JPH0518700A - Guided missile - Google Patents

Guided missile

Info

Publication number
JPH0518700A
JPH0518700A JP16984991A JP16984991A JPH0518700A JP H0518700 A JPH0518700 A JP H0518700A JP 16984991 A JP16984991 A JP 16984991A JP 16984991 A JP16984991 A JP 16984991A JP H0518700 A JPH0518700 A JP H0518700A
Authority
JP
Japan
Prior art keywords
radome
gas
ring
pressure gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16984991A
Other languages
Japanese (ja)
Inventor
Hiroya Hara
浩也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16984991A priority Critical patent/JPH0518700A/en
Publication of JPH0518700A publication Critical patent/JPH0518700A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of strength of a ring and the deformation as well as the collapse of a radome due to heat stress. CONSTITUTION:A guided missile, having a guidance controller for catching a target by a radio wave antenna 1, is provided with a radome 8, a high- pressure gas source 4 and a plurality of high-pressure pipelines 5 provided in the guidance controller while high-pressure gas releasing holes 6, connected to the tip end of the high-pressure pipeline 5, are formed on the rear end of the radome. A high-pressure gas source and a guiding means, guiding gas, accumulated in the high-pressure gas source, to the outer surface of a ring 2, are provided in the guidance device of the guided missile to prevent the inflow of heat, generated upon flying with a high speed, as well as the temperature rise of the ring by discharging the gas to the outer surface of the ring 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電波アンテナを用い
て目標を捕捉し、誘導を行なう誘導飛しょう体の強度向
上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the strength of a guide vehicle that captures a target by using a radio wave antenna and guides the target.

【0002】[0002]

【従来の技術】図6は従来の電波アンテナを用いた誘導
飛しょう体の概略図である。図中1は電波アンテナ、2
はリング、3は衝撃波、8はレドームである。電波アン
テナ1を用いた従来の誘導飛しょう体は、音速を越えて
高速で飛しょうすると、前方に強い衝撃波3が発生し、
急激に流体が減速され、流体の運動エネルギが熱エネル
ギに変換され流体は加熱される。これを空力加熱と呼ん
でいる。
2. Description of the Related Art FIG. 6 is a schematic view of a guide vehicle using a conventional radio wave antenna. In the figure, 1 is a radio antenna, 2
Is a ring, 3 is a shock wave, and 8 is a radome. When a conventional guided vehicle using the radio wave antenna 1 flies at a high speed beyond the speed of sound, a strong shock wave 3 is generated in the front,
The fluid is rapidly decelerated, the kinetic energy of the fluid is converted into heat energy, and the fluid is heated. This is called aerodynamic heating.

【0003】空力加熱は、特に高速で飛しょうする誘導
飛しょう体において重要な課題となる。空力加熱は前述
した通り、流体の運動エネルギが熱エネルギに変換され
ることにより生じる現象であり、空気が誘導飛しょう体
の表面に沿って流れる時の摩擦と淀み点付近における空
気の圧縮に起因する。摩擦と圧縮により空気の運動エネ
ルギが熱エネルギに変換され、誘導飛しょう体の回りの
薄い空気の層即ち境界層の中に流入し、境界層内の空気
の温度が上昇する。空力加熱による空気の温度上昇は以
下の式で与えられる。
Aerodynamic heating is an important issue, especially for guided vehicles that fly at high speeds. Aerodynamic heating is a phenomenon that occurs when the kinetic energy of a fluid is converted into heat energy as described above, and is caused by friction when air flows along the surface of a guided flying body and compression of air near the stagnation point. To do. Friction and compression convert the kinetic energy of the air into heat energy, which flows into the thin air layer around the guided vehicle, the boundary layer, which raises the temperature of the air in the boundary layer. The temperature rise of air due to aerodynamic heating is given by the following equation.

【0004】[0004]

【数1】 [Equation 1]

【0005】ここで、γは空気の比熱比であり通常1.
4を用いる。M∞は誘導飛しょう体の飛しょう速度、T
∞は空気の絶対温度である。例えば、気温20℃の空気
中を誘導飛しょう体が音速の5倍、即ちM∞=5で飛し
ょうする時、誘導飛しょう体の淀み点では空気の温度は
1500℃以上になる。この様に、非常に高温に加熱さ
れた空気から誘導飛しょう体の回りに形成された境界層
に熱が流入し、境界層の温度を上昇させ、更に誘導飛し
ょう体の表面に熱が侵入し、誘導飛しょう体の温度が上
昇する。この時、外気から境界層に流入する熱量は、境
界層の外表面における熱伝達率及び、外気と境界層の外
表面の温度差に比例する。また、境界層から誘導飛しょ
う体に流入する熱量は、誘導飛しょう体表面における熱
伝達率と境界層と誘導飛しょう体の表面の温度差に比例
する。これを式で表すと、以下のようになる。
Here, γ is the specific heat ratio of air and is usually 1.
4 is used. M∞ is the flight speed of the guided flying object, T
∞ is the absolute temperature of air. For example, when the guided flying object flies in the air at a temperature of 20 ° C. at 5 times the speed of sound, that is, M∞ = 5, the temperature of the air becomes 1500 ° C. or more at the stagnation point of the guiding flying object. In this way, heat flows from the air heated to a very high temperature into the boundary layer formed around the guided vehicle, raises the temperature of the boundary layer, and further heat enters the surface of the guided vehicle. However, the temperature of the guided vehicle will rise. At this time, the amount of heat flowing into the boundary layer from the outside air is proportional to the heat transfer coefficient on the outer surface of the boundary layer and the temperature difference between the outside air and the outer surface of the boundary layer. The amount of heat flowing from the boundary layer into the guide vehicle is proportional to the heat transfer coefficient on the surface of the guide vehicle and the temperature difference between the boundary layer and the surface of the guide vehicle. This can be expressed as follows.

【0006】[0006]

【数2】 [Equation 2]

【0007】ここで、Qは流入する熱量、Hは熱伝達
率、(T2 −T1 )は外気と境界層の外表面の温度差又
は境界層と誘導飛しょう体の表面の温度差である。
Here, Q is the amount of heat flowing in, H is the heat transfer coefficient, and (T 2 −T 1 ) is the temperature difference between the outside air and the outer surface of the boundary layer or the temperature difference between the boundary layer and the surface of the guided vehicle. is there.

【0008】一方、レドーム8及びリング2は空力加熱
による温度上昇のために材料強度が低下するとともに、
両材料で熱膨張率に差があるためレドーム8とリング2
取付部に生じる熱応力が過大となってレドームが破壊す
る恐れがあった。
On the other hand, the radome 8 and the ring 2 decrease in material strength due to temperature rise due to aerodynamic heating, and
There is a difference in the coefficient of thermal expansion between both materials, so radome 8 and ring 2
There was a risk that the thermal stress generated in the mounting part would be excessive and the radome would be destroyed.

【0009】[0009]

【発明が解決しようとする課題】以上説明した通り、従
来の誘導飛しょう体は高速で飛しょうする時の空力加熱
のためにリングの温度上昇によりリングの強度が低下す
るとともに、レドームとリングとでは熱膨張率に差があ
るため、レドームとリングの取付部に生じる熱膨張によ
る熱応力が過大となりレドームが破壊するという課題が
あった。
As described above, in the conventional guided vehicle, the strength of the ring is lowered due to the temperature rise of the ring due to the aerodynamic heating when flying at high speed, and the radome and the ring are However, since there is a difference in the coefficient of thermal expansion, there has been a problem that the thermal stress due to the thermal expansion generated in the mounting portion of the radome and the ring becomes excessive and the radome is destroyed.

【0010】この発明は、このような課題を解決するた
めになされたもので、リングの外表面に気体を吹き付
け、衝撃波の後方の加熱された空気流と物体の間に温度
の低い気体の流れの層を形成させ、熱の流入を防ぎ、リ
ングの温度上昇を抑えることを目的とするものである。
The present invention has been made to solve the above problems, and blows a gas onto the outer surface of a ring to cause a low-temperature gas flow between a heated air flow behind a shock wave and an object. Is formed to prevent heat from flowing in and suppress the temperature rise of the ring.

【0011】[0011]

【課題を解決するための手段】この発明による誘導飛し
ょう体は、高圧気体源を有し、複数の高圧配管により気
体をリングの外表面に導いて吹き付ける手段を設けたも
のである。
A guided flying vehicle according to the present invention has a high-pressure gas source, and is provided with means for guiding and blowing the gas to the outer surface of the ring by a plurality of high-pressure pipes.

【0012】また、誘導制御装置内のスペースを広くす
るために複数の穴を有するリング状の高圧配管を用いた
ものである。
Further, a ring-shaped high-pressure pipe having a plurality of holes is used in order to widen the space in the induction control device.

【0013】また、レドームに気体放出孔を明ける必要
をなくすために複数の高圧配管をリングの外部に配置す
るようにしたものである。
Further, a plurality of high-pressure pipes are arranged outside the ring in order to eliminate the need to open a gas discharge hole in the radome.

【0014】さらに、空気抵抗を少なくするために複数
の穴を有するリング状の高圧配管一本をリングの外部に
配置したものである。
Further, one ring-shaped high-pressure pipe having a plurality of holes is arranged outside the ring in order to reduce air resistance.

【0015】そして、外部に不要な突起をなくし、空気
抵抗の増加を防ぐとともに構造を簡単にするために電波
アンテナを封入する圧力容器を用いたものである。
Further, a pressure vessel for enclosing a radio wave antenna is used in order to eliminate unnecessary protrusions on the outside, prevent an increase in air resistance, and simplify the structure.

【0016】[0016]

【作用】この発明においては、気体をリングの外表面に
吹き付けることによって外気からの熱の流入を防ぎ、リ
ングの温度の上昇を抑えて、リングの強度低下・熱応力
によるレドームの破壊を防ぐと同時に、飛しょう速度範
囲を拡大する。
In the present invention, it is possible to prevent the inflow of heat from the outside air by blowing the gas onto the outer surface of the ring, suppress the rise in the temperature of the ring, and prevent the strength of the ring from being reduced and the radome from being broken due to thermal stress. At the same time, the flight speed range is expanded.

【0017】[0017]

【実施例】【Example】

実施例1.図1は、この発明の一実施例を示す説明図で
あり、図1(a)は断面図、図1(b)は斜視図であ
る。図中4は高圧気体源、5は高圧配管、6は気体の放
出孔である。この発明による誘導飛しょう体が音速を越
えて高速で飛しょうする時、図1(a)に示すように衝
撃波3が発生し、衝撃波3の後方では気体が急激に減速
されて運動エネルギが熱エネルギに変換されること、並
びに誘導飛しょう体の表面での摩擦により熱が発生す
る。
Example 1. 1A and 1B are explanatory views showing an embodiment of the present invention. FIG. 1A is a sectional view and FIG. 1B is a perspective view. In the figure, 4 is a high pressure gas source, 5 is a high pressure pipe, and 6 is a gas discharge hole. When the guided flying object according to the present invention flies at a high speed exceeding the speed of sound, a shock wave 3 is generated as shown in FIG. 1 (a), and behind the shock wave 3, the gas is rapidly decelerated and the kinetic energy becomes Heat is generated by being converted into energy and by friction on the surface of the guided vehicle.

【0018】この発明による誘導飛しょう体は機体の内
部に高圧気体源4を有しており、上記高圧気体源4に蓄
えられた気体を図1(a)に示すように機体の内部に配
置した高圧配管5によってレドーム8後端上に設けられ
た気体の放出孔6まで導き、外気に放出する。放出され
た気体は、外気の流れとリング2との間に図1(a)の
破線で示すように流れの層を形成する。この時、放出さ
れた気体自身が誘導飛しょう体の回りの加熱された境界
層内の熱を吸収するので、境界層の温度が低下する。ま
た、放出された気体により境界層の厚さが増加するため
境界層表面と誘導飛しょう体表面との温度勾配が緩やか
になり、熱の流入が低下する。更に、放出された気体に
より境界層内の速度が低下し、熱伝達率が小さくなるた
め誘導飛しょう体への熱の流入が減少する。以上の効果
により、空力加熱により加熱された外気からの流入を著
しく減少させることができる。
The guide vehicle according to the present invention has a high-pressure gas source 4 inside the airframe, and the gas stored in the high-pressure gas source 4 is arranged inside the airframe as shown in FIG. 1 (a). The high-pressure pipe 5 guides the gas to the gas discharge hole 6 provided on the rear end of the radome 8 and discharges it to the outside air. The released gas forms a flow layer between the flow of the outside air and the ring 2 as shown by the broken line in FIG. At this time, the released gas itself absorbs the heat in the heated boundary layer around the guided vehicle, so that the temperature of the boundary layer decreases. Further, since the thickness of the boundary layer increases due to the released gas, the temperature gradient between the surface of the boundary layer and the surface of the guided vehicle becomes gentle, and the inflow of heat decreases. Further, the released gas reduces the velocity in the boundary layer and reduces the heat transfer coefficient, so that the heat inflow to the guide vehicle is reduced. With the above effects, the inflow from the outside air heated by the aerodynamic heating can be significantly reduced.

【0019】実施例2.図2はこの発明の他の実施例を
示す説明図であり、図2(a)は断面図、図2(b)は
斜視図である。この実施例では、誘導制御装置内の高圧
配管5は1本で、レドーム8の内壁に沿ってリング状に
配管されており、レドーム8の放出孔6に接続される位
置に複数の穴を明けている。
Example 2. 2A and 2B are explanatory views showing another embodiment of the present invention. FIG. 2A is a sectional view and FIG. 2B is a perspective view. In this embodiment, there is only one high-pressure pipe 5 in the induction controller, which is piped along the inner wall of the radome 8 in a ring shape, and a plurality of holes are formed at the positions connected to the emission holes 6 of the radome 8. ing.

【0020】この場合高圧配管5は、1本だけなので誘
導制御装置内のスペースを広く取ることができ、電子機
器の実装に有利である。
In this case, since there is only one high-pressure pipe 5, a large space can be secured in the induction control device, which is advantageous for mounting electronic equipment.

【0021】実施例3.図3はこの発明の他の実施例を
示す説明図であり、図3(a)は断面図、図3(b)は
斜視図である。この実施例では複数の高圧配管5を外部
に周方向に一定間隔に配管し、高圧配管5の先端の放出
孔6から気体を放出する。
Example 3. 3A and 3B are explanatory views showing another embodiment of the present invention. FIG. 3A is a sectional view and FIG. 3B is a perspective view. In this embodiment, a plurality of high-pressure pipes 5 are arranged outside at regular intervals in the circumferential direction, and gas is discharged from the discharge holes 6 at the tip of the high-pressure pipe 5.

【0022】従ってレドーム8に気体放出のための放出
孔を設ける必要がないので、レドーム8の強度を低下さ
せることがないため、レドーム8に働く空力的荷重が非
常に厳しい場合に有利であると同時に、誘導制御装置内
のスペースを広く取ることができ、電子機器の実装に有
利である。
Therefore, since it is not necessary to provide the radome 8 with a discharge hole for discharging a gas, the strength of the radome 8 is not lowered, which is advantageous when the aerodynamic load acting on the radome 8 is extremely severe. At the same time, a large space can be secured in the guidance control device, which is advantageous for mounting electronic devices.

【0023】実施例4.図4はこの発明の他の実施例を
示す説明図であり、図4(a)は断面図、図4(b)は
斜視図である。この実施例では高圧配管5をレドーム8
の外壁に沿ってリング状に配管し、周方向位置に複数の
気体放出孔6を設けている。
Example 4. 4A and 4B are explanatory views showing another embodiment of the present invention. FIG. 4A is a sectional view and FIG. 4B is a perspective view. In this embodiment, the high pressure pipe 5 is connected to the radome 8
The pipe is formed in a ring shape along the outer wall of, and a plurality of gas discharge holes 6 are provided at circumferential positions.

【0024】従って誘導制御装置内のスペースを広く取
ることができ、電子機器の実装に有利であると同時に、
外部に露出する配管が一本でよいので、過大な抵抗の増
加を招かないという利点もある。
Therefore, a large space can be secured in the guidance control device, which is advantageous for mounting electronic equipment and at the same time,
Since only one pipe is exposed to the outside, there is also an advantage that it does not cause an excessive increase in resistance.

【0025】実施例5.図5はこの発明の他の実施例を
示す説明図であり、図5(a)は断面図、図5(b)は
斜視図である。この実施例では電波アンテナ1を圧力容
器7に収納し、高圧気体源4からの気体を高圧配管を通
じて圧力容器7に送り込み、レドーム8後端に周方向に
設けられた複数の放出孔6より外気に放出する。
Example 5. 5A and 5B are explanatory views showing another embodiment of the present invention. FIG. 5A is a sectional view and FIG. 5B is a perspective view. In this embodiment, the radio wave antenna 1 is housed in the pressure vessel 7, the gas from the high-pressure gas source 4 is sent to the pressure vessel 7 through the high-pressure pipe, and the outside air is emitted from a plurality of discharge holes 6 provided at the rear end of the radome 8 in the circumferential direction. To release.

【0026】従って外部に不要な突起を持たないので抵
抗の増加がないと同時に複雑な配管系を必要としないた
め構造が簡単であるという利点もある。
Therefore, there is an advantage that the structure is simple because there is no unnecessary protrusion on the outside so that the resistance does not increase and a complicated piping system is not required.

【0027】[0027]

【発明の効果】以上のように、この発明によれば、誘導
飛しょう体の誘導装置内に高圧気体源とこの高圧気体源
に蓄えられた気体をリングの外表面に導く手段を設け、
リングの外表面に放出することによって、高速で飛しょ
うするときに発生する熱が、リングに流入することを防
いで、リングの温度上昇を抑え、リングの強度低下並び
にレドームの熱応力による変形及び破壊を防ぐことが出
来る。
As described above, according to the present invention, the high-pressure gas source and the means for guiding the gas stored in the high-pressure gas source to the outer surface of the ring are provided in the guide device for the guide vehicle.
By releasing the heat to the outer surface of the ring, the heat generated when flying at high speed is prevented from flowing into the ring, the temperature rise of the ring is suppressed, the strength of the ring is reduced, and the deformation and deformation of the radome due to the thermal stress occur. You can prevent destruction.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による誘導制御装置を示す
図である。
FIG. 1 is a diagram showing a guidance control device according to a first embodiment of the present invention.

【図2】この発明の実施例2による誘導制御装置を示す
図である。
FIG. 2 is a diagram showing a guidance control device according to a second embodiment of the present invention.

【図3】この発明の実施例3による誘導制御装置を示す
図である。
FIG. 3 is a diagram showing a guidance control device according to a third embodiment of the present invention.

【図4】この発明の実施例4による誘導制御装置を示す
図である。
FIG. 4 is a diagram showing a guidance control device according to a fourth embodiment of the present invention.

【図5】この発明の実施例5による誘導制御装置を示す
図である。
FIG. 5 is a diagram showing a guidance control device according to a fifth embodiment of the present invention.

【図6】従来の誘導制御装置を示す図である。FIG. 6 is a diagram showing a conventional guidance control device.

【符号の説明】[Explanation of symbols]

1 電波アンテナ 2 リング 3 衝撃波 4 高圧気体源 5 高圧配管 6 放出孔 7 圧力容器 8 レドーム 1 radio antenna Two rings 3 shock wave 4 High pressure gas source 5 high pressure piping 6 emission holes 7 Pressure vessel 8 radome

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電波アンテナにより目標を捕捉する誘導
制御装置および上記電波アンテナを保護するレドームと
を有する誘導飛しょう体において、高圧気体源と、上記
高圧気体源からの気体を上記レドーム後端の外表面に導
いて吹き付ける気体放出手段とを設けたことを特徴とす
る誘導飛しょう体。
1. A high-pressure gas source and a gas from the high-pressure gas source at the rear end of the radome in a guidance aircraft having a guidance control device for capturing a target by a radio-wave antenna and a radome for protecting the radio-wave antenna. A guide aircraft which is provided with a gas discharge means for guiding and spraying it on the outer surface.
【請求項2】 気体放出手段として高圧気体放出用の穴
をレドーム後端に形成し、上記穴を高圧気体源につなが
る高圧配管の出口に接続するようにした請求項第1項記
載の誘導飛しょう体。
2. A guide flight according to claim 1, wherein a hole for discharging high pressure gas is formed at the rear end of the radome as the gas discharging means, and the hole is connected to the outlet of the high pressure pipe connected to the high pressure gas source. Shobo.
【請求項3】 気体放出手段として高圧気体放出用の穴
を高圧気体源につながる高圧配管先端の出口に形成し、
上記穴をレドームの外側に配置した請求項第1項記載の
誘導飛しょう体。
3. A high pressure gas discharge hole is formed as a gas discharge means at the outlet of the tip of the high pressure pipe connected to the high pressure gas source,
The guide vehicle according to claim 1, wherein the hole is arranged outside the radome.
【請求項4】 気体放出手段として電波アンテナを封入
する圧力容器と、高圧気体源の気体を上記圧力容器に送
り込むための高圧配管とを設け、かつ上記圧力容器から
の気体をレドーム後端の外表面に放出する高圧気体放出
用の穴をレドームの後端に形成した請求項第1項記載の
誘導飛しょう体。
4. A pressure vessel for enclosing a radio wave antenna as a gas discharging means, and a high pressure pipe for feeding the gas from a high pressure gas source to the pressure vessel are provided, and the gas from the pressure vessel is provided outside the rear end of the radome. The guide flying vehicle according to claim 1, wherein a hole for discharging high-pressure gas to be discharged to the surface is formed at the rear end of the radome.
JP16984991A 1991-07-10 1991-07-10 Guided missile Pending JPH0518700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16984991A JPH0518700A (en) 1991-07-10 1991-07-10 Guided missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16984991A JPH0518700A (en) 1991-07-10 1991-07-10 Guided missile

Publications (1)

Publication Number Publication Date
JPH0518700A true JPH0518700A (en) 1993-01-26

Family

ID=15894079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16984991A Pending JPH0518700A (en) 1991-07-10 1991-07-10 Guided missile

Country Status (1)

Country Link
JP (1) JPH0518700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183303A (en) * 2018-03-08 2018-06-19 湖北三江航天江北机械工程有限公司 Conformal active radar and passive radar seeker antenna cover and forming method
CN109494473A (en) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 A kind of connection structure of newer versions of these missiles antenna house

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183303A (en) * 2018-03-08 2018-06-19 湖北三江航天江北机械工程有限公司 Conformal active radar and passive radar seeker antenna cover and forming method
CN108183303B (en) * 2018-03-08 2020-12-01 湖北三江航天江北机械工程有限公司 Conformal active and passive radar seeker antenna housing and forming method
CN109494473A (en) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 A kind of connection structure of newer versions of these missiles antenna house

Similar Documents

Publication Publication Date Title
US4214441A (en) Infrared suppressor device
US6688558B2 (en) Method and apparatus for aircraft inlet ice protection
US6371411B1 (en) Method and apparatus for aircraft inlet ice protection
US4566270A (en) Gas turbine engine infra-red radiation suppressor
US3259065A (en) Shock wave inducing means for supersonic vehicles
CA1070166A (en) Projectile having limited range
US20170021917A1 (en) Aerodynamically oriented thermal protection system of hypersonic vehicles
WO2023213196A1 (en) Forward jet drag reduction and heat shielding method for hypersonic pointed-cone aircraft
US3713607A (en) Load reducing spike for supersonic missiles
US3130940A (en) Heat shield
JPH0518700A (en) Guided missile
EP1035317B1 (en) Apparatus for the Suppression of Infra Red Emissions from an Engine
US4733751A (en) Rocket exhaust disrupter
US3440820A (en) Thermal protection system for missile components subjected to excessive periods of aerodynamic heating
US2858698A (en) Pitot deicer
JPH0571699U (en) Guided flight
CN207541257U (en) Range radar with cooling function
US3724379A (en) Warhead for guided missiles
US2882992A (en) Low-drag exhaust silencer
US3981449A (en) Exhaust cooling system
JPH05312499A (en) Guided missile
US8436284B1 (en) Cavity flow shock oscillation damping mechanism
Evvard et al. The use of perforated inlets for efficient supersonic diffusion
JPH04151499A (en) Guided missile
US3524608A (en) Rain erosion protective device