 Three color separating prism

Country Status (1)

Country Link
JP (1) JPH05188220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158279A (en) * 2006-12-25 2008-07-10 Sony Corp Color separation prism and color imaging apparatus
JP2009086165A (en) * 2007-09-28 2009-04-23 Fujinon Corp Color separation optical system and image pickup apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158279A (en) * 2006-12-25 2008-07-10 Sony Corp Color separation prism and color imaging apparatus
JP2009086165A (en) * 2007-09-28 2009-04-23 Fujinon Corp Color separation optical system and image pickup apparatus

Similar Documents

Publication Publication Date Title
US8040611B2 (en) Color separation optical system and image pickup apparatus
US20110273770A1 (en) Color combiner
WO2003007073A1 (en) Reflection type liquid crystal projector
US20110242653A1 (en) Polarization converting color combiner
US20100277796A1 (en) Light combiner
JP2006047903A (en) Polarized beam splitter and projection device having the same
US7066603B2 (en) Cross dichroic prism and reflection type liquid crystal projector using the same
JP3629556B2 (en) Color synthesis / decomposition optics
JP2008015240A (en) Optical element, and two-plate unit, image pickup device and endoscope equipped with the optical element
JP3679746B2 (en) Optical element, liquid crystal projector and camera using the same
JPH11101913A (en) Optical element
US20050275807A1 (en) Color combining optical system and image projection apparatus
JPH05188220A (en) Three color separating prism
JP4095344B2 (en) Trimming filter
JPH0727908A (en) Color separation optical system
JP2870234B2 (en) Color separation optics
JP2008116714A (en) Optical filter and color separation prism
JPH07281024A (en) Polarized beam splitter
JP2008203493A (en) Image projection device
JP2008058561A (en) Optical filter and color separation prism
JP2001078216A (en) Color separation optical system and image pickup device using same
JP3104432B2 (en) Color separation optics
JP2004354935A (en) Laminated wave length plate and projector using the same
JP2001318221A (en) Optical filter intercepting long wavelength, optical filter intercepting short wavelength, cross prism, cross mirror and liquid crystal projector
JP2001078216A5 (en)