JPH0518724A - Three-dimensional measuring apparatus - Google Patents

Three-dimensional measuring apparatus

Info

Publication number
JPH0518724A
JPH0518724A JP3200083A JP20008391A JPH0518724A JP H0518724 A JPH0518724 A JP H0518724A JP 3200083 A JP3200083 A JP 3200083A JP 20008391 A JP20008391 A JP 20008391A JP H0518724 A JPH0518724 A JP H0518724A
Authority
JP
Japan
Prior art keywords
solid
axis
light
digital
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3200083A
Other languages
Japanese (ja)
Inventor
Haruomi Miyazaki
晴臣 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP3200083A priority Critical patent/JPH0518724A/en
Publication of JPH0518724A publication Critical patent/JPH0518724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heighten the computing operation speed. CONSTITUTION:A projector 4 is so installed as to position the light source point 5 in the X-axis of spatial coordinate axes and at the same time a solid picture picking-up camera, a solid picture picking-up device 3 is built therein, is so installed at the origin of the spatial coordinate axes as to agree the Y-axis of the spatial coordinate axes and the optical axis 8. When light is emitted from a projector 4. the light comes in to the surface of a measurement object 1 set in the space coordinate axes and the image of the measurement object 1 at that time is shot on the light radiated surface 7 of the solid-state picture picking-up device 3 in the inside of the solid-state picture picking-up camera 2 and the analog quantity is converted into digital quantity by an analog-digital converter 9. Further, the digital quantity is computed by a digital computing operation apparatus 10 of a central processing apparatus 11 and thus the computing operation like this is carried out for every scanning beam while the emitting angle of the light is successively changed by the projector 4 controlled by the central processing apparatus 11 and consequently, three-dimensional shape of the measurement object 1 is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は三次元計測装置に関
し、特に、演算処理を高速化することのできる三次元計
測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring device, and more particularly to a three-dimensional measuring device capable of speeding up arithmetic processing.

【0002】[0002]

【従来技術およびその問題点】一般に、この種の三次元
計測装置は、図4にブロック線図で示すように、光を発
射する投光器24と、固体撮像素子23を内蔵した固体
撮像カメラ22と、固体撮像カメラ22のアナログ量を
デジタル量に変換するアナログ・デジタル変換器29
と、アナログ・デジタル変換器29のデジタル量を演算
処理する中央処理装置31のデジタル演算処理器30と
から構成され、固体撮像カメラ22と投光器24と被計
測物21の位置関係は図5および図6に示すようになっ
ている。
2. Description of the Related Art Generally, a three-dimensional measuring apparatus of this type includes a projector 24 for emitting light and a solid-state image pickup camera 22 having a solid-state image pickup element 23 therein, as shown in a block diagram of FIG. , An analog-to-digital converter 29 for converting the analog amount of the solid-state imaging camera 22 into a digital amount
And the digital arithmetic processing unit 30 of the central processing unit 31 which arithmetically processes the digital amount of the analog-digital converter 29. The positional relationship among the solid-state imaging camera 22, the light projector 24, and the measured object 21 is shown in FIG. As shown in FIG.

【0003】すなわち、空間座標軸のX軸上に光源点2
5が位置するように投光器24が配設されるとともに、
空間座標軸のY軸と光軸28が所定の角度をなすよう
に、固体撮像素子23を内蔵した固体撮像カメラ22が
空間座標原点に配設されている。
That is, the light source point 2 is located on the X axis of the spatial coordinate axes.
The light projector 24 is arranged so that 5 is located,
A solid-state image pickup camera 22 incorporating a solid-state image pickup device 23 is arranged at the spatial coordinate origin so that the Y axis of the spatial coordinate axes and the optical axis 28 form a predetermined angle.

【0004】そして、投光器24から発射された光が空
間座標軸内に配設された被計測物21の表面に当たる
と、そのときの被計測物21の像が固体撮像カメラ22
内の固体撮像素子23の光照射面27上に撮像され、こ
のとき撮像された被計測物21のアナログ量をデジタル
・アナログ変換器29を介してデジタル量に変換し、さ
らに、このデジタル量を中央処理装置31のデジタル演
算器30で演算処理することにより、被計測物21の各
座標軸における演算処理が行われ、このような演算処理
を中央処理装置31で制御される投光器24による光の
発射角度を逐次変えて行うことにより、被計測物21の
三次元形状が計測されるようになっている。
When the light emitted from the projector 24 hits the surface of the object to be measured 21 arranged in the spatial coordinate axes, the image of the object to be measured 21 at that time is captured by the solid-state imaging camera 22.
The analog amount of the object to be measured 21 which is imaged on the light irradiation surface 27 of the solid-state image sensor 23 in the inside is converted into a digital amount through the digital-analog converter 29, and this digital amount is further converted. By performing arithmetic processing by the digital arithmetic unit 30 of the central processing unit 31, arithmetic processing on each coordinate axis of the object to be measured 21 is performed, and such arithmetic processing is emitted by the projector 24 controlled by the central processing unit 31. The three-dimensional shape of the object to be measured 21 is measured by sequentially changing the angle.

【0005】この場合、被計測物21のX軸方向の成分
をx、Y軸方向の成分をy、Z軸方向の成分をzとし、
投光器24から発射された光の光路26とX軸とのなす
角度をγ、固体撮像カメラ22の光軸28とY軸のなす
角度をa0 、被計測物21の表面で反射された光の光路
と撮像カメラ22の光軸28とのなす角度をax 、固体
撮像カメラ22の固体撮像素子23上に撮像される被計
測物21のX軸方向の成分をωx 、固体撮像カメラ22
の固体撮像素子23上に撮像される被計測物21のZ軸
方向の成分をωz 、Z軸から固体撮像素子23の光照射
面27までの距離をFBとすると、デジタル演算器30
で演算処理する際の計算式は次式(1)〜(5)のよう
に表される。
In this case, the component in the X-axis direction of the object to be measured 21 is x, the component in the Y-axis direction is y, and the component in the Z-axis direction is z,
The angle between the optical path 26 of the light emitted from the projector 24 and the X axis is γ, the angle between the optical axis 28 of the solid-state imaging camera 22 and the Y axis is a 0 , and the angle of the light reflected on the surface of the object to be measured 21 is The angle formed by the optical path and the optical axis 28 of the image pickup camera 22 is a x , the component in the X axis direction of the DUT 21 imaged on the solid state image pickup device 23 of the solid state image pickup camera 22 is ω x , and the solid state image pickup camera 22 is shown.
Assuming that the component in the Z-axis direction of the object to be measured 21 that is imaged on the solid-state image sensor 23 is ω z , and the distance from the Z-axis to the light irradiation surface 27 of the solid-state image sensor 23 is FB, the digital calculator 30
Calculation formulas for the arithmetic processing are expressed as the following formulas (1) to (5).

【0006】 x=(D・tan(a0 +ax ))/(tan(a0 +ax )+cot(γ)) ……(1) y=D/(tan(a0 +ax )+cot(γ))……(2) z=D・tan(az )/(tan(a0 +ax )+cot(γ))…(3) ax =tan-1・ωx /FB…………(4) az =tan-1・ωz /FB…………(5)X = (D · tan (a 0 + a x )) / (tan (a 0 + a x ) + cot (γ)) (1) y = D / (tan (a 0 + a x ) + cot (γ) )) ...... (2) z = D · tan (a z) / (tan (a 0 + a x) + cot (γ)) ... (3) a x = tan -1 · ω x / FB ............ ( 4) az = tan -1 · ω z / FB ………… (5)

【0007】そして、上記のような計算式が組み込まれ
た中央処理装置31のデジタル演算処理器30によって
演算処理することによって、被計測物21の三次元形状
が計測されることになる。したがって、上記のような複
雑な計算式により演算処理するため、演算処理に長時間
を要してしまう。
Then, the three-dimensional shape of the object to be measured 21 is measured by performing arithmetic processing by the digital arithmetic processor 30 of the central processing unit 31 in which the above-described calculation formula is incorporated. Therefore, since the arithmetic processing is performed by the complicated calculation formula as described above, it takes a long time to perform the arithmetic processing.

【0008】この発明は上記のような従来のもののもつ
問題点を解決したものであって、デジタル演算処理器で
演算処理する際の計算式を簡略化することにより、演算
処理に要する時間を著しく短縮することのできる三次元
計測装置を提供することを目的とするものである。
The present invention solves the problems of the above-mentioned conventional ones, and simplifies the calculation formula for the arithmetic processing by the digital arithmetic processor, thereby significantly reducing the time required for the arithmetic processing. An object of the present invention is to provide a three-dimensional measuring device that can be shortened.

【0009】[0009]

【問題点を解決するための手段】上記の問題点を解決す
るためにこの発明は、空間座標軸のX軸上に光源点が位
置するように投光器を配設するとともに、空間座標軸の
Y軸と光軸が一致するように固体撮像素子を内蔵した固
体撮像カメラを空間座標原点に配設し、前記投光器から
発射した光を空間座標内に配設した被計測物の表面に当
てて、そのときの被計測物の像を前記固体撮像カメラ内
の固体撮像素子の光照射面上に撮像するとともに、この
ときの固体撮像カメラのアナログ信号をアナログ・デジ
タル変換器でデジタル信号に変換して、このデジタル信
号を中央処理装置のデジタル演算処理器により演算処理
し、このようなデジタル演算処理器による演算処理を前
記中央処理装置で制御される投光器による光の発射角度
を逐次変えて行うことにより、被計測物の三次元形状を
計測するという手段を採用したものである。
In order to solve the above-mentioned problems, the present invention arranges a light projector so that a light source point is located on the X axis of the spatial coordinate axis, and at the same time, sets the Y axis of the spatial coordinate axis. A solid-state imaging camera having a built-in solid-state imaging device so that the optical axes coincide with each other is arranged at the origin of the spatial coordinates, and the light emitted from the projector is applied to the surface of the object to be measured arranged in the spatial coordinates. An image of the object to be measured is picked up on the light irradiation surface of the solid-state image pickup device in the solid-state image pickup camera, and the analog signal of the solid-state image pickup camera at this time is converted into a digital signal by an analog-digital converter, The digital signal is arithmetically processed by the digital arithmetic processor of the central processing unit, and the arithmetic processing by such a digital arithmetic processing unit is performed by sequentially changing the emission angle of light by the projector controlled by the central processing unit. By a, it is obtained by employing a means of measuring the three-dimensional shape of the object to be measured.

【0010】[0010]

【作用】この発明は前記の手段を採用したことにより、
中央処理装置のデジタル演算処理器の計算式を著しく簡
略化することができることになり、したがって、演算処
理に要する時間を著しく短縮することができることにな
る。
The present invention, by adopting the above means,
The calculation formula of the digital arithmetic processor of the central processing unit can be remarkably simplified, and therefore, the time required for the arithmetic processing can be remarkably shortened.

【0011】[0011]

【実施例】以下、図面に示すこの発明の実施例について
説明する。図1および図2にはこの発明による三次元計
測装置の一実施例が示されていて、図1はX軸、Y軸と
被計測物1との位置関係を示す説明図、図2はZ軸、Y
軸と被計測物1との位置関係を示す説明図である。
Embodiments of the present invention shown in the drawings will be described below. 1 and 2 show an embodiment of a three-dimensional measuring device according to the present invention. FIG. 1 is an explanatory view showing the positional relationship between the X-axis, Y-axis and the DUT 1, and FIG. 2 is Z. Axis, Y
It is explanatory drawing which shows the positional relationship between a shaft and the DUT 1.

【0012】すなわち、この実施例に示す三次元計測装
置は、図4にブロック線図で示すように、光を発射する
投光器4と、固体撮像素子3を内蔵した固体撮像カメラ
2と、固体撮像カメラ2のアナログ量をデジタル量に変
換するアナログ・デジタル変換器9と、アナログ・デジ
タル変換器9のデジタル量を演算処理する中央処置装置
1のデジタル演算処理器10とを具え、固体撮像カメラ
2は光軸8が空間座標軸のY軸と一致するように空間座
標原点に配設され、投光器4は前記中央処理装置11で
制御されるとともに、その光源点5が空間座標軸のX軸
上に位置するように配設され、投光器4から発射される
光は上下方向に延びるスリット光となっており、この場
合のスリット光は中央処理装置11からの信号によって
投光器4の光源点5を回動させることにより、X軸とス
リット光の光路6とのなす角度γを任意に変えられるよ
うになっている。
That is, as shown in the block diagram of FIG. 4, the three-dimensional measuring apparatus shown in this embodiment has a projector 4 for emitting light, a solid-state image pickup camera 2 having a solid-state image pickup element 3 built-in, and a solid-state image pickup device. The solid-state imaging camera 2 includes an analog / digital converter 9 for converting an analog amount of the camera 2 into a digital amount, and a digital arithmetic processor 10 of the central treatment apparatus 1 for arithmetically processing the digital amount of the analog / digital converter 9. Is arranged at the origin of the spatial coordinate so that the optical axis 8 coincides with the Y axis of the spatial coordinate axis, the projector 4 is controlled by the central processing unit 11, and the light source point 5 is located on the X axis of the spatial coordinate axis. The light emitted from the projector 4 is a slit light that extends in the vertical direction, and the slit light in this case is a light source point of the projector 4 according to a signal from the central processing unit 11. The by rotating, has an angle γ between the optical path 6 of the X-axis and a slit light to arbitrarily changed.

【0013】そして、上記のように配置した投光器4か
ら上下方向に延びるスリット光を発射して、そのスリッ
ト光を空間座標軸内に配設した被計測物1の表面に当て
ると、そのときの被計測物1の像が空間座標原点に配設
した固定撮像カメラ2の固定撮像素子3の光照射面7上
に撮像され(図3参照)、このときのアナログ量がアナ
ログ・デジタル変換器9でデジタル量に変換されること
になる。そして、アナログ・デジタル変換器9で変換さ
れたデジタル量は中央処理装置11のデジタル演算処理
器10で演算処理され、これにより、被計測物1の各座
標軸における成分が求められることになる。
Then, the slit light extending in the vertical direction is emitted from the projector 4 arranged as described above, and when the slit light is applied to the surface of the DUT 1 arranged in the spatial coordinate axis, the object to be measured at that time is projected. An image of the measurement object 1 is picked up on the light irradiation surface 7 of the fixed image pickup device 3 of the fixed image pickup camera 2 arranged at the origin of the spatial coordinates (see FIG. 3), and the analog amount at this time is converted by the analog / digital converter 9. It will be converted into a digital quantity. Then, the digital amount converted by the analog / digital converter 9 is arithmetically processed by the digital arithmetic processor 10 of the central processing unit 11, whereby the components at each coordinate axis of the DUT 1 are obtained.

【0014】このような座標算出演算を、前記中央処理
装置11によって投光器4の光源点5を回動させて、投
光器4から発したスリット光の光路6とX軸とのなす角
度γを小さくまたは大きく変えて、その角度に対応する
走査線ごとに演算処理を行うことにより、被計測物1の
三次元形状が計測されることになる。
In such coordinate calculation calculation, the central processing unit 11 rotates the light source point 5 of the light projector 4 to reduce the angle γ between the optical path 6 of the slit light emitted from the light projector 4 and the X axis. The three-dimensional shape of the DUT 1 is measured by largely changing and performing arithmetic processing for each scanning line corresponding to the angle.

【0015】この場合、被計測物1のX軸方向の成分を
x、Y軸方向の成分をy、Z軸方向の成分をzとし、投
光器4から発射されたスリット光の光路6とX軸とのな
す角度をγ、固体撮像カメラ2の光軸8とY軸のなす角
度をa0 、被計測物1の表面で反射された光の光路と固
体撮像カメラ2の光軸とのなす角度をax 、固体撮像カ
メラ2の固体撮像素子3上に撮像される被計測物1のX
軸方向の成分をωx 、固体撮像カメラ2の固体撮像素子
3上に撮像される被計測物1のZ軸方向の成分をωz
Z軸から固体撮像素子3の光照射面7までの距離をFB
とすると、固体撮像カメラ2の光軸8とY軸とは一致し
ているので、中央処理装置11のデジタル演算器9で演
算処理する際の計算式は次式(6)〜(8)のように表
される。
In this case, the component in the X-axis direction of the DUT 1 is x, the component in the Y-axis direction is y, and the component in the Z-axis direction is z, and the optical path 6 of the slit light emitted from the projector 4 and the X-axis. The angle between the optical axis of the solid-state imaging camera 2 and the Y-axis is a 0 , and the angle between the optical path of the light reflected on the surface of the DUT 1 and the optical axis of the solid-state imaging camera 2. A x is the X of the DUT 1 imaged on the solid-state imaging device 3 of the solid-state imaging camera 2.
The component in the axial direction is ω x , the component in the Z-axis direction of the DUT 1 imaged on the solid-state imaging device 3 of the solid-state imaging camera 2 is ω z ,
The distance from the Z axis to the light irradiation surface 7 of the solid-state image sensor 3 is FB
Then, since the optical axis 8 of the solid-state imaging camera 2 and the Y-axis coincide with each other, the calculation formulas for the arithmetic processing by the digital arithmetic unit 9 of the central processing unit 11 are the following formulas (6) to (8). Is represented as

【0016】 x=(D・ωx )/(ωx +FB・cot(γ))…………(6) y=(D・FB)/(ωx +FB・cot(γ))…………(7) z=(D・wz )/(ωx +FB・cot(γ))…………(8)X = (D · ω x ) / (ω x + FB · cot (γ)) …… (6) y = (D · FB) / (ω x + FB · cot (γ)) …… … (7) z = (D · w z ) / (ω x + FB · cot (γ)) ………… (8)

【0017】したがって、前記従来の計算式よりも計算
式を簡略化することができることになり、これによっ
て、中央処理装置11のデジタル演算処理器10での演
算処理に要する時間を著しく短縮することができること
になり、演算処理を著しく高速化することができること
になる。
Therefore, the calculation formula can be simplified as compared with the conventional calculation formula, whereby the time required for the arithmetic processing in the digital arithmetic processor 10 of the central processing unit 11 can be remarkably shortened. Therefore, the arithmetic processing can be remarkably speeded up.

【0018】[0018]

【発明の効果】この発明は前記のように構成したことに
より、アナログ・デジタル変換器で変換したデジタル量
を演算処理する場合の中央処理装置のデジタル演算処理
器の計算式を著しく簡略化することができることにな
り、したがって、デジタル演算処理器での演算処理に要
する時間を著しく短縮化することができることになり、
これにより被計測物の三次元形状の計測に要する時間を
短縮することができ、三次元計測を著しく高速化するこ
とができることになる等の優れた効果を有するものであ
る。
As described above, the present invention remarkably simplifies the calculation formula of the digital arithmetic processor of the central processing unit when arithmetically processing the digital amount converted by the analog-digital converter. Therefore, the time required for the arithmetic processing in the digital arithmetic processor can be significantly shortened,
As a result, the time required for measuring the three-dimensional shape of the object to be measured can be shortened, and the three-dimensional measurement can be remarkably speeded up.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による三次元計測装置の被計測物とX
軸、Y軸との位置関係を示す説明図である。
FIG. 1 shows an object to be measured and X of a three-dimensional measuring apparatus according to the present invention.
It is explanatory drawing which shows the positional relationship with an axis and a Y-axis.

【図2】この発明による三次元計測装置の被計測物とY
軸、Z軸との位置関係を示す説明図である
FIG. 2 is a diagram showing an object to be measured and Y of the three-dimensional measuring apparatus according to the present invention.
It is explanatory drawing which shows the positional relationship with an axis and a Z-axis.

【図3】この発明による三次元計測装置によって固体撮
像素子上に撮像された像を示す説明図である。
FIG. 3 is an explanatory view showing an image picked up on a solid-state image pickup device by the three-dimensional measuring apparatus according to the present invention.

【図4】この発明による三次元計測装置および従来の三
次元計測装置のブロック線図である。
FIG. 4 is a block diagram of a three-dimensional measuring device according to the present invention and a conventional three-dimensional measuring device.

【図5】従来の三次元測定装置の被計測物とX軸、Y軸
との位置関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a positional relationship between an object to be measured and an X axis and a Y axis of a conventional three-dimensional measuring device.

【図6】従来の三次元測定装置の被計測物とY軸、Z軸
との位置関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a positional relationship between an object to be measured and a Y axis and a Z axis of a conventional three-dimensional measuring apparatus.

【符号の説明】[Explanation of symbols]

1、21……被計測物 2、22……固体撮像カメラ 3、23……固体撮像素子 4、24……投光器 5、25……光源点 6、26……光路 7、27……光照射面 8、28……光軸 9、29……アナログ・デジタル変換器 10、30……デジタル演算処理器 11、31……中央処理装置 1, 21 ... Object to be measured 2, 22 ... Solid-state imaging camera 3, 23 ... Solid-state imaging device 4, 24 ... Projector 5, 25 ... Light source point 6, 26 ... Optical path 7, 27 ... Light irradiation Surface 8, 28 ... Optical axis 9, 29 ... Analog / digital converter 10, 30 ... Digital arithmetic processor 11, 31 ... Central processing unit

【手続補正書】[Procedure amendment]

【提出日】平成4年7月31日[Submission date] July 31, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】 x=(D・tan(ao +ax ))/(tan(ao +ax )+cot(γ)) ……(1) y=D/(tan(ao +ax )+cot(γ))……(2) z=D・tan(az )/(tan(ao +ax )+cot(γ))…(3) ax =tan-1(ωx /FB)…………(4) az =tan-1(ωz /FB)…………(5)X = (D * tan (ao + ax)) / (tan (ao + ax) + cot (γ)) (1) y = D / (tan (ao + ax) + cot (γ)) (2) ) Z = D · tan (az) / (tan (ao + ax) + cot (γ)) (3) ax = tan-1 (ωx / FB) ………… (4) az = tan-1 (ωz / FB) ………… (5)

Claims (1)

【特許請求の範囲】 【請求項1】 空間座標軸のX軸上に光源点(5)が位
置するように投光器(4)を配設するとともに、空間座
標軸のY軸と光軸(8)が一致するように固体撮像素子
(3)を内蔵した固体撮像カメラ(2)を空間座標原点
に配設し、前記投光器(4)から発射した光を空間座標
内に配設した被計測物(1)の表面に当てて、そのとき
の被計測物(1)の像を前記固体撮像カメラ(2)内の
固体撮像素子(3)の光照射面(7)上に撮像するとと
もに、このときの固体撮像カメラ(2)のアナログ信号
をアナログ・デジタル変換器(9)でデジタル信号に変
換して、このデジタル信号を中央処理装置(11)のデ
ジタル演算処理器(10)により演算処理し、このよう
なデジタル演算処理器(10)による演算処理を前記中
央処理装置(11)で制御される投光器(4)による光
の発射角度を逐次変えて行うことにより、被計測物
(1)の三次元形状を計測することを特徴とする三次元
計測装置。
Claims: 1. A light projector (4) is arranged so that a light source point (5) is located on the X axis of the spatial coordinate axis, and the Y axis of the spatial coordinate axis and the optical axis (8) are An object to be measured (1) in which a solid-state imaging camera (2) having a built-in solid-state imaging device (3) is arranged at the origin of spatial coordinates so that the light emitted from the projector (4) is arranged within the spatial coordinates ), The image of the measured object (1) at that time is picked up on the light irradiation surface (7) of the solid-state imaging device (3) in the solid-state imaging camera (2), and The analog signal of the solid-state imaging camera (2) is converted into a digital signal by the analog-digital converter (9), and the digital signal is arithmetically processed by the digital arithmetic processor (10) of the central processing unit (11). The arithmetic processing by such a digital arithmetic processor (10) is described above. By performing central processing unit (11) the firing angle of the light by the light projector (4) controlled sequentially varied, the three-dimensional measuring apparatus characterized by measuring the three-dimensional shape of the object to be measured (1).
JP3200083A 1991-07-15 1991-07-15 Three-dimensional measuring apparatus Pending JPH0518724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200083A JPH0518724A (en) 1991-07-15 1991-07-15 Three-dimensional measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200083A JPH0518724A (en) 1991-07-15 1991-07-15 Three-dimensional measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0518724A true JPH0518724A (en) 1993-01-26

Family

ID=16418573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200083A Pending JPH0518724A (en) 1991-07-15 1991-07-15 Three-dimensional measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0518724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514891A (en) * 2009-03-20 2009-08-26 中国第一汽车集团公司 Method for detecting optical photograph of large mold casting blank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514891A (en) * 2009-03-20 2009-08-26 中国第一汽车集团公司 Method for detecting optical photograph of large mold casting blank

Similar Documents

Publication Publication Date Title
KR101458991B1 (en) Optical measurement method and measurement system for determining 3D coordinates on a measurement object surface
JP2003519783A (en) Solder paste inspection device
JP2002529685A (en) Tomographic reconstruction of electronic components from shadow sensor data.
CN105890746B (en) Light distribution characteristic measurement device and light distribution characteristic measurement method
JP6485410B2 (en) X-ray inspection apparatus and X-ray inspection method
KR20140114300A (en) Shape measuring apparatus
US20110176147A1 (en) Three-dimensional surface measuring scanner
JP2004085565A (en) Method and apparatus for calibrating laser three-dimensional digitization sensor
JP3493403B2 (en) 3D measuring device
US20030042440A1 (en) Sensing head and apparatus for determining the position and orientation of a target object
JPH0518724A (en) Three-dimensional measuring apparatus
US4485480A (en) Radiation image photographing apparatus
JP3335850B2 (en) Motor rotation angle measuring method and motor rotation angle measuring device
JP3554264B2 (en) Three-dimensional image generation apparatus and method
JPH07333160A (en) Surface property observation device for inspection object
JPH05157708A (en) Lamino graph
JPS6316128Y2 (en)
JP7035902B2 (en) Measurement system, measurement method, and measurement program
WO2021181786A1 (en) Three-dimensional shape measurement device
JP2812716B2 (en) Sensor device for automatic alignment measurement
CN116690562A (en) Method and device for determining object position, robot and storage medium
JPH04357406A (en) Measuring method for three-dimensional shape
JPH1176209A (en) Three-dimensional motion analyzing device
CA2356618C (en) Sensing head and apparatus for determining the position and orientation of a target object
JPH03269207A (en) Non-contact digitizing method