JPH05187229A - Exhaust emission purifier for internal combustion engine - Google Patents

Exhaust emission purifier for internal combustion engine

Info

Publication number
JPH05187229A
JPH05187229A JP4023278A JP2327892A JPH05187229A JP H05187229 A JPH05187229 A JP H05187229A JP 4023278 A JP4023278 A JP 4023278A JP 2327892 A JP2327892 A JP 2327892A JP H05187229 A JPH05187229 A JP H05187229A
Authority
JP
Japan
Prior art keywords
nox
fuel ratio
lean
air
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023278A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健治 加藤
Tokuta Inoue
悳太 井上
Hidetaka Nohira
英隆 野平
Kiyoshi Nakanishi
清 中西
Satoru Iguchi
哲 井口
Tetsuo Kihara
哲郎 木原
Hideaki Muraki
秀昭 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP4023278A priority Critical patent/JPH05187229A/en
Publication of JPH05187229A publication Critical patent/JPH05187229A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To suppress the increase of an exhaust amount of transient NOx when an air-fuel ratio is changed from lean to stoic. CONSTITUTION:An NOx catalyst 6 containing quantities of La (0.03mol/1cat or more) and carrying platinum is disposed in the exhaust gas passage 4 of a lean combustible internal combustion engine 2. A three-component catalyst 8 is disposed on the downstream of the NOx catalyst. When an air-fuel ratio is changed from lean to stoic, NOx separated from the NOx catalyst 6 is purified by means of a three-component catalyst 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希薄燃焼可能な内燃機
関の排気ガス中のNOx を高NOx 浄化率で浄化でき
る、内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, which can purify NOx in exhaust gas of an internal combustion engine capable of lean combustion at a high NOx purification rate.

【0002】[0002]

【従来の技術】近年、地球環境の保護の観点から、自動
車から排出されるCO2 が問題とされ、その解決策とし
て希薄燃焼(リーンバーン)が有望とされている。しか
し、三元触媒は希薄空燃比域の酸素過剰排気ガス条件下
でNOx 浄化能力をほとんどもたないため、酸素過剰条
件下でもNOx を浄化するNOx 触媒およびそのシステ
ムの開発が望まれている。
2. Description of the Related Art In recent years, from the viewpoint of protecting the global environment, CO 2 emitted from automobiles has become a problem, and lean burn is promising as a solution. However, since the three-way catalyst has almost no NOx purification capacity under oxygen-rich exhaust gas conditions in the lean air-fuel ratio region, it is desired to develop a NOx catalyst and system for purifying NOx even under oxygen-rich conditions.

【0003】酸素過剰条件下でも比較的高いNOx 浄化
率を示すNOx 触媒として現在研究が進められているも
のに、Cu等の遷移金属をイオン交換してゼオライトに
担持したゼオライト系触媒(特開平1−139145号
公報)、Pt等の貴金属をアルミナやゼオライトに担持
したPt系触媒等がある。Pt系触媒は、特開昭61−
112715号公報にも開示されているように、通常L
a等の希土類元素を含んでいる。しかし、従来の触媒に
おけるLaの含有量は0.01mol/lcat(mo
l/lcatは触媒容積1リットルあたりのLaのモル
数を示す)以下と小さい。
One of the NOx catalysts that are currently being researched as a NOx catalyst exhibiting a relatively high NOx purification rate even under an oxygen excess condition is a zeolite-based catalyst in which a transition metal such as Cu is ion-exchanged and supported on a zeolite (Japanese Patent Laid-Open No. HEI-1). No. 139145), Pt-based catalysts in which a noble metal such as Pt is supported on alumina or zeolite, and the like. Pt-based catalysts are disclosed in
As disclosed in Japanese Laid-Open Patent Publication No. 112715, it is usually L
It contains rare earth elements such as a. However, the content of La in the conventional catalyst is 0.01 mol / lcat (mo
1 / lcat indicates the number of moles of La per 1 liter of the catalyst volume) and is small.

【0004】発明者等による触媒開発試験研究におい
て、触媒中におけるLa等の希土類元素の量を増大する
と、たとえば0.03mol/lcat以上に増大する
と、NOx 触媒のNOx 浄化率が高まり、そのNOx 浄
化率は、け空燃比がストイキ(理論空燃比)からリーン
(希薄空燃比)に変化する過渡時にとくに高くなること
が判明し、その種のNOx 触媒の特許出願がなされた
(特願平3−号)。
In the catalyst development test research conducted by the inventors, when the amount of rare earth element such as La in the catalyst is increased, for example, 0.03 mol / lcat or more, the NOx purification rate of the NOx catalyst is increased and the NOx purification is increased. The rate was found to be particularly high during the transition of the air-fuel ratio from stoichiometric (theoretical air-fuel ratio) to lean (lean air-fuel ratio), and a patent application for such NOx catalyst was filed (Japanese Patent Application No. 3- issue).

【0005】[0005]

【発明が解決しようとする課題】しかし、La等の希土
類元素の担持量を増大させたNOx 触媒は、発明者等の
更なる試験研究によれば、空燃比がストイキからリーン
に変化する時には過渡的に高いNOx 浄化率を示しその
NOx 浄化率は従来のリーンNOx 触媒よりも著しく高
いが、空燃比がリーンからストイキに変化する時には過
渡的にNOx 浄化率が低減することが判明した。
However, the NOx catalyst with an increased loading of rare earth elements such as La shows that when the air-fuel ratio changes from stoichiometric to lean, according to further test studies by the inventors. The NOx purification rate is significantly higher than that of the conventional lean NOx catalyst, but it was found that the NOx purification rate transiently decreases when the air-fuel ratio changes from lean to stoichiometric.

【0006】本発明の目的は、La等の希土類元素を従
来よりも多量に担持させたNOx 触媒を用いて、希薄空
燃比域で燃焼可能な内燃機関の排気ガス中のNOx を浄
化する場合、空燃比がリーンからストイキに変化して上
記NOx 触媒のNOx 浄化率が過渡的に低下しても、外
気へのNOx の排出を抑制できる内燃機関の排気浄化装
置(システム)を提供することにある。
An object of the present invention is to purify NOx in the exhaust gas of an internal combustion engine that can burn in a lean air-fuel ratio range by using a NOx catalyst carrying a larger amount of rare earth elements such as La than before. An object of the present invention is to provide an exhaust gas purification device (system) for an internal combustion engine that can suppress NOx emission to the outside air even if the air-fuel ratio changes from lean to stoichiometric and the NOx purification rate of the NOx catalyst transiently decreases. ..

【0007】[0007]

【課題を解決するための手段】上記目的は、次の、本発
明に係る内燃機関の排気浄化装置によって達成される。
すなわち、希薄空燃比域で燃焼可能な内燃機関およびそ
の排気通路と、前記排気通路に設置された、希土類元素
を0.03mol/lcat以上の割合で担持すると共
に白金を担持した、希薄空燃比域の排気中でNOx を浄
化可能なNOx 触媒と、前記排気通路のうち前記NOx
触媒の下流側の部分に設置された三元触媒と、を備えた
内燃機関の排気浄化装置。
The above object is achieved by the following exhaust gas purification apparatus for an internal combustion engine according to the present invention.
That is, a lean air-fuel ratio region in which an internal combustion engine capable of burning in a lean air-fuel ratio region and its exhaust passage and a rare earth element installed in the exhaust passage at a ratio of 0.03 mol / lcat or more and platinum is carried NOx catalyst capable of purifying NOx in the exhaust of the exhaust gas, and the NOx in the exhaust passage.
An exhaust emission control device for an internal combustion engine, comprising: a three-way catalyst installed on a downstream side of the catalyst.

【0008】[0008]

【作用】リーンバーン内燃機関の空燃比は、定常走行
時、加速時はリーンであり、アイドル時はストイキとさ
れる(アイドル時にリーンとすると失火する)。定常走
行時、加速時は、NOx はNOx 触媒で浄化される。何
となれば、定常走行時、加速時は空燃比はリーンに制御
されており、NOx触媒はNOx浄化能力を持つのにた
いし、三元触媒は空燃比リーンの排気中でNOx の還元
能力をほとんどもたないからである。
The air-fuel ratio of the lean burn internal combustion engine is lean during steady running and acceleration, and is considered to be stoichiometric during idling (misfire if lean during idling). During steady running and acceleration, NOx is purified by the NOx catalyst. What is important is that the air-fuel ratio is controlled to lean during steady running and acceleration, whereas the NOx catalyst has NOx purification capacity, while the three-way catalyst has NOx reduction capacity in the exhaust gas with lean air-fuel ratio. Because there is hardly any.

【0009】空燃比が変化する過渡時には、空燃比がス
トイキからリーンに変化すると、La等の希土類元素は
NOx を吸着、分解するので、NOx はNOx 触媒で、
過渡的に高NOx 浄化率で、吸着し、Pt(白金)の存
在下でNOxの分解を促進解され、浄化される。空燃比
がリーンからストイキに変化すると、La等の希土類元
素は吸着していたNOx を一部離脱するが、下流側の三
元触媒がストイキでNOx 浄化能力を有するので、NO
x 触媒で離脱されたNOx は三元触媒に流れて、そこで
浄化され、外気に放出されることを抑制される。したが
って、全ての運転状態においてNOx の外気への放出が
抑制される。
During the transition of the air-fuel ratio, when the air-fuel ratio changes from stoichiometric to lean, rare earth elements such as La adsorb and decompose NOx, so NOx is a NOx catalyst.
It is transiently adsorbed at a high NOx purification rate, and is decomposed by promoting decomposition of NOx in the presence of Pt (platinum). When the air-fuel ratio changes from lean to stoichiometric, some rare earth elements such as La release the adsorbed NOx, but the downstream three-way catalyst has stoichiometric NOx purification capability, so
The NOx released by the x catalyst flows to the three-way catalyst where it is purified and suppressed from being released to the outside air. Therefore, the release of NOx to the outside air is suppressed in all operating conditions.

【0010】[0010]

【実施例】以下に、本発明の望ましい実施例を図面を参
照して説明する。図1ないし図4は本発明の第1実施例
に係わり、図5ないし図9は本発明の第2実施例に係
る。第1実施例は、全運転条件でNOxの外気への放出
を抑制する場合であり、第2実施例は、NOxの外気へ
の放出抑制を更に促進するために、強制的に空燃比を変
動させてシステムのNOx浄化率を向上させる場合であ
る。まず、第1実施例について説明する。図1におい
て、内燃機関2は、希薄空燃比域で燃焼可能な機関から
なり、ガソリン機関であってもディーゼル機関であって
もよい。リーンバーンガソリン機関の場合は、定常走行
時、加速減速時には、空燃比リーンで運転され、アイド
ル時にはストイキ(理論空燃比)で運転される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. 1 to 4 relate to a first embodiment of the present invention, and FIGS. 5 to 9 relate to a second embodiment of the present invention. The first embodiment is a case where the release of NOx to the outside air is suppressed under all operating conditions, and the second embodiment forcedly changes the air-fuel ratio in order to further suppress the release of NOx to the outside air. In this case, the NOx purification rate of the system is improved. First, the first embodiment will be described. In FIG. 1, an internal combustion engine 2 is an engine capable of burning in a lean air-fuel ratio range, and may be a gasoline engine or a diesel engine. In the case of a lean-burn gasoline engine, the air-fuel ratio is operated lean during steady running and acceleration / deceleration, and is operated stoichiometric (theoretical air-fuel ratio) during idling.

【0011】内燃機関2の排気通路4には、望ましくは
車両の床下部分に、希土類元素たとえばLa(ランタ
ン)を0.03mol/lcat(mol/lcatは
触媒容積1リットルあたりの担持量)以上の割合で担持
すると共にPtを担持した、希薄空燃比域(空燃比がス
トイキよりリーンの領域)の排気中でNOx を浄化可能
なNOx 触媒6が配置されている。NOx触媒6の担体
はアルミナやシリカ系のものであるが、他種の担体を用
いてもよい。白金の担持量には特別な限定は無いが、例
えば0.5g/lcat程度を担持させればよい。
In the exhaust passage 4 of the internal combustion engine 2, preferably, a rare earth element such as La (lanthanum) is contained in the underfloor portion of the vehicle in an amount of 0.03 mol / lcat (mol / lcat is the amount supported per 1 liter of catalyst volume) or more. A NOx catalyst 6 capable of purifying NOx in the exhaust gas in a lean air-fuel ratio region (a region where the air-fuel ratio is leaner than stoichiometric) that carries Pt and Pt is arranged. The carrier of the NOx catalyst 6 is of alumina or silica type, but other types of carrier may be used. The amount of platinum supported is not particularly limited, but, for example, about 0.5 g / lcat may be supported.

【0012】内燃機関2の排気通路4のうち、NOx 触
媒6よりも下流側の部分には、三元触媒8が配置されて
いる。三元触媒は、ストイキおよび空燃比リッチの排気
中でNOx を浄化可能である。この三元触媒は、アルミ
ナ系その他の担体にPt(白金)、Rh(ロジウム)、
Pd(パラジウム)、Ce(セリウム)等の活性金属の
一種またはそれ以上を担持したものである。
A three-way catalyst 8 is disposed in a portion of the exhaust passage 4 of the internal combustion engine 2 downstream of the NOx catalyst 6. The three-way catalyst is capable of purifying NOx in stoichiometric and air-fuel ratio rich exhaust gas. This three-way catalyst is composed of Pt (platinum), Rh (rhodium),
It carries one or more active metals such as Pd (palladium) and Ce (cerium).

【0013】図2は本発明の第1実施例の触媒部分を示
している。NOx 触媒6は、希土類元素はLa(ランタ
ン)であり、Laを0.03mol/lcat以上の割
合で含み、かつ白金をふくむ触媒(以下、La系触媒と
もいう)から成る。NOx 触媒6の担体はアルミナであ
り、それにLaを、たとえばLa2 O3 の形にして担持
し、LaにPt(白金)を担持してある。三元触媒8の
担体はアルミナであり、それにCe(セリウム)、Pt
およびRh(ロジウム)を担持してある。
FIG. 2 shows the catalyst portion of the first embodiment of the present invention. The NOx catalyst 6 is La (lanthanum) as a rare earth element, contains La in a proportion of 0.03 mol / lcat or more, and is composed of a platinum-containing catalyst (hereinafter, also referred to as La-based catalyst). The carrier of the NOx catalyst 6 is alumina, on which La is carried, for example in the form of La2 O3, and Pt (platinum) is carried on La. The carrier of the three-way catalyst 8 is alumina, and Ce (cerium), Pt
And Rh (rhodium).

【0014】上記のNOx触媒と従来公知の種々の触媒
のNOx 浄化率−空燃比特性を示すと図4に示すように
なる。図4のAに示すように、三元触媒CCROは空燃比
リーン域ではNOx 浄化能力をほとんどもたない。図4
のBに示すように、アルミナにPtのみを担持したPt
/アルミナ触媒から成るNOx 触媒(三元触媒と異なり
Rhをもたない)は、空燃比リーン域およびストイキ
で、良好なNOx 浄化率をもつ。ただしPt/アルミナ
触媒はRhをもたないので空燃比リッチ域におけるNO
x 浄化能力は三元触媒に比べて急激に低下する。図4の
Cに示すように、Cu/ゼオライト触媒は空燃比リ−ン
域で優れたNOx浄化能力をもつが、空燃比を変動させ
てもNOx浄化能力は向上しない。
FIG. 4 shows the NOx purification rate-air-fuel ratio characteristics of the above-mentioned NOx catalyst and various conventionally known catalysts. As shown in A of FIG. 4, the three-way catalyst CC RO has almost no NOx purification capacity in the lean region of the air-fuel ratio. Figure 4
As shown in B of Pt, Pt in which only Pt is supported on alumina
The NOx catalyst composed of / alumina catalyst (which does not have Rh unlike a three-way catalyst) has a good NOx purification rate in the lean region of the air-fuel ratio and stoichiometry. However, since the Pt / alumina catalyst does not have Rh, NO in the air-fuel ratio rich region
x Purification ability drops sharply compared to three-way catalysts. As shown in C of FIG. 4, the Cu / zeolite catalyst has an excellent NOx purification ability in the air-fuel ratio lean region, but the NOx purification ability does not improve even if the air-fuel ratio is changed.

【0015】La系触媒は、La含有量が0.03mo
l/lcat以上と多い場合(図4のD)、空燃比がス
トイキからリーンに変化したときに、図3の太線に示す
ように、数分間にわたってNOx 浄化率が大幅に向上す
る。たとえば、定常時のNOx 触媒が約35%程度であ
ったものが空燃比がストイキからリーンに変化したとき
には過渡的に95%程度に著しく向上する。したがっ
て、NOx 触媒6は、空燃比がストイキからリーンに変
化したときに過渡的に、図4に示すような高いNOx 浄
化率を示す。ただし、La量が従来のように0.01m
ol/lcat以下と少ない場合は、空燃比がストイキ
からリーンに変化したときのNOx 浄化率の向上は、図
3の細線に示すように、小さく、図4のBのレベルの浄
化能力である。
The La-based catalyst has a La content of 0.03 mo.
When it is as large as 1 / lcat or more (D in FIG. 4), when the air-fuel ratio changes from stoichiometric to lean, as shown by the thick line in FIG. 3, the NOx purification rate is significantly improved over several minutes. For example, when the NOx catalyst in the steady state is about 35%, when the air-fuel ratio changes from stoichiometric to lean, it transiently remarkably improves to about 95%. Therefore, the NOx catalyst 6 transiently exhibits a high NOx purification rate as shown in FIG. 4 when the air-fuel ratio changes from stoichiometric to lean. However, the amount of La is 0.01m as before.
When it is as small as ol / lcat or less, the improvement in the NOx purification rate when the air-fuel ratio changes from stoichiometric to lean is small, as shown by the thin line in FIG. 3, and is the purification capacity at the level B in FIG.

【0016】La等の希土類元素を0.03mol/l
cat以上の割合で担持したNOx触媒、即ちNOx 触
媒6は、図3に示すように、空燃比がストイキからリー
ンに変化したときに(アイドルから加速に変化したと
き)、過渡的に高いNOx 浄化率を示すが、空燃比がリ
ーンからストイキに変化したときは、NOx 浄化率が過
渡的に一時低下する。その理由は、Laは、空燃比がス
トイキからリーン変化したときにNOx を吸着、分解す
るが、数分して吸着能力が飽和するとNOx浄化率は定
常時のそれに戻り、空燃比がリーンからストイキに変化
したときには、それまで吸着しまだ分解しきらなかった
NOx を過渡的に一部脱離するからであると推定され
る。
0.03 mol / l of rare earth element such as La
As shown in FIG. 3, the NOx catalyst carried at a ratio of cat or more, that is, the NOx catalyst 6, has a transiently high NOx purification when the air-fuel ratio changes from stoichiometric to lean (when changing from idle to acceleration). The NOx purification rate transiently drops when the air-fuel ratio changes from lean to stoichiometric. The reason is that La adsorbs and decomposes NOx when the air-fuel ratio changes from lean to stoichiometric, but when the adsorbing capacity is saturated within a few minutes, the NOx purification rate returns to that at the steady state, and the air-fuel ratio changes from lean to stoichiometric. It is presumed that this is because when it changes to, the NOx that has been adsorbed up to that point and not yet decomposed is transiently desorbed.

【0017】また、La等の希土類元素を含むNOx 触
媒は、図3に示すように、アイドル時等のストイキ時に
もNOx 浄化能力をもち、触媒の出ガスのNOx 濃度は
入ガスのNOx 濃度に比べて低減する。その理由は、ア
イドルでは空間速度SVが小のためNOx がNOx 触媒
で浄化されやすいこと、また、NOx 濃度がある程度多
いときの方がNOx 浄化率が向上するがアイドル時に離
脱されたNOx によって排気ガスのNOx 濃度が一時的
に上りNOx 浄化率が一時的に向上するためと推定され
る。
Further, as shown in FIG. 3, the NOx catalyst containing a rare earth element such as La has a NOx purifying ability even during a stoichiometric operation such as idling, and the NOx concentration of the gas discharged from the catalyst is equal to the NOx concentration of the input gas. Compared to. The reason is that in idle, the space velocity SV is small, so NOx is easily purified by the NOx catalyst. Also, when the NOx concentration is high to some extent, the NOx purification rate is improved, but the exhausted gas is exhausted by NOx separated during idle. It is presumed that the NOx concentration of NOx increases temporarily and the NOx purification rate temporarily improves.

【0018】La等の希土類元素を含むNOx 触媒の上
記の特性を利用し、Laを多く含むNOx 触媒6を上流
側に配置し、三元触媒8を下流側に配置するのは、空燃
比がリーンからストイキに変化する時にはNOx 触媒6
で一時的に離脱されるNOxを三元触媒8で浄化するた
めである。
Utilizing the above characteristics of the NOx catalyst containing a rare earth element such as La, the NOx catalyst 6 containing a large amount of La is arranged on the upstream side, and the three-way catalyst 8 is arranged on the downstream side. NOx catalyst 6 when changing from lean to stoichiometric
This is because the three-way catalyst 8 purifies the NOx that is temporarily released at.

【0019】次に、第1実施例の作用を説明する。実際
の車両の運転は、アイドル、加速、定常走行、減速、ア
イドルが繰り返されるので、空燃比はリーンとストイキ
間に繰返し変動される。リーン状態またはアイドル状態
が長く連続して続いている定常時は、主にはNOx 触媒
6でNOx が浄化され、NOx 触媒6で分解しきれずに
通り抜けてもストイキ時には三元触媒8で浄化される。
Next, the operation of the first embodiment will be described. In actual vehicle operation, idling, acceleration, steady running, deceleration, and idling are repeated, so the air-fuel ratio is repeatedly changed between lean and stoichiometric. During a steady state where the lean state or idle state continues continuously for a long time, NOx is mainly purified by the NOx catalyst 6, and even if it passes through without being decomposed by the NOx catalyst 6, it is purified by the three-way catalyst 8 at the time of stoichiometry. ..

【0020】空燃比が変化する空燃比過渡状態は、空燃
比がリーンからストイキに変化するときと、ストイキか
らリーンに変化するときとでは性状が異なる。空燃比が
ストイキからリーンに変化するときには、図3に示すよ
うにLa系NOx 触媒のNOx 浄化率が数分間過渡的に
上り、そのため、過渡的にNOx 触媒6のNOx 浄化率
が著しく向上し、システム全体のNOx 浄化率が過渡的
に向上する。
The air-fuel ratio transient state in which the air-fuel ratio changes has different properties when the air-fuel ratio changes from lean to stoichiometric and when it changes from stoichiometric to lean. When the air-fuel ratio changes from stoichiometric to lean, the NOx purification rate of the La-based NOx catalyst transiently rises for several minutes as shown in FIG. 3, so that the NOx purification rate of the NOx catalyst 6 transiently increases significantly, The NOx purification rate of the entire system transiently improves.

【0021】他方、空燃比がリーンからストイキに変化
するときにはNOx 触媒6からNOx が離脱して三元触
媒8の入ガスのNOx 濃度は一次的に増えるが、三元触
媒8がストイキでは、増えたNOx を十分に浄化するの
で、外界に排出されるNOx量は十分に低く抑えられ
る。
On the other hand, when the air-fuel ratio changes from lean to stoichiometric, NOx is released from the NOx catalyst 6 and the NOx concentration of the input gas of the three-way catalyst 8 increases temporarily, but when the three-way catalyst 8 is stoichiometric, it increases. Further, since the NOx is sufficiently purified, the amount of NOx discharged to the outside can be suppressed sufficiently low.

【0022】つぎに、第2実施例を説明する。空燃比を
リッチ(理論空燃比より濃い空燃比)側からリ−ン側に
変動させると、図3において述べたようにNOx浄化率
向上効果があらわれる。そして、このNOx浄化率向上
効果は、空燃比がリ−ン側からリッチ側に変動するとき
のNOx濃度増大よりも大のため、空燃比を変動させる
と定常よりはNOx浄化効率が大となる。この点に着目
し、第2実施例はリ−ン運転時に強制的に空燃比をリッ
チ側とリ−ン側に交互に振るようにしたものである。た
だし、空燃比を大きく振りすぎるとトルクショックがで
るので、リ−ンからストイキまで大きく振る必要はな
い。
Next, a second embodiment will be described. When the air-fuel ratio is changed from the rich side (air-fuel ratio higher than the theoretical air-fuel ratio) side to the lean side, the NOx purification rate improving effect appears as described in FIG. Since the effect of improving the NOx purification rate is greater than the increase in the NOx concentration when the air-fuel ratio changes from the lean side to the rich side, when the air-fuel ratio is changed, the NOx purification efficiency becomes larger than the steady state. .. Focusing on this point, in the second embodiment, the air-fuel ratio is forcibly changed alternately between the rich side and the lean side during lean operation. However, if the air-fuel ratio is shaken too much, a torque shock will occur, so it is not necessary to shake it greatly from lean to stoichiometric.

【0023】図5において、内燃機関2、排気通路4、
NOx触媒6、三元触媒8は第1実施例における説明に
準じるので、第1実施例と同じ符号を付すことにより、
説明を省略する。内燃機関2の吸気系または内燃機関2
の気筒に燃料を供給するために、燃料噴射弁10が設け
られている。空燃比のフィードバック制御を行うため
に、排気系4には空燃比センサ14(たとえば、酸素セ
ンサ)が設けられており、その出力はマイクロコンピュ
ータから成る電子制御装置(ECU)12に入力されて
いる。また、ECU12での演算に用いるための機関運
転条件を知るために、吸気系に吸気圧力センサ18、ス
ロットル開度センサ20が設けられ、またエンジンクラ
ンクシャフトに連動させて駆動されるディストリビュー
タにはエンジン回転数センサ16(クランク角センサ)
が内蔵されており、それぞれのセンサ18、20、16
の出力は、ECU12に入力される。
In FIG. 5, the internal combustion engine 2, the exhaust passage 4,
Since the NOx catalyst 6 and the three-way catalyst 8 conform to the description in the first embodiment, the same reference numerals as those in the first embodiment are used to
The description is omitted. Intake system of internal combustion engine 2 or internal combustion engine 2
A fuel injection valve 10 is provided to supply fuel to the cylinders. In order to perform feedback control of the air-fuel ratio, the exhaust system 4 is provided with an air-fuel ratio sensor 14 (for example, an oxygen sensor), the output of which is input to an electronic control unit (ECU) 12 including a microcomputer. .. Further, an intake pressure sensor 18 and a throttle opening sensor 20 are provided in the intake system in order to know the engine operating conditions used for the calculation in the ECU 12, and the engine driven by the distributor is driven by the engine crankshaft. Rotation speed sensor 16 (crank angle sensor)
Built-in, each sensor 18, 20, 16
Is output to the ECU 12.

【0024】ECU12は、CPU、ROM、RAM、
A/Dコンバータ、入力インタフェース、出力インタフ
ェースを有する。上記各種センサからの時々刻々変化す
る入力値は、アナログ信号はA/Dコンバータでディジ
タル信号に変えられ、ディジタル信号はそのまま、入力
インターフェースに入力され、RAMに一時記憶されて
デ−タが更新され、CPUに読出されて演算が実行され
る。また、ROMは図6−図8に示すようなプログラ
ム、マップを記憶しており、これらのプログラムはCP
Uに読出され、演算が実行される。演算で求められた燃
料噴射量の信号は、出力インタフェースを介して燃料噴
射弁10に送られ、燃料噴射弁10を前記信号に対応し
た時間だけ開弁して燃料噴射を実行する。
The ECU 12 includes a CPU, ROM, RAM,
It has an A / D converter, an input interface, and an output interface. The input values that change from moment to moment from the various sensors are converted from analog signals into digital signals by the A / D converter, and the digital signals are input to the input interface as they are and temporarily stored in the RAM to update the data. , And is read by the CPU to execute the operation. The ROM stores programs and maps as shown in FIGS. 6 to 8, and these programs are CPs.
It is read by U and the operation is executed. The signal of the fuel injection amount obtained by the calculation is sent to the fuel injection valve 10 via the output interface, and the fuel injection valve 10 is opened for a time corresponding to the signal to execute the fuel injection.

【0025】図6は、ROMに記憶されCPUに読出さ
れて演算が実行される、空燃比制御のためのプログラム
から成る空燃比制御手段を示している。図6のプログラ
ムは、希薄燃焼用(F/B:フィードバック)目標空燃
比変動サブルーチンを呼ぶステップ58を除けば、従来
の空燃比制御プログラム手段と同じである。
FIG. 6 shows an air-fuel ratio control means, which is stored in the ROM, is read out by the CPU, and is used for the arithmetic operation, and which is composed of a program for controlling the air-fuel ratio. The program of FIG. 6 is the same as the conventional air-fuel ratio control program means except for step 58 which calls a lean combustion (F / B: feedback) target air-fuel ratio variation subroutine.

【0026】図6のプログラムを説明する。ステップ5
0で機関の運転状態、たとえばエンジン回転数NE(エ
ンジン回転数センサ16の出力)、吸気管負圧PM(吸
気圧力センサ18の出力、負荷に対応する信号)を読込
む。続いてステップ52に進み、図7のマップを利用し
て、機関運転状態に基づいて、基本燃料噴射量TPを求
める。TPはストイキ運転に対応する燃料噴射量であ
り、アイドル時等には、このTPの量だけの燃料が噴射
される。
The program of FIG. 6 will be described. Step 5
At 0, the operating state of the engine, for example, engine speed NE (output of engine speed sensor 16) and intake pipe negative pressure PM (output of intake pressure sensor 18, signal corresponding to load) are read. Subsequently, the routine proceeds to step 52, where the basic fuel injection amount TP is obtained based on the engine operating state using the map of FIG. TP is a fuel injection amount corresponding to the stoichiometric operation, and at the time of idling or the like, fuel is injected by the amount of this TP.

【0027】続いてステップ54に進み、現在の運転条
件がリーンバーン条件にあるか否かを判定する。アイド
ル時等のストイキ運転時には、ステップ74に進み、T
AU=TPとおいてステップ76に進んで、TAU(燃
料噴射量に相当する燃料噴射時間)だけの燃料燃料噴射
時間の燃料噴射を実行するが、リーンバーン条件時には
ステップ55でリーン補正係数KLEANを算出した後
ステップ56に進む。ステップ56では、希薄燃焼用
(F/B)目標空燃比A/F−T(Tはターゲット)
を、図示略の希薄燃焼用マップを利用して、求める。従
来は、このままステップ60−72に進んで、実際の空
燃比A/Fが目標空燃比A/F−Tになるようにフィー
ドバック制御を行っていたのであるが、本発明では、ス
テップ56からステップ58に進み、希薄燃焼用(F/
B)目標空燃比を強制的にリッチ側とリーン側とに交互
に変化させる、F/B目標空燃比変動サブルーチンに進
み、該サブルーチンの演算が実行される。このF/B目
標空燃比サブルーチンは、希薄燃焼用目標空燃比変動手
段を構成する。この希薄燃焼用目標空燃比変動手段は、
図8にその一実施例が示されており、後述する。
Subsequently, the routine proceeds to step 54, where it is judged whether or not the current operating condition is the lean burn condition. During stoichiometric operation such as idling, proceed to step 74
When AU = TP, the routine proceeds to step 76, where fuel injection for a fuel injection time of TAU (fuel injection time corresponding to the fuel injection amount) is executed, but at the time of lean burn conditions, the lean correction coefficient KLEAN is calculated at step 55. After that, the process proceeds to step 56. In step 56, a lean burn (F / B) target air-fuel ratio A / FT (where T is a target).
Is calculated using a lean combustion map (not shown). Conventionally, the process proceeds to step 60-72 as it is, and the feedback control is performed so that the actual air-fuel ratio A / F becomes the target air-fuel ratio A / F-T, but in the present invention, from step 56 to step Proceed to 58, for lean burn (F /
B) Proceed to the F / B target air-fuel ratio variation subroutine for forcibly changing the target air-fuel ratio alternately between the rich side and the lean side, and the calculation of this subroutine is executed. This F / B target air-fuel ratio subroutine constitutes lean combustion target air-fuel ratio changing means. This lean combustion target air-fuel ratio varying means is
One example thereof is shown in FIG. 8, which will be described later.

【0028】ステップ58を経た後では、目標空燃比A
/F−Tはリッチ側とリーン側に交互に変動する状態に
ある。続いてステップ60に進み、空燃比センサ(A/
Fセンサ)14の出力を読み、ステップ62で該出力を
演算することにより、現在の、実際の空燃比A/Fを求
める。続いてステップ64に進み、目標空燃比A/F−
Tと実際の空燃比A/Fの差Dを求め、ステップ66で
Dがプラスならステップ68に進んで補正係数FAFを
予め定められた所定値αだけ小にし、ステップ66でD
がマイナスならステップ70に進んで補正係数FAFを
αだけ大にして、ステップ72に進む。ステップ72で
燃料噴射時間TAUを、TP*KLEAN*FAFによ
り演算する。続いて、ステップ66に進み、リーンの目
標空燃比にするように補正された燃料噴射の噴射実行処
理をする。
After step 58, the target air-fuel ratio A
/ FT is in a state of alternately changing to the rich side and the lean side. Then, in step 60, the air-fuel ratio sensor (A /
The output of the F sensor) 14 is read, and the output is calculated in step 62 to obtain the current and actual air-fuel ratio A / F. Then, the routine proceeds to step 64, where the target air-fuel ratio A / F-
The difference D between T and the actual air-fuel ratio A / F is obtained. If D is positive in step 66, the routine proceeds to step 68, where the correction coefficient FAF is reduced by a predetermined value α, and D is calculated in step 66.
If is negative, the routine proceeds to step 70, where the correction coefficient FAF is increased by α, and the routine proceeds to step 72. In step 72, the fuel injection time TAU is calculated by TP * KLEAN * FAF. Subsequently, the routine proceeds to step 66, where the injection execution processing of the fuel injection corrected to the lean target air-fuel ratio is executed.

【0029】図6の空燃比制御手段によって、出力運転
時には空燃比はストイキ(理論空燃比)に制御され、リ
ーンバーン条件時には、希薄燃焼用(F/B)目標空燃
比A/F−Tに制御される。ただし、リーンバーン条件
時には、ステップ58を通ることにより、希薄燃焼用目
標空燃比変動手段によって、目標空燃比A/F−Tはリ
ッチ側とリーン側に交互に変動されている。
The air-fuel ratio control means shown in FIG. 6 controls the air-fuel ratio to stoichiometric (theoretical air-fuel ratio) during output operation, and to the lean burn (F / B) target air-fuel ratio A / FT under lean burn conditions. Controlled. However, under the lean burn condition, the target air-fuel ratio A / F-T is alternately changed to the rich side and the lean side by the lean combustion target air-fuel ratio changing means by passing through step 58.

【0030】図8は、希薄燃焼用(F/B)目標空燃比
変動手段を示している。図8では、ステップ102で、
リーン補正フラグFLEANが1か0かを判定すること
により、目標空燃比をリーン側に補正すべき状態にある
かリッチ側に補正すべき状態にあるかを判定する。
FIG. 8 shows a lean burn (F / B) target air-fuel ratio varying means. In FIG. 8, in step 102,
By determining whether the lean correction flag FLEAN is 1 or 0, it is determined whether the target air-fuel ratio is in the lean side or the rich side.

【0031】ステップ102で、リーン補正フラグFL
EANが1、すなわちリーン側に補正すべき状態にある
と判定されると、ステップ104に進む。ステップ10
4では、希薄燃焼用(F/B)目標空燃比A/F−T
を、1回の割込みあたり所定量だけ、リーン側に補正す
る。すなわち、A/F−Tを所定量だけ大にする。何回
かこのサブルーチンのステップ104を通っているうち
に、A/F−Tは次第に大きくなっていく。
At step 102, the lean correction flag FL is set.
If it is determined that the EAN is 1, that is, the lean side should be corrected, the process proceeds to step 104. Step 10
In No. 4, the target air-fuel ratio A / FT for lean burn (F / B)
Is corrected to the lean side by a predetermined amount per interrupt. That is, the A / F-T is increased by a predetermined amount. While passing through the step 104 of this subroutine several times, the A / FT becomes gradually larger.

【0032】続いてステップ106に進み、リーン補正
フラグFLEANが1にセットされると同時にカウント
を開始したタイマのカウント時間が所定時間を経過した
か否か、すなわち、目標空燃比がリーン側に補正され続
けている時間が所定時間を経過したか否かを判定する。
ここで、所定時間は、触媒容量や排気流量等によっても
異なるので前述の図3に示されるような過度時の効果が
活かせるよう予め実験的に求めておく。ステップ106
で、所定時間を超えていなければ、そのままリターンし
て、リーン補正を続ける。ステップ106で、所定時間
を超えたと判定されると、ステップ108に進み、リー
ン補正フラグFLEANをリセットして0とし、リッチ
側補正のタイマをONにしてカウントを開始し、ついで
リターンする。
Subsequently, the routine proceeds to step 106, where the lean correction flag FLEAN is set to 1 and at the same time, the count time of the timer which started counting has passed a predetermined time, that is, the target air-fuel ratio is corrected to the lean side. It is determined whether or not the continued time has exceeded a predetermined time.
Here, since the predetermined time varies depending on the catalyst capacity, the exhaust gas flow rate, etc., it is experimentally obtained in advance so that the transient effect as shown in FIG. 3 can be utilized. Step 106
Then, if the predetermined time is not exceeded, the process directly returns and the lean correction is continued. If it is determined in step 106 that the predetermined time has been exceeded, the process proceeds to step 108, the lean correction flag FLEAN is reset to 0, the rich correction timer is turned on to start counting, and then the process returns.

【0033】ステップ102で、リーン補正フラグFL
EANが0、すなわちリッチ側に補正すべき状態にある
と判定されると、ステップ110に進む。ステップ11
0では希薄燃焼用(F/B)目標空燃比AF/Tを、1
回の割込みあたり所定量だけ、リッチ側に補正する。つ
いでステップ112に進み、リッチ側補正のタイマカウ
ント時間が所定時間経過したか否かを判定し、経過して
いなければそのままリターンしてリッチ側補正を続け、
経過したならステップ114に進んで、リーン補正フラ
グFLEANを1にセットするとともに、リーン側補正
のタイマのカウントを開始する。
In step 102, the lean correction flag FL
If it is determined that the EAN is 0, that is, the state where the EAN should be corrected to the rich side, the process proceeds to step 110. Step 11
At 0, the lean burn (F / B) target air-fuel ratio AF / T is set to 1
A predetermined amount per interrupt is corrected to the rich side. Next, the routine proceeds to step 112, where it is determined whether or not the rich side correction timer count time has passed a predetermined time. If not, the routine returns to continue the rich side correction,
When the time has elapsed, the routine proceeds to step 114, where the lean correction flag FLEAN is set to 1 and the lean side correction timer starts counting.

【0034】図8の希薄燃焼用目標空燃比変動手段によ
って、目標空燃比は図9に示すように、図7のステップ
56で演算された目標空燃比を中心にして、リッチ側と
リーン側とに、交互に強制的に変動される。そして、リ
ーン補正フラグFLEANが1のときにリーン側に変化
され、FLEANが0のときにリッチ側に変化される。
As shown in FIG. 9, the target air-fuel ratio is divided into the rich side and the lean side with the target air-fuel ratio calculated in step 56 of FIG. 7 as the center by the lean burn target air-fuel ratio changing means of FIG. , And are forcibly changed alternately. Then, when the lean correction flag FLEAN is 1, it is changed to the lean side, and when FLEAN is 0, it is changed to the rich side.

【0035】上記のように、目標空燃比はリッチ側、リ
ーン側に交互に変動される。目標空燃比が振られること
により、空燃比の過渡状態が作り出され、図3の一時的
NOx 浄化率の向上が得られ、これを繰り返すことによ
って、空燃比リーンの運転時間全体にわたって、NOx
浄化率が高められる。
As described above, the target air-fuel ratio is alternately changed to the rich side and the lean side. By swinging the target air-fuel ratio, a transient state of the air-fuel ratio is created, and the temporary NOx purification rate improvement of FIG. 3 is obtained. By repeating this, the NOx is leaned over the entire operating time.
Purification rate is increased.

【0036】[0036]

【発明の効果】本発明によれば、La等の希土類元素を
0.03mol/lcatと従来に比べて多量に含むN
Ox 触媒を内燃機関の排気通路に配置し、その下流に、
三元触媒を配置したので、空燃比がリーンからストイキ
に変化してNOx 触媒からNOx が離脱しても、それを
三元触媒で十分に浄化できるので、全運転状態でNOx
排出を抑制できる。
According to the present invention, N containing rare earth elements such as La in a large amount of 0.03 mol / lcat as compared with the prior art.
An Ox catalyst is placed in the exhaust passage of the internal combustion engine, and downstream of that,
Since a three-way catalyst is installed, even if the air-fuel ratio changes from lean to stoichiometric and NOx is released from the NOx catalyst, it can be sufficiently purified by the three-way catalyst, so NOx is reduced in all operating conditions.
Emissions can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る内燃機関の排気浄化
装置の系統図である。
FIG. 1 is a system diagram of an exhaust gas purification device for an internal combustion engine according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係るNOx 触媒、三元触
媒の配置図である。
FIG. 2 is a layout view of a NOx catalyst and a three-way catalyst according to the first embodiment of the present invention.

【図3】La系触媒の、空燃比変動時のNOx 濃度対時
間特性図である。
FIG. 3 is a NOx concentration vs. time characteristic diagram of the La-based catalyst when the air-fuel ratio changes.

【図4】各種触媒のNOx 浄化率対空燃比特性図であ
る。
FIG. 4 is a NOx purification rate versus air-fuel ratio characteristic diagram of various catalysts.

【図5】本発明の第2実施例に係る内燃機関の排気ガス
浄化装置の系統図である。
FIG. 5 is a system diagram of an exhaust gas purifying apparatus for an internal combustion engine according to a second embodiment of the present invention.

【図6】本発明の第2実施例における空燃比制御の制御
フローチャートである。
FIG. 6 is a control flowchart of air-fuel ratio control in the second embodiment of the present invention.

【図7】図6のフローチャートで、機関運転条件から基
本燃料噴射量を求めるときに用いるマップである。
FIG. 7 is a map used in the flowchart of FIG. 6 when determining a basic fuel injection amount from engine operating conditions.

【図8】本発明の第2実施例における希薄燃焼用目標空
燃比変動サブルーチンのフローチャートである。
FIG. 8 is a flowchart of a lean combustion target air-fuel ratio variation subroutine in a second embodiment of the present invention.

【図9】本発明の第2実施例における目標空燃比変化の
タイムチャートである。
FIG. 9 is a time chart of changes in the target air-fuel ratio in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 内燃機関 4 排気通路 6 NOx 触媒 8 三元触媒 2 Internal combustion engine 4 Exhaust passage 6 NOx catalyst 8 Three-way catalyst

フロントページの続き (72)発明者 井上 悳太 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 野平 英隆 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中西 清 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 井口 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 木原 哲郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 村木 秀昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内Front Page Continuation (72) Inventor Etuta Inuta Toyota City, Toyota, Aichi Prefecture, 1st Toyota Motor Co., Ltd. (72) Inventor Hidetaka Nohira, Toyota City, Aichi Prefecture, Toyota City, 1st Toyota Motor Co., Ltd. (72) Inventor Kiyo Nakanishi, Toyota City, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor, Satoshi Iguchi Toyota City, Aichi Prefecture Toyota City, Toyota City Co., Ltd. (72) Inventor, Tetsuro Kihara Toyota City, Aichi Prefecture 1st Toyota Town Toyota Motor Co., Ltd. (72) Inventor Hideaki Muraki 1st 41st Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希薄空燃比域で燃焼可能な内燃機関およ
びその排気通路と、前記排気通路に設置された、希土類
元素を0.03mol/lcat以上の割合で担持する
と共に白金を担持した、希薄空燃比域の排気中でNOx
を浄化可能なNOx 触媒と、 前記排気通路のうち前記NOx 触媒の下流側の部分に設
置された三元触媒と、を備えた内燃機関の排気浄化装
置。
1. An internal combustion engine capable of combusting in a lean air-fuel ratio region and its exhaust passage, and a rare earth element installed in said exhaust passage, carrying a rare earth element at a ratio of 0.03 mol / lcat or more and a platinum. NOx in the exhaust gas in the air-fuel ratio range
An exhaust purification device for an internal combustion engine, comprising: a NOx catalyst capable of purifying the exhaust gas; and a three-way catalyst installed in a portion of the exhaust passage on the downstream side of the NOx catalyst.
JP4023278A 1992-01-14 1992-01-14 Exhaust emission purifier for internal combustion engine Pending JPH05187229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023278A JPH05187229A (en) 1992-01-14 1992-01-14 Exhaust emission purifier for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023278A JPH05187229A (en) 1992-01-14 1992-01-14 Exhaust emission purifier for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05187229A true JPH05187229A (en) 1993-07-27

Family

ID=12106136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023278A Pending JPH05187229A (en) 1992-01-14 1992-01-14 Exhaust emission purifier for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05187229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687495A2 (en) 1994-06-17 1995-12-20 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification
US6245307B1 (en) * 1994-06-17 2001-06-12 Ict Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687495A2 (en) 1994-06-17 1995-12-20 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification
US6245307B1 (en) * 1994-06-17 2001-06-12 Ict Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification

Similar Documents

Publication Publication Date Title
JP2605586B2 (en) Exhaust gas purification device for internal combustion engine
JP3656354B2 (en) Exhaust gas purification device for internal combustion engine
JPH09133032A (en) Exhaust emission control system for internal combustion engine
JPH09317446A (en) Exhaust gas purifying device for internal combustion engine
JP3636116B2 (en) Exhaust gas purification device for internal combustion engine
JP2605559B2 (en) Exhaust gas purification device for internal combustion engine
JP2001050042A (en) Exhaust gas emission control system
JP3301093B2 (en) Exhaust gas purification device for internal combustion engine
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JP2722951B2 (en) Exhaust gas purification device for internal combustion engine
EP0922840B1 (en) Method for producing an NOx-purifying catalyst and apparatus for purifying exhaust gas of an internal combustion engine
JP2000240431A (en) Exhaust gas emission control device for internal combustion engine
JPH0693845A (en) Exhaust emission control device for engine
JPH05187229A (en) Exhaust emission purifier for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JPH05187230A (en) Exhaust emission purifier for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP2914121B2 (en) Control device for lean-burn internal combustion engine
JP3580135B2 (en) Exhaust gas purification device for internal combustion engine
JP2000110631A (en) Exhaust emission control device for engine
JP3446646B2 (en) Exhaust gas purification device for internal combustion engine
JP3186393B2 (en) Exhaust gas purification device for internal combustion engine
JP2000018021A (en) Exhaust emission control device for internal combustion engine
JP2011106383A (en) Exhaust emission control device for internal combustion engine