JPH05187974A - Liquid transporting method - Google Patents

Liquid transporting method

Info

Publication number
JPH05187974A
JPH05187974A JP2459092A JP2459092A JPH05187974A JP H05187974 A JPH05187974 A JP H05187974A JP 2459092 A JP2459092 A JP 2459092A JP 2459092 A JP2459092 A JP 2459092A JP H05187974 A JPH05187974 A JP H05187974A
Authority
JP
Japan
Prior art keywords
liquid
transfer
spherical
transfer member
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2459092A
Other languages
Japanese (ja)
Inventor
Makoto Shinohara
真 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2459092A priority Critical patent/JPH05187974A/en
Publication of JPH05187974A publication Critical patent/JPH05187974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To transport liquid with a simple constitution by way of a free path without forming a flow channel and without using a valve. CONSTITUTION:By scooping liquid 4 with a transporting member 11 having a poor wetness to the transported objective liquid, the liquid 5 forming a sphere due to its surface tension is put on the ring 11a of the transporting member 11 and the sphere liquid 5 is transported by moving the transporting member 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体を移動させる機構
を有する装置、特に、液体クロマトグラフィーや、血液
分析装置、微量合成装置等のように微量な液体を扱う装
置において使用される液体の移送方法に関する。また、
本発明の移送方法は、マイクロマシニングによりSi基
板上等において非常に至近距離で液体を移動させる機構
を実現する場合にも使用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device having a mechanism for moving a liquid, and more particularly to a liquid used in a device for handling a small amount of liquid such as liquid chromatography, a blood analyzer, a microsynthesis device and the like. Regarding transfer method. Also,
The transfer method of the present invention can also be used when a mechanism for moving a liquid on a Si substrate or the like at a very short distance is realized by micromachining.

【0002】[0002]

【従来の技術】一般に液体を移動させるには、配管や溝
などにより流路を形成したり、バルブを設けたりする必
要がある。
2. Description of the Related Art Generally, in order to move a liquid, it is necessary to form a flow path with a pipe or a groove or to provide a valve.

【0003】[0003]

【発明が解決しようとする課題】しかし、配管や溝など
によって流路を形成すると、形成された流路によって移
送経路が左右され、固体の移送に比べて移送経路に自由
度がなく不便である。また、非常に至近距離において液
体を移送したい場合、例えば、マイクロマシニングによ
り100μm〜1mm程度離れて存在する二つの液体の
プールを作製し、この間で液体を移送させたい場合に
は、その間に配管やバルブが必要となるが、このような
至近距離での移送のための配管やバルブの作製は容易で
はない。このため、このような至近距離における移送で
は、配管やバルブ等を用いることなく簡単な構成で液体
を移送する方法が望まれる。
However, when the flow path is formed by pipes, grooves, etc., the transfer path is influenced by the formed flow path, which is inconvenient because the transfer path has less flexibility than solid transfer. .. Further, when it is desired to transfer a liquid at a very short distance, for example, when two pools of liquid existing at a distance of about 100 μm to 1 mm are prepared by micromachining, and when it is desired to transfer the liquid between them, a pipe or Although a valve is required, it is not easy to make a pipe or valve for such a short distance transfer. Therefore, for such a transfer at a close range, a method for transferring a liquid with a simple structure without using pipes or valves is desired.

【0004】そこで本発明は、流路を形成せず、したが
って配管やバルブ等を用いることなく、簡単な構成で自
由な経路により液体を移送することができる方法を提供
することを目的とする。
Therefore, an object of the present invention is to provide a method capable of transferring a liquid through a free path with a simple structure without forming a flow path and thus without using a pipe or a valve.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る液体移送方法は、被移送物であ
る液体を該液体の表面張力によって所定の大きさ以下の
球体状とし、該球体状液体を該液体に対して濡れ性の悪
い表面を有する部材に接触させながら移動させる構成と
している。
The liquid transfer method according to the present invention, which is made to solve the above-mentioned problems, makes the liquid to be transferred into a spherical shape having a predetermined size or less by the surface tension of the liquid. The spherical liquid is moved while being in contact with a member having a surface having poor wettability with respect to the liquid.

【0006】[0006]

【作用】このような構成によると、表面張力によって球
体状となった液体は濡れ性の悪い表面を有する部材に接
触しても球体状のままであるので、被移送物である液体
を球体状のままで移動させることができる。例えば、球
体状液体を濡れ性の悪い表面を有する移送用部材の上に
乗せて又は球体状液体を移送用部材に付着させてその移
送用部材とともに移動させたり、球体状液体を濡れ性の
悪い表面を有する部材の上を転がせることによって移動
させたりすることができる。
With this structure, the liquid that has become spherical due to surface tension remains spherical even when it comes into contact with a member having a surface with poor wettability, so that the liquid to be transferred is spherical. You can move it as it is. For example, the spherical liquid is placed on a transfer member having a surface with poor wettability, or the spherical liquid is attached to the transfer member and moved together with the transfer member, or the spherical liquid has poor wettability. It can be moved by rolling on a member having a surface.

【0007】[0007]

【実施例】以下、本発明の実施例について図面を参照し
つつ説明する。図1は、本発明の第1実施例の移送方法
を示す図である。本実施例では、移送対象の液体に対し
て濡れ性の悪い表面を有する移送用部材11を用いる。
図1(a)に示すようにこの移送用部材11にはリング
状の部分11aが設けられており、このような移送用部
材11で液体4をすくう(掬う)ことにより、その液体
の表面張力によって球体状となった液体5を移送用部材
11のリング11aに乗せ、この移送用部材11を移動
させることにより、球体状液体5を移送する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a transfer method according to a first embodiment of the present invention. In this embodiment, the transfer member 11 having a surface having poor wettability with respect to the liquid to be transferred is used.
As shown in FIG. 1 (a), the transfer member 11 is provided with a ring-shaped portion 11a. By scooping (scooping) the liquid 4 with such a transfer member 11, the surface tension of the liquid is increased. The spherical liquid 5 is transferred onto the ring 11a of the transfer member 11 by moving the transfer member 11 and the spherical liquid 5 is transferred.

【0008】移送対象の液体を球体状で移送するには、
上記のようにその液体に対して濡れ性の悪い表面を有す
る移送用部材を用いる必要がある。このような移送用部
材としては、移送対象が水のときには例えばテフロン
(商標名)やパラフィンでコーティングした金属等で作
製された移送用部材が考えられる。ここで、「濡れ性が
悪い」とは、移送対象の液体に対して接触角が90度以
上であることをいう。また、「接触角」とは、液体の自
由表面が固体壁に接する場所で液面と固体面とがなす角
であって、図3に示すように液体の内部にある方の角θ
をいう。例えば、室温において、水とパラフィンとの接
触角は約107度、水銀とガラスとの接触角は約140
度、水とガラスとの接触角は約7〜8度である。
To transfer the liquid to be transferred in a spherical shape,
As described above, it is necessary to use a transfer member having a surface that has poor wettability with respect to the liquid. As such a transfer member, when the transfer target is water, a transfer member made of, for example, Teflon (trademark) or a metal coated with paraffin can be considered. Here, “poor wettability” means that the contact angle with respect to the liquid to be transferred is 90 degrees or more. Further, the “contact angle” is an angle formed by the liquid surface and the solid surface at a place where the free surface of the liquid contacts the solid wall, and as shown in FIG.
Say. For example, at room temperature, the contact angle between water and paraffin is about 107 degrees, and the contact angle between mercury and glass is about 140 degrees.
The contact angle between water and glass is about 7 to 8 degrees.

【0009】また、移送用部材が大きすぎるとその上に
液体を乗せることができなくなるので、移送用部材の大
きさには限界があり、例えば図1(a)の移送用部材1
1の場合にはリングの半径rを所定の値よりも小さくす
る必要がある。すなわち、移送用部材上の球体状液体の
重量はその液体の表面張力を介して支えられるので、球
体状液体が大きくなって重量がその液体の表面張力で支
えることができる限界を超えると、球体状液体として移
送用部材に乗せて移送することができなくなる。このよ
うな球体状液体の大きさの限界に対応して移送用部材の
大きさにも一定の制限があり、ある値以上に大きくする
ことができない。以下、この移送用部材の大きさの限界
(移送可能な球体状液体の大きさの限界)の見積につい
て説明する。
Further, if the transfer member is too large, the liquid cannot be placed on it, so the size of the transfer member is limited. For example, the transfer member 1 shown in FIG.
In the case of 1, it is necessary to make the radius r of the ring smaller than a predetermined value. That is, since the weight of the spherical liquid on the transfer member is supported via the surface tension of the liquid, if the spherical liquid becomes large and the weight exceeds the limit that can be supported by the surface tension of the liquid, the spherical liquid It becomes impossible to transfer the liquid in the form of liquid on the transfer member. There is a certain limit to the size of the transfer member corresponding to the limit of the size of the spherical liquid, and the size cannot be increased beyond a certain value. The estimation of the size limit of the transfer member (the size limit of the spherical liquid that can be transferred) will be described below.

【0010】簡単のため、移送用部材11のリング11
aは薄い板から成り、図1(b)の断面図が示すよう
に、その板はリング11aに載置されている球体状液体
5の中心Oの方向を向いているものとする。このとき、
球体状液体5に対しては、下向きの力として重力が働
き、上向きの力としてリング11aが球体状液体5を持
ち上げる力が働いており、両者が釣り合っている。リン
グ11aが球体状液体5を持ち上げる力を詳しく見てみ
ると、図1(b)に示すように、この持ち上げる力は球
体状液体5がリング11aの板と接する部分における液
体の表面張力Tによるものである。球体状液体5はリン
グ11aの板の両面で接触しており、これらの接触にお
ける接触角θ(図3参照)の値は液体5とリング11a
の表面の両物質で定まる固有の値であるので、この板の
両側の表面張力Tの合力は球体状液体5の中心Oを向
き、その大きさは2・T・cos(180−θ)である。リング1
1aが球体状液体5を持ち上げる力Fuは、この表面張
力の合力の鉛直線上方向の分力をリング11aの全周に
ついて積分することにより求めることができる。すなわ
ち、 Fu={2・T・cos(180−θ)}×cosφ×(2・π・r) ただし、φ:球体状液体5の中心Oとリング11aを結
ぶ直線と、鉛直線とのなす角 である。この力Fuは球体状液体5に働く重力Wに等し
く、 W=(4/3)・π・R3・ρ・g ただし、ρ:液体の質量密度 g:重力加速度 であるので、 {2・T・cos(180−θ)}×cosφ×(2・π・r)=(4/3)・π・R3・ρ・g … となる。球体状液体5の半径Rとリングの半径rとの間
には r=R・sinφ … という関係があるので、この式を式に代入して整理す
ると、 R={3・T・cos(180−θ)・cosφ・sinφ/(ρ・g)}1/2 … となる。この式において、T、ρ、g及びθは既知の値
であるため、角度φが定まれば、半径rのリング11a
に乗ることができる球体状液体5の半径Rを決定するこ
とができる。ここで、リング11a上に球体状液体5を
乗せたまま移送することを考慮すると、角度φとしては
30°〜45°程度が適当であると考えられる。いま、
φ=30°(R=2r)とし、移送対象の液体を水とし
て、移送用部材11の表面がパラフィンで被覆されてい
るとすると、室温において、θ=107[°]、T=
0.072[N/m]、ρ=1000[kg/m3]で
ある。これらの数値を式に代入すると、 R={3×0.072×cos73°cos30°sin30°/(1000×9.8)}1/2 =0.00164[m] となり、 r=R・sinφ=0.00164×sin30°=0.00082[m] となる。したがって、この場合は移送用部材11のリン
グ11aの半径を0.8mm程度以下の大きさにすれ
ば、移送対象である水を球体状のまま移送することがで
きる。
For simplicity, the ring 11 of the transfer member 11
It is assumed that a is a thin plate, and that the plate faces the direction of the center O of the spherical liquid 5 placed on the ring 11a, as shown in the sectional view of FIG. 1 (b). At this time,
Gravity acts on the spherical liquid 5 as a downward force, and force that the ring 11a lifts the spherical liquid 5 acts as an upward force, and both are balanced. When the ring 11a lifts the spherical liquid 5 in detail, as shown in FIG. 1B, this lifting force depends on the surface tension T of the liquid at the portion where the spherical liquid 5 contacts the plate of the ring 11a. It is a thing. The spherical liquid 5 is in contact with both sides of the plate of the ring 11a, and the value of the contact angle θ (see FIG. 3) at these contacts is the liquid 5 and the ring 11a.
Since it is a unique value determined by both substances on the surface of, the resultant force of the surface tensions T on both sides of this plate faces the center O of the spherical liquid 5, and its size is 2 · T · cos (180−θ). is there. Ring 1
The force Fu by which 1a lifts the spherical liquid 5 can be obtained by integrating the component force of the resultant force of the surface tensions in the upward vertical direction over the entire circumference of the ring 11a. That is, Fu = {2 · T · cos (180−θ)} × cosφ × (2 · π · r) where φ: a straight line connecting the center O of the spherical liquid 5 and the ring 11a and a vertical line It is a corner. This force Fu is equal to the gravitational force W acting on the spherical liquid 5, W = (4/3) · π · R 3 · ρ · g where ρ: mass density of the liquid g: gravitational acceleration, so {2 · T · cos (180-θ) } × cosφ × (2 · π · r) = (4/3) · π · R 3 · ρ · g ... become. Since the radius R of the spherical liquid 5 and the radius r of the ring have a relationship of r = R · sinφ…, this equation is substituted into the equation and rearranged, R = {3 · T · cos (180 −θ) · cosφ · sinφ / (ρ · g)} 1/2 ... In this formula, T, ρ, g, and θ are known values, so if the angle φ is determined, the ring 11a with the radius r is
It is possible to determine the radius R of the spherical liquid 5 that can ride on. Here, considering that the spherical liquid 5 is transferred while being placed on the ring 11a, it is considered appropriate that the angle φ is about 30 ° to 45 °. Now
If φ = 30 ° (R = 2r), the liquid to be transferred is water, and the surface of the transfer member 11 is coated with paraffin, θ = 107 [°], T =
0.072 [N / m] and ρ = 1000 [kg / m 3 ]. Substituting these numerical values into the formula, R = {3 × 0.072 × cos73 ° cos30 ° sin30 ° / (1000 × 9.8)} 1/2 = 0.00164 [m], and r = R · sinφ = 0.00164 × sin30 ° = It is 0.00082 [m]. Therefore, in this case, if the radius of the ring 11a of the transfer member 11 is set to about 0.8 mm or less, the water to be transferred can be transferred in a spherical shape.

【0011】上記実施例を多少変形した例を図2に示
す。この変形例では、リングを設けた移送用部材ではな
く、図2(a)に示すように2本の「く」の字形に折り
曲げた棒状部材よりなるフォーク12を移送用部材とし
て用いる。このようなフォーク12を用いると、図2
(b)に示すように、球体状液体5を載置した一方のフ
ォーク12の二つの棒状部材の間に他方のフォーク13
の棒状部材を入れ、その他方のフォーク13を持ち上げ
ることにより、球体状液体5を移送用部材同士で容易に
受け渡すことができる。
FIG. 2 shows an example in which the above embodiment is slightly modified. In this modification, a transfer member provided with a ring is used instead of the transfer member provided with a ring, as shown in FIG. 2A. When using such a fork 12, as shown in FIG.
As shown in (b), between the two rod-shaped members of one fork 12 on which the spherical liquid 5 is placed, the other fork 13 is provided.
The spherical liquid 5 can be easily transferred between the transfer members by inserting the rod-shaped member and lifting the other fork 13.

【0012】なお、前述の実施例ではリング11aを設
けた移送用部材11を例にとり、球体状液体5がリング
11aの板と接する部分における表面張力Tに基づく鉛
直線上方向の力をリングに沿って積分することにより、
移送用部材11の大きさ(リング11aの半径r)の限
界を見積もったが、移送用部材が図2(a)に示したよ
うなフォークの場合等、移送用部材における球体状液体
を乗せるべき部分がリング状でない場合であっても、同
様にして移送用部材の大きさの限界を見積もることがで
きる。すなわち、球体状液体が移送用部材に接する部分
について表面張力Tに基づく鉛直線上方向の力を積分す
ることにより、図2(a)のフォーク12におけ間隔a
などの限界を見積もることができる。
In the above-described embodiment, the transfer member 11 provided with the ring 11a is taken as an example, and a force in the upward vertical direction based on the surface tension T at the portion where the spherical liquid 5 contacts the plate of the ring 11a is applied along the ring. By integrating
Although the limit of the size of the transfer member 11 (radius r of the ring 11a) was estimated, the spherical liquid in the transfer member should be placed on the transfer member such as a fork shown in FIG. 2 (a). Even when the portion is not ring-shaped, the size limit of the transfer member can be estimated in the same manner. That is, by integrating the force on the vertical line based on the surface tension T at the portion where the spherical liquid is in contact with the transfer member, the gap a in the fork 12 in FIG.
You can estimate the limits such as.

【0013】以上のように、移送対象の液体に対して移
送用部材の材質(表面の材質)を定めれば、これに応じ
て移送用部材の大きさの限界を見積もることができ、こ
の見積に基づいて本実施例の移送方法を適用すると、液
体を球体状にして移動させることができる。これによ
り、移送対象の液体を固体のように扱い、自由な経路で
移送することができ、固体用移送用具と液体用移送用具
とを兼用することも可能である。また、従来の液体の移
送方法では移送を停止するために通常はバルブを用いて
いたが、本実施例では、球体状液体を乗せている移送用
部材の移動を停止させることにより液体移送を止めるこ
とができるので、バルブが不要である。さらに、本実施
例で用いた移送用部材により液体をほぼ一定量ずつ掬う
ことができるので、本実施例の方法を液体の定量化に応
用することも可能である。
As described above, if the material (surface material) of the transfer member is determined with respect to the liquid to be transferred, the size limit of the transfer member can be estimated accordingly, and this estimate When the transfer method of the present embodiment is applied based on the above, the liquid can be moved in a spherical shape. Thereby, the liquid to be transferred can be treated like a solid and transferred along a free path, and it is possible to use both the solid transfer tool and the liquid transfer tool. Further, in the conventional liquid transfer method, a valve is normally used to stop the transfer, but in this embodiment, the liquid transfer is stopped by stopping the movement of the transfer member carrying the spherical liquid. Therefore, a valve is unnecessary. Furthermore, since the liquid can be scooped by the transfer member used in the present example by a substantially constant amount, the method of the present example can be applied to the quantification of the liquid.

【0014】本実施例の移送方法の具体的適用例として
はラボラトリオートメーションへの適用が考えられ、ラ
ボラトリオートメーションの一環として、液体を用いた
分析・合成やバイオテクノロジ分野における微量液体の
やり取りに使用することができる。例えば図4に示すよ
うに、マニピュレータ20の先端部に前述のフォーク1
2と同様の構成のフォーク21を取り付け、このフォー
ク21に球体状とした液体を乗せて移動させることによ
り、容器A〜Dの間で液体のやり取りを行なうことがで
きる。
As a specific application example of the transfer method of the present embodiment, application to laboratory automation is considered, and as a part of laboratory automation, it is used for analysis / synthesis using liquid and exchange of a small amount of liquid in the field of biotechnology. be able to. For example, as shown in FIG. 4, the fork 1 described above is attached to the tip of the manipulator 20.
By attaching a fork 21 having the same configuration as that of No. 2 and placing a spherical liquid on the fork 21 and moving the fork, liquid can be exchanged between the containers A to D.

【0015】図5は、本発明の第2実施例の移送方法を
示す図である。本実施例では、針状移送用部材31を移
送対象の液体に浸した後に引き上げることにより、液滴
を針状移送用部材31の先端に付着させ、その針状移送
用部材31を移動させることにより液体を移送する。
FIG. 5 is a diagram showing a transfer method according to the second embodiment of the present invention. In the present embodiment, the needle-like transfer member 31 is immersed in the liquid to be transferred and then pulled up to attach the droplets to the tip of the needle-like transfer member 31 and move the needle-like transfer member 31. To transfer the liquid.

【0016】ここで、針状移送用部材31として移送対
象の液体に対して濡れ性の悪い表面を有する部材を用い
ると、移送対象の液体が表面張力により球体状となって
針状移送用部材31に付着する。ただし、濡れ性が悪く
なるにしたがって球体状液体が付着しにくくなり、付着
する球体状液体5のサイズも小さくなるので、必要に応
じて適切な濡れ性のものを選択する。これに対し、濡れ
性が良いと針状移送用部材31に付着した液滴は球体状
とならないことがあり、また、移送の目的地点で針状移
送用部材31から液滴を離すときに離れにくくなるが、
この場合は、針状移送用部材31を揺すったりこれに振
動を与えたりすることにより、付着した液滴を離すこと
ができる。したがって、本実施例の移送方法では濡れ性
の良い部材を用いてもよい。
Here, when a member having a surface having poor wettability with respect to the liquid to be transferred is used as the needle-shaped transfer member 31, the liquid to be transferred becomes spherical due to the surface tension, and the needle-shaped transfer member is formed. Attach to 31. However, as the wettability deteriorates, the spherical liquid becomes less likely to adhere, and the size of the spherical liquid 5 that adheres also decreases. Therefore, an appropriate wettability is selected as necessary. On the other hand, if the wettability is good, the droplets adhering to the needle-shaped transfer member 31 may not be spherical, and when the droplets are separated from the needle-shaped transfer member 31 at the target point of transfer, they may be separated. It ’s harder, but
In this case, the adhered droplets can be separated by shaking the needle-shaped transfer member 31 or applying vibration thereto. Therefore, in the transfer method of this embodiment, a member having good wettability may be used.

【0017】本実施例の移送方法は、液滴を針状移送部
材に付着させて移動させる点で、球体状液体をリングや
フォークに乗せて移動させていた前記第1実施例の移送
方法とは相違するが、自由な経路で液体を移送できるこ
とや、バルブが不要なこと等、得られる効果の点では前
記第1実施例と同様である。また、具体的な適用例とし
てラボラトリオートメーションの一環として使用できる
点でも同様であり、この場合、例えば図4に示したよう
な装置において、マニピュレータ20の先端部にフォー
ク21の代わりに針状移送用部材を取り付け、これに液
滴を付着させて液体を移動させることにより、容器A〜
Dの間で液体のやり取りを行なうことになる。
The transfer method of this embodiment is different from the transfer method of the first embodiment in that the spherical liquid is moved by being mounted on a ring or a fork in that droplets are attached to the needle-shaped transfer member and moved. Although it is different, it is the same as the first embodiment in terms of the obtained effects such that the liquid can be transferred through a free path and the valve is unnecessary. In addition, the same applies in that it can be used as a part of laboratory automation as a specific application example. In this case, for example, in the device shown in FIG. By attaching a member, attaching a droplet to the member, and moving the liquid, the container A to
Liquid will be exchanged between D.

【0018】図6は、本発明の第3実施例の移送方法を
示す図である。本実施例では、移送対象の液体に対して
濡れ性の悪い表面を有する部材の上を、その液体を表面
張力によって球体状にして転がせることにより移動させ
る。球体状液体5を転がせるために必要な力は、図5に
示すように濡れ性の悪い棒状部材51で球体状液体5を
押したり、球体状液体5を転がせる面(面状部材41の
面)に傾斜を与えたり、球体状液体5を帯電させて電界
を印加したりすることにより、これを与えることができ
る。また、移送対象の液体が表面張力によって球体状と
なって面状部材41の上を容易に転がるようにするため
には、面状部材41の表面の濡れ性が悪いほどよく、既
に述べたように、少なくとも移送対象の液体に対して接
触角が90度以上となるような材質を使用する(図3参
照)。
FIG. 6 is a diagram showing a transfer method according to the third embodiment of the present invention. In this embodiment, the liquid is moved on a member having a surface having poor wettability with respect to the liquid to be transferred by rolling the liquid into a spherical shape by surface tension. As shown in FIG. 5, the force required to roll the spherical liquid 5 is such that the rod-shaped member 51 having poor wettability pushes the spherical liquid 5 or the surface on which the spherical liquid 5 is rolled (the planar member 41 This can be applied by inclining the surface) or by charging the spherical liquid 5 and applying an electric field. Further, in order that the liquid to be transferred becomes spherical due to the surface tension and easily rolls on the planar member 41, the poorer the wettability of the surface of the planar member 41, the better. In addition, a material having a contact angle of 90 degrees or more with respect to at least the liquid to be transferred is used (see FIG. 3).

【0019】なお、本実施例では図6に示すように、球
体状液体5が転がる面状部材41に溝52を設けるのが
好ましい。溝を設ければ移送経路に自由度がなくなる
が、球体状液体5を転がせるための前記力について精密
な制御を行なわなくとも目的地点へ確実に移送すること
ができる。
In this embodiment, as shown in FIG. 6, it is preferable to provide a groove 52 in the planar member 41 on which the spherical liquid 5 rolls. If the groove is provided, there is no freedom in the transfer path, but the spherical liquid 5 can be reliably transferred to the target point without precise control of the force for rolling.

【0020】また、本実施例において移送対象の液体を
球体状にして面状部材41(又は溝52)へ持ってくる
ための方法としては、前記第1実施例及び第2実施例の
移送方法によって容器等に入った液体を球体状にして持
ってくる方法が考えられる他、移送対象の液体をチュー
ブ等から直接に面状部材41(又は溝52)に適切な量
だけ放出するという方法も考えられる。
Further, in this embodiment, as a method for bringing the liquid to be transferred into a spherical shape and bringing it into the planar member 41 (or the groove 52), the transfer method of the first and second embodiments is used. In addition to the method of bringing the liquid contained in the container or the like into a spherical shape by means of the method, a method of directly discharging the liquid to be transferred from the tube or the like to the planar member 41 (or the groove 52) in an appropriate amount is also possible. Conceivable.

【0021】以上の各実施例の説明からもわかるよう
に、本発明は微量液体の搬送に特に有効であり、最近注
目されているマイクロマシニングにも適用することがで
きる。すなわち、半導体の微細加工技術を使ってSi基
板上で液体を取り扱うことが考えられているが、この場
合、100μm〜1mm程度離れた間での液体の移送
に、本発明の方法、例えば前記第3実施例(図6)の方
法を使用することができる。また、流体の分離が必要と
される場合には、その流体を帯電した球体状液体5とし
て第3実施例の方法によって移動させる途中で電界を印
加することにより、流体分離を行なうことができる。例
えば図7に示すように、Si基板上(xy平面上)にお
いて、途中でa方向とb方向に分岐した溝52を設けて
おき、分離すべき流体を球体状にして転がして移動させ
ているときに、溝52の分岐点付近に設けられた電極6
1と62の間に電圧を加える。これにより、球体状液体
5の移動方向と垂直な方向の電界が発生するので、帯電
した球体状液体5は移動方向に垂直な方向の力を受け
る。そして、この電界から受ける力の向き(図7におけ
るx方向又は−x方向のいずれか)に応じて、球体状液
体5はa方向とb方向のいずれかに移動する。したがっ
て、スイッチSW1及びSW2を操作して前記電界の向
きを制御(x方向又は−x方向のいずれの方向とするか
を制御)することにより、流体をa方向とb方向に分離
することができる。
As can be seen from the above description of each embodiment, the present invention is particularly effective for transporting a small amount of liquid, and can be applied to micromachining, which has recently received attention. That is, it has been considered to use a semiconductor microfabrication technique to handle a liquid on a Si substrate. In this case, the method of the present invention, for example, the first method described above, is used to transfer the liquid at a distance of about 100 μm to 1 mm. The method of three examples (FIG. 6) can be used. When the fluid needs to be separated, the fluid can be separated by applying an electric field while moving the fluid as the charged spherical liquid 5 by the method of the third embodiment. For example, as shown in FIG. 7, on a Si substrate (on the xy plane), a groove 52 that branches in the a direction and the b direction is provided midway, and the fluid to be separated is made into a spherical shape and is rolled and moved. Sometimes, the electrode 6 provided near the branch point of the groove 52
A voltage is applied between 1 and 62. As a result, an electric field is generated in a direction perpendicular to the moving direction of the spherical liquid 5, so that the charged spherical liquid 5 receives a force in a direction perpendicular to the moving direction. Then, the spherical liquid 5 moves in either the a direction or the b direction depending on the direction of the force received from the electric field (either the x direction or the −x direction in FIG. 7). Therefore, the fluid can be separated into the a direction and the b direction by operating the switches SW1 and SW2 to control the direction of the electric field (control which direction is the x direction or the −x direction). ..

【0022】なお、Siは表面が酸化されやすく、移送
対象が水の場合に酸化によって濡れが良くなってしまう
ことがあるが、このような場合には、パラフィンやテフ
ロン(商標名)等によって表面処理して濡れ性を悪くす
ることで対応できる。
The surface of Si is easily oxidized, and when the object to be transferred is water, the surface may be wetted by oxidation. In such a case, the surface may be changed by paraffin or Teflon (trademark). It can be dealt with by treating it to make it less wettable.

【0023】[0023]

【発明の効果】以上説明した通り、本発明によれば、濡
れ性の悪い表面材料を用いて簡単な部材を作製するだけ
で、配管や溝などで流路を形成することなく、液体を自
由な経路によって移送することができる。また、球体状
液体を乗せた移送用部材の移動を停止させる等の方法に
よって液体の移送を止めることができるため、バルブも
不要である。すなわち、液体を球体状のままで移動させ
ることができるため、固体の移送と同様な感覚で液体を
移送することができ、場合によっては、同一の移送装置
を液体と固体の双方の移送に兼用することも可能であ
る。
As described above, according to the present invention, liquid can be freely formed by forming a simple member using a surface material having poor wettability without forming a flow path with pipes or grooves. It can be transferred by various routes. Further, since the liquid transfer can be stopped by a method such as stopping the movement of the transfer member on which the spherical liquid is placed, the valve is unnecessary. That is, since the liquid can be moved in a spherical shape, the liquid can be transferred with the same feeling as the transfer of the solid, and in some cases, the same transfer device can be used to transfer both the liquid and the solid. It is also possible to do so.

【0024】なお、液体の移送中において、液体はそれ
自身の表面張力により凝集して液滴となるため、液体の
飛散を防止するための構造を考える必要はない。
During the transfer of the liquid, the liquid agglomerates into droplets due to its own surface tension, so it is not necessary to consider a structure for preventing the liquid from scattering.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例の液体移送方法を示す
図。
FIG. 1 is a diagram showing a liquid transfer method according to a first embodiment of the present invention.

【図2】 前記第1実施例の移送方法の変形例を示す
図。
FIG. 2 is a diagram showing a modification of the transfer method of the first embodiment.

【図3】 液体が固体に接触するときの接触角を説明す
るための図。
FIG. 3 is a diagram for explaining a contact angle when a liquid contacts a solid.

【図4】 前記第1実施例の液体移送方法をラボラトリ
オートメーションの分野に適用した例を示す図。
FIG. 4 is a diagram showing an example in which the liquid transfer method of the first embodiment is applied to the field of laboratory automation.

【図5】 本発明の第2実施例の液体移送方法を示す
図。
FIG. 5 is a diagram showing a liquid transfer method according to a second embodiment of the present invention.

【図6】 本発明の第3実施例の液体移送方法を示す
図。
FIG. 6 is a diagram showing a liquid transfer method according to a third embodiment of the present invention.

【図7】 前記第3実施例の液体移送方法を流体分離に
利用した例を示す図。
FIG. 7 is a diagram showing an example in which the liquid transfer method of the third embodiment is used for fluid separation.

【符号の説明】[Explanation of symbols]

5 …球体状液体 11 …移送用部材(濡れ性の悪い表面を有
する部材) 12、13、21…フォーク(濡れ性の悪い表面を有す
る部材) 31 …針状移送用部材 41 …面状部材(濡れ性の悪い表面を有す
る部材) 52 …溝
5 ... Spherical liquid 11 ... Transfer member (member having poor wettability surface) 12, 13, 21 ... Fork (member having bad wettability surface) 31 ... Needle-like transfer member 41 ... Planar member ( Member having a surface with poor wettability) 52 ... Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体を移送する方法であって、 被移送物である液体を該液体の表面張力によって所定の
大きさ以下の球体状とし、該球体状液体を該液体に対し
て濡れ性の悪い表面を有する部材に接触させながら移動
させることを特徴とする液体移送方法。
1. A method of transferring a liquid, wherein the liquid to be transferred is formed into a spherical shape having a predetermined size or less by the surface tension of the liquid, and the spherical liquid is wettable with respect to the liquid. A liquid transfer method characterized in that the liquid is moved while being brought into contact with a member having a bad surface.
JP2459092A 1992-01-13 1992-01-13 Liquid transporting method Pending JPH05187974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2459092A JPH05187974A (en) 1992-01-13 1992-01-13 Liquid transporting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2459092A JPH05187974A (en) 1992-01-13 1992-01-13 Liquid transporting method

Publications (1)

Publication Number Publication Date
JPH05187974A true JPH05187974A (en) 1993-07-27

Family

ID=12142374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2459092A Pending JPH05187974A (en) 1992-01-13 1992-01-13 Liquid transporting method

Country Status (1)

Country Link
JP (1) JPH05187974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128502A1 (en) * 2012-03-01 2013-09-06 パナソニック株式会社 Method for collecting droplets adhered to outer peripheral wall of needle into capillary tube
US9121551B2 (en) 2012-03-01 2015-09-01 Panasonic Intellectual Property Management Co., Ltd. Method for collecting droplet attached on external surface of needle into capillary tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128502A1 (en) * 2012-03-01 2013-09-06 パナソニック株式会社 Method for collecting droplets adhered to outer peripheral wall of needle into capillary tube
JP5348358B1 (en) * 2012-03-01 2013-11-20 パナソニック株式会社 A method for collecting droplets adhering to the outer peripheral surface of a needle into a capillary tube
CN103547901A (en) * 2012-03-01 2014-01-29 松下电器产业株式会社 Method for collecting droplets adhered to outer peripheral wall of needle into capillary tube
US9121551B2 (en) 2012-03-01 2015-09-01 Panasonic Intellectual Property Management Co., Ltd. Method for collecting droplet attached on external surface of needle into capillary tube

Similar Documents

Publication Publication Date Title
Demirörs et al. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields
Lin et al. Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport
US7328979B2 (en) System for manipulation of a body of fluid
Khaw et al. Digital microfluidics with a magnetically actuated floating liquid marble
Valadares et al. Catalytic nanomotors: Self‐propelled sphere dimers
Baker et al. Shape-programmed 3D printed swimming microtori for the transport of passive and active agents
US7252928B1 (en) Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels
US5979475A (en) Specimen holding method and fluid treatment method of specimen surface and systems therefor
US5486337A (en) Device for electrostatic manipulation of droplets
Eid et al. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry
Banerjee et al. Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field
Mats et al. Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces
Lee et al. Chemical influences on adsorption-mediated self-propelled drop movement
Latikka et al. Ferrofluid Microdroplet Splitting for Population‐Based Microfluidics and Interfacial Tensiometry
Danov et al. Capillary forces between colloidal particles confined in a liquid film: the finite-meniscus problem
US10309881B2 (en) Methods and apparatus for preparing aqueous specimens for electron microscopy using volatile surfactants
Biswas et al. New drop fluidics enabled by magnetic-field-mediated elastocapillary transduction
Jin et al. Electrostatic silicon wafer suspension
JPH05187974A (en) Liquid transporting method
US3759494A (en) Valve plate of column still
Xuan et al. Particle motions in low-Reynolds number pressure-driven flows through converging–diverging microchannels
KR920009415B1 (en) Process and device for measuring the viscosity of materials
Alexandrova et al. Confirmation of the heterocoagulation theory of flotation
Katariya et al. Drops transformed from a continuous flow on a superhydrophobic incline
CA2296698C (en) Method and device for fixing micro- and/or nano-objects