JPH05186286A - Oxidation resistant coating method of carbon material - Google Patents

Oxidation resistant coating method of carbon material

Info

Publication number
JPH05186286A
JPH05186286A JP4000669A JP66992A JPH05186286A JP H05186286 A JPH05186286 A JP H05186286A JP 4000669 A JP4000669 A JP 4000669A JP 66992 A JP66992 A JP 66992A JP H05186286 A JPH05186286 A JP H05186286A
Authority
JP
Japan
Prior art keywords
carbon material
oxidation resistant
forming substance
resistant coating
component forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4000669A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hasegawa
和 広 長谷川
Susumu Nakai
井 進 中
Tsuneo Kaneshiro
城 庸 夫 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4000669A priority Critical patent/JPH05186286A/en
Publication of JPH05186286A publication Critical patent/JPH05186286A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To readily convert even a material having large graphitization degree and form an oxidation resistant film by packing a gas reaction component forming substance around a carbon material and further packing a liquid reaction component forming substance in the circumference of the gas reaction component forming substance and heating these substances at a prescribed temperature. CONSTITUTION:A gas reaction component forming substance (SiO, a mixture of C with SiO2, etc.) 2 having 0.1-840mum particle diameter is packed around a carbon material 1. A liquid reaction component forming substance (Si or ceramic powder containing Si) 3 is packed further in the circumference of the gas reaction component forming substance. Then these substances are heated to 1800-2000 deg.C to generate SiO vapor from the substance 2 and thereby the interior and surface part of the carbon material 1 is formed into a SiC conversion layer 4. Then, temperature of is cooled to 1600-1800 deg.C and a new SiC layer 5 formed from the liquefied substance 3 is formed on the carbon material 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素材料、そのなかで
も特に炭素複合材料(C/C複合材料)の耐酸化被覆方
法に関し、さらに詳述すれば炭素材料に被覆を施して耐
酸化性を向上させ、宇宙飛行体等の構造材、タービンブ
レードおよび原子炉用黒鉛部材等、高温酸化雰囲気にお
いて繰り返し使用に耐える材料を供給することを目的と
した炭素材料の耐酸化被覆方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation resistant coating method for carbon materials, especially carbon composite materials (C / C composite materials). And a method of coating a carbon material for the purpose of supplying a material capable of withstanding repeated use in a high temperature oxidizing atmosphere, such as a structural material such as a spacecraft, a turbine blade and a graphite member for a nuclear reactor. ..

【0002】[0002]

【従来の技術】炭素材料は電気、熱の良導体であると同
時に、無比の耐熱性、耐食性、潤滑性など、数多くのユ
ニークな物理的、化学的性質を持っており、機械用部
材、中性子の減速材、高純度半導体金属の精製用ルツ
ボ、放電加工用電極等種々の分野で利用されてきた。ま
た最近では、炭素繊維の高強度化やC/C複合材料の製
造技術の向上に伴い、航空宇宙分野での利用も拡大して
いる。ここでC/C複合材料とは、炭素繊維・フェノー
ル樹脂、炭素繊維・タールピッチ等を一次焼成により炭
化あるいは黒鉛化し、さらに樹脂やタールピッチの含浸
・焼成を繰り返すこと、もしくは気相反応法により熱分
解炭素を沈積すること等により高密度化して得られるも
のである。ところで、航空宇宙分野、特に宇宙飛行体
(いわゆるスペースプレーン)の構造材料として利用す
る場合、耐酸化被覆が必要不可欠な技術として要求され
る。そのため、従来から各国、各種研究機関等において
種々の方法が研究されている。
BACKGROUND OF THE INVENTION Carbon materials are good conductors of electricity and heat, and at the same time have many unique physical and chemical properties such as unrivaled heat resistance, corrosion resistance and lubricity. It has been used in various fields such as moderators, crucibles for refining high-purity semiconductor metals, and electrodes for electrical discharge machining. Further, recently, as the strength of carbon fiber has been increased and the production technology of C / C composite material has been improved, its use in the aerospace field has expanded. Here, the C / C composite material means that carbon fiber / phenol resin, carbon fiber / tar pitch, etc. are carbonized or graphitized by primary firing, and further impregnation / firing of resin or tar pitch is repeated, or by a gas phase reaction method. It is obtained by densifying by pyrolytic carbon deposition. By the way, in the aerospace field, particularly when used as a structural material for a spacecraft (so-called space plane), an oxidation resistant coating is required as an indispensable technique. Therefore, various methods have been studied in various countries and various research institutions.

【0003】特開昭60−155586号公報には、炭
素基材をSiC粉中に埋設し、これを不活性ガスまたは
還元性ガスをキャリヤーガスとしてハロゲンを含むガス
の気流中で1500〜2200℃の温度範囲で熱処理
し、炭素基材の表面にSiCの被膜を形成する方法が開
示されている。
In Japanese Patent Laid-Open No. 60-155586, a carbon base material is embedded in SiC powder, which is used as an inert gas or a reducing gas as a carrier gas in a gas stream containing halogen at 1500 to 2200 ° C. A method of forming a coating film of SiC on the surface of a carbon substrate by heat-treating in the temperature range of 2 is disclosed.

【0004】特開平02−69382号公報には、C/
C複合材の外表面に金属珪素粉末を付着させ、不活性ガ
ス雰囲気下で加熱処理し、予め該外表面に炭化珪素を生
成させた後、気相化学反応沈積法(CVD法)により炭
化珪素からなる被覆膜を該外表面上に形成し、次いで該
被覆膜に酸化ほう素または酸化ほう素と酸化珪素の混合
物を含浸することを特徴とするC/C複合材料の製造方
法が開示されている。
Japanese Patent Laid-Open No. 02-69382 discloses C /
After depositing metallic silicon powder on the outer surface of the C composite material and performing heat treatment in an inert gas atmosphere to generate silicon carbide on the outer surface in advance, silicon carbide is deposited by a vapor phase chemical reaction deposition method (CVD method). Disclosed is a method for producing a C / C composite material, which comprises forming a coating film made of OH on the outer surface, and then impregnating the coating film with boron oxide or a mixture of boron oxide and silicon oxide. Has been done.

【0005】特開昭61−27248号公報には、物質
特許として炭素・炭素複合材料の基体と、前記基体の表
面と一体をなし実質的に12.7〜762μmの厚さを
有するパック拡散SiC被覆と、実質的に76.2〜7
62μmの厚さを有しCVD法により前記SiC被覆の
外面上に着装されたSi3N4 とを含む炭素−炭素複合材料
が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 61-27248 discloses a pack-diffusion SiC having a carbon / carbon composite material substrate and a surface integral with the substrate and having a thickness of substantially 12.7 to 762 μm. Coating, substantially 76.2-7
A carbon-carbon composite material having a thickness of 62 μm and comprising Si 3 N 4 deposited by CVD on the outer surface of the SiC coating is disclosed.

【0006】[0006]

【発明が解決しようとする課題】特開昭60−1555
86号公報に記載されている炭素基材のSiC被覆方法
は、SiCの分解によって発生するSiガスを炭素基材
と反応させることにより達成される。ところがこの方法
は、SiC化における反応成分がガス種のみであるた
め、反応深さの制御が難しい。さらにこの方法をC/C
複合材料、特に樹脂をマトリックスとして用いたC/C
複合材料に適用した場合、黒鉛化度の低いマトリックス
部分を反応成分であるSiガスが優先的に攻撃するた
め、炭素繊維クロス間の密着性が低下し、最終的にはク
ロスの剥離を引き起こす。また、この方法のみで耐酸化
性を向上させようとしているため、反応深度を深くせざ
るを得ず、その結果材料の強度低下を引き起こす。以上
の理由により、構造材料として用いるC/C複合材料を
被覆する場合、この方法は好ましくない。
Problems to be Solved by the Invention JP-A-60-1555
The method for coating a carbon-based material with SiC described in Japanese Patent Publication No. 86 is achieved by reacting Si gas generated by decomposition of SiC with the carbon-based material. However, in this method, it is difficult to control the reaction depth because the reaction component in the SiC formation is only the gas species. Furthermore, this method is C / C
C / C using composite material, especially resin as matrix
When applied to a composite material, the Si component, which is a reaction component, preferentially attacks the matrix portion having a low degree of graphitization, so that the adhesion between the carbon fiber cloths is reduced and finally the cloth is peeled off. Further, since the oxidation resistance is to be improved only by this method, the reaction depth must be deepened, resulting in a decrease in the strength of the material. For the above reasons, this method is not preferable when coating the C / C composite material used as the structural material.

【0007】特開平02−69382号公報には、C/
C複合材料とCVD法により形成される炭化珪素皮膜の
熱膨張率差によって生じる熱応力を緩和する熱応力緩和
層として、C/C複合材料の外表面に金属珪素と炭素と
の反応により、予め炭化珪素を生成させることが述べら
れている。ところがこの公報には、Siと炭素の反応性
については一切述べられていない。すなわち、炭素の黒
鉛化度によって金属珪素との反応性は異なり、 耐酸化
性C/Cの製造においては、Siと炭素との反応性が重
要となる。C/C複合材料の製造工程のなかの熱処理時
には、応力黒鉛化とよばれる現象によって難黒鉛化性炭
素でさえ繊維軸と90度方向に大きな黒鉛結晶が成長す
る。そのまま熱処理しても黒鉛の結晶子が大きくなるピ
ッチをマトリックスとして用いた場合、層状構造が著し
く発達し、他元素との反応性は著しく低下する。一方経
済性、高強度化の観点から、ピッチをマトリックスとし
て用いることは極く一般的に行われている。すなわち、
ピッチや熱分解炭素等の易黒鉛化原料をマトリックスと
したC/C複合材料の場合、単純に金属Siを付着して
炭素と化学反応を行わせようとしても、C/C複合材料
側に活性サイトがほとんど存在しないため希望する熱応
力緩和層を形成することは非常に困難である。つまり、
特開平02−69382号公報に記載された方法はすべ
てのC/C複合材料に適用可能な方法ではなく、C/C
複合材料に適用できる範囲は非常に限られたものであ
る。
Japanese Unexamined Patent Publication No. 02-69382 discloses C /
As a thermal stress relaxation layer for relaxing the thermal stress caused by the difference in the coefficient of thermal expansion between the C composite material and the silicon carbide film formed by the CVD method, the C / C composite material is preliminarily prepared by the reaction of metallic silicon and carbon on the outer surface thereof. It is stated that silicon carbide is produced. However, this publication makes no mention of the reactivity between Si and carbon. That is, the reactivity of carbon with metallic silicon varies depending on the degree of graphitization of carbon, and the reactivity of Si and carbon is important in the production of oxidation resistant C / C. During the heat treatment in the manufacturing process of the C / C composite material, due to a phenomenon called stress graphitization, even non-graphitizable carbon grows large graphite crystals in the fiber axis and 90 ° direction. When a pitch in which the crystallites of graphite become large even when heat-treated as it is is used as a matrix, the layered structure is significantly developed and the reactivity with other elements is significantly reduced. On the other hand, from the viewpoint of economical efficiency and high strength, it is very common to use pitch as a matrix. That is,
In the case of a C / C composite material in which a graphitizable raw material such as pitch or pyrolytic carbon is used as a matrix, even if metal Si is simply attached to cause a chemical reaction with carbon, the C / C composite material is activated. Since there are few sites, it is very difficult to form a desired thermal stress relaxation layer. That is,
The method described in JP-A-02-69382 is not a method applicable to all C / C composite materials, but C / C
The range of applications for composite materials is very limited.

【0008】特開昭61−27248号公報はパック拡
散された12.7μm〜762μmの厚さを有するSi
C層を熱応力緩和層とすることが特徴であるが、その転
化層の状態については全く記録されていない。すなわ
ち、C/C複合材料内のパック拡散反応層がすべてSi
Cに転化されているのであれば、そのC/C複合材料の
強度は非常に低下するし、しかも炭素繊維クロスの剥離
が容易に促進されるため、熱衝撃に対する抵抗の極めて
小さいものしか作製することができない。さらに、C/
C複合材料の表層部分はSiCに転化されているもの
の、その特性は基本的には繊維の配向性に左右されるた
め、上層に形成されるCVD・SiC層との密着性向上
には完全には役立たない。
Japanese Unexamined Patent Publication No. 61-27248 discloses a pack-diffused Si having a thickness of 12.7 μm to 762 μm.
The C layer is characterized by being used as a thermal stress relaxation layer, but the state of the conversion layer is not recorded at all. That is, the pack diffusion reaction layer in the C / C composite material is entirely Si.
If it is converted to C, the strength of the C / C composite material is greatly lowered, and the exfoliation of the carbon fiber cloth is easily promoted. Therefore, only those having extremely low resistance to thermal shock are produced. I can't. Furthermore, C /
Although the surface layer of the C composite material has been converted to SiC, its characteristics basically depend on the orientation of the fibers, so it is completely necessary to improve the adhesion to the upper CVD / SiC layer. Is useless.

【0009】このように、タールピッチや熱分解炭素等
の易黒鉛化原料を主原料とした炭素材料は一般的に黒鉛
化度が大きく活性サイトが少ないため、他元素との反応
性に乏しいという欠点があった。そのため、航空宇宙用
材料(宇宙船の構造材料等)として近年期待が高まって
いるC/C複合材料に関し、従来のタールピッチを用い
た製法から難黒鉛化性のフェノールやフラン樹脂を用い
た製法への変更を余儀なくされる等、製造上の重大な問
題も発生していた。この場合、得られるC/C複合材料
の強度まで低下するという欠点もあった。
As described above, a carbon material whose main raw material is an easily graphitizable raw material such as tar pitch or pyrolytic carbon generally has a high degree of graphitization and a small number of active sites, and therefore has poor reactivity with other elements. There was a flaw. Therefore, regarding the C / C composite material, which is expected to be used as an aerospace material (structural material for spacecraft, etc.) in recent years, the conventional method using tar pitch is changed to the method using non-graphitizable phenol or furan resin. There was also a serious problem in manufacturing, such as being forced to change to. In this case, there is a drawback that the strength of the obtained C / C composite material is lowered.

【0010】本発明は、上記問題点を解決して、黒鉛化
度の大きな材料でさえも容易に反応転化させて耐酸化皮
膜を形成できる炭素材料の耐酸化被覆方法を提供するこ
とを目的としている。
An object of the present invention is to solve the above problems and to provide an oxidation resistant coating method for a carbon material capable of easily reacting a material having a high degree of graphitization to form an oxidation resistant film. There is.

【0011】[0011]

【課題を解決するための手段】上記問題を解決するた
め、発明者らは鋭意検討を重ね本発明に到達したもので
ある。本発明は、炭素材料と反応可能で、かつ耐酸化皮
膜として有効に作用する皮膜を形成しうる気体反応成分
および液体反応成分を反応系に同時に充填し、加熱工程
において気体反応成分が最初に炭素材料と反応し、それ
と同時またはその後に液体反応成分が炭素材料と反応で
きるような反応系を用いて炭素材料の耐酸化被覆を行う
ことを特徴としている。
In order to solve the above problems, the inventors of the present invention have made extensive studies and arrived at the present invention. The present invention simultaneously fills a reaction system with a gas reaction component and a liquid reaction component that can react with a carbon material and can form a film that effectively acts as an oxidation resistant film, and the gas reaction component is first charged with carbon in the heating step. It is characterized in that the carbon material is subjected to oxidation-resistant coating by using a reaction system which reacts with the material and at the same time or after that, the liquid reaction component can react with the carbon material.

【0012】すなわち、上記目的を達成するために本発
明の第1の態様によれば、炭素材料を耐酸化被覆するに
際し、前記炭素材料の周囲に炭素材料と反応可能で、か
つ耐酸化皮膜として有効に作用する皮膜を形成しうる気
体反応成分形成物質を充填し、その周囲に炭素材料と反
応可能で、かつ耐酸化皮膜として有効に作用する皮膜を
形成しうる液体反応成分形成物質を充填して反応を行う
ことを特徴とする炭素材料の耐酸化被覆方法が提供され
る。
That is, according to the first aspect of the present invention in order to achieve the above object, when the carbon material is subjected to the oxidation resistant coating, it is possible to react with the carbon material around the carbon material as an oxidation resistant film. A gas reaction component forming substance capable of forming an effective film is filled, and a liquid reaction component forming substance capable of forming a film capable of reacting with a carbon material and effectively acting as an oxidation resistant film is filled around the substance. There is provided an oxidation resistant coating method for a carbon material, which is characterized by carrying out the reaction.

【0013】ここで、前記気体反応成分形成物質は、S
iO、CとSiO2 との混合物またはSiOとCとSi
2 との混合物から選択される材料であるのが好まし
い。
Here, the gas reaction component forming substance is S
iO, a mixture of C and SiO 2 or SiO, C and Si
It is preferably a material selected from a mixture with O 2 .

【0014】また、前記気体反応成分形成物質の粒径
は、0.1〜840μmの範囲であるのが好ましい。
The particle size of the gas reaction component forming substance is preferably in the range of 0.1 to 840 μm.

【0015】前記液体反応成分形成物質は、Siである
のが好ましい。
The liquid reaction component forming substance is preferably Si.

【0016】前記炭素材料の耐酸化被覆反応は、真空ま
たは不活性ガス雰囲気下で行うのが好ましい。
The oxidation resistant coating reaction of the carbon material is preferably carried out in a vacuum or an inert gas atmosphere.

【0017】前記炭素材料の耐酸化被覆反応は、前記気
体反応成分形成物質がSiO蒸気を発生する温度に加熱
した後、前記液体反応成分形成物質が溶融して炭素材料
と反応する温度に加熱して行うのが好ましい。
In the oxidation resistant coating reaction of the carbon material, the gas reaction component forming substance is heated to a temperature at which SiO vapor is generated and then heated to a temperature at which the liquid reaction component forming substance is melted and reacts with the carbon material. It is preferable to carry out.

【0018】また、前記SiO蒸気を発生する温度の加
熱は、1800〜2000℃の範囲であるのが好まし
い。
The heating at the temperature for generating the SiO vapor is preferably in the range of 1800 to 2000 ° C.

【0019】前記液体反応成分形成物質が溶融して炭素
材料と反応する温度の加熱は、1600〜1800℃の
範囲であるのが好ましい。
The heating at a temperature at which the liquid reaction component forming substance melts and reacts with the carbon material is preferably in the range of 1600 to 1800 ° C.

【0020】前記SiO蒸気を発生する温度の加熱時間
は、5〜120分であるのが好ましい。
The heating time at the temperature for generating the SiO vapor is preferably 5 to 120 minutes.

【0021】前記液体反応成分形成物質が溶融して炭素
材料と反応する温度の加熱時間は、30〜600分であ
るのが好ましい。
The heating time at the temperature at which the liquid reaction component forming substance melts and reacts with the carbon material is preferably 30 to 600 minutes.

【0022】前記気体反応成分形成物質は、炭素材料の
周囲に密着して厚さ1〜5mmの範囲になるように充填
するのが好ましい。
The gas reaction component forming substance is preferably filled so as to be in close contact with the periphery of the carbon material and have a thickness of 1 to 5 mm.

【0023】本発明の第2の態様によれば、炭素材料を
耐酸化被覆するに際し、炭素材料の周囲にSiO、Cと
SiO2 との混合物およびSiOとCとSiO2 との混
合物から選択される材料を充填し、さらにその外周にS
iを含むセラミックス粉末を充填し、加熱処理を施すこ
とにより前記炭素材料表面をSiCに転化し、その後化
学気相反応法により緻密なSiC皮膜を形成することを
特徴とする炭素材料の耐酸化被覆方法が提供される。
According to the second aspect of the present invention, the oxidation resistant coating of the carbon material is selected from SiO, a mixture of C and SiO 2 and a mixture of SiO, C and SiO 2 around the carbon material. The material is filled with
An oxidation-resistant coating of a carbon material, characterized in that the surface of the carbon material is converted into SiC by filling ceramic powder containing i and heat treatment, and then a dense SiC film is formed by a chemical vapor reaction method. A method is provided.

【0024】また、本発明の第3の態様によれば、炭素
繊維とマトリックスを有する炭素複合材料を耐酸化被覆
するに際し、前記炭素複合材料の周囲に充填した炭素材
料と反応可能で、かつ耐酸化皮膜として有効に作用する
皮膜を形成しうる気体反応成分形成物質との反応によっ
て前記炭素材料の最深部から表層まで前記炭素繊維およ
びマトリックスをSiCに転化し、さらにその周囲に充
填した炭素材料と反応可能で、かつ耐酸化皮膜として有
効に作用する皮膜を形成しうる液体反応成分形成物質に
よって前記SiCの上部に新たなSiC皮膜を形成する
ことを特徴とする炭素材料の耐酸化被覆方法が提供され
る。
Further, according to the third aspect of the present invention, when the carbon composite material having the carbon fibers and the matrix is subjected to the oxidation resistant coating, it can react with the carbon material filled around the carbon composite material and is resistant to the acid. The carbon fiber and the matrix are converted to SiC from the deepest part of the carbon material to the surface layer by reaction with a gas reactive component forming substance capable of forming a film that effectively acts as a chemical film, and a carbon material filled around the carbon fiber and the matrix. Provided is an oxidation resistant coating method for a carbon material, which comprises forming a new SiC coating on the SiC by a liquid reaction component forming substance capable of forming a coating capable of reacting and effectively acting as an oxidation resistant coating. To be done.

【0025】前記SiCの上部に新たに形成されるSi
C層厚は、5〜200μmであるのが好ましい。
Si newly formed on the SiC
The C layer thickness is preferably 5 to 200 μm.

【0026】以下に本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0027】本発明において用いることのできる炭素材
料は、一般炭素材料、特殊炭素材料およびC/C複合材
料であり、そのなかでも特にタールピッチをマトリック
スとしたC/C複合材料の被覆に適した方法である。
The carbon materials that can be used in the present invention are general carbon materials, special carbon materials and C / C composite materials. Among them, particularly suitable for coating C / C composite materials using tar pitch as a matrix. Is the way.

【0028】本発明では、炭素材料の耐酸化被覆におい
て、炭素材料の周囲に炭素材料と反応可能で、かつ耐酸
化皮膜として有効に作用する皮膜を形成しうる気体反応
成分形成物質を充填し、その周囲に炭素材料と反応可能
で、かつ耐酸化皮膜として有効に作用する液体反応成分
形成物質を充填することが必要である。すなわち、液体
反応成分が炭素材料に密着して存在する場合、高温状態
での反応は液体反応成分が炭素材料の多孔質部位から内
部に浸透しつつ反応すると考えられるが、特に黒鉛化度
の大きなピッチ系C/C複合材料に被覆する場合、液体
反応成分は内部拡散がほとんど起こらず表面部分に留ま
り、数μm程度しか反応転化部位を形成しないためであ
る。逆に、本発明のように気体反応成分を炭素材料の周
囲に配置すれば、炭素材料と反応成分との間の初期の反
応は、気相・固相間の反応として進行する。この場合、
気体の固体内への拡散は表面張力の影響を受けないた
め、炭素材料内部へ自由に侵入することができ、その結
果反応深度の深い反応転化層を形成することができる。
しかも、気体成分と炭素材料との間の反応のほうが、液
体成分と炭素材料との間の反応より起こりやすいため、
炭素材料表面で反応が停止することはなく、かつマトリ
ックスまたは炭素繊維のどちらか一方が優先的に反応が
進行することは少ない。
In the present invention, in the oxidation resistant coating of a carbon material, a gas reactive component-forming substance capable of reacting with the carbon material and forming a film which effectively acts as an oxidation resistant film is filled around the carbon material, It is necessary to fill the periphery thereof with a liquid reaction component forming substance capable of reacting with the carbon material and effectively acting as an oxidation resistant film. That is, when the liquid reaction component is present in close contact with the carbon material, the reaction at a high temperature is considered to occur while the liquid reaction component permeates into the inside from the porous part of the carbon material, but the degree of graphitization is particularly large. This is because, when the pitch-based C / C composite material is coated, the liquid reaction component hardly diffuses internally and stays on the surface portion to form a reaction conversion site of only about several μm. On the contrary, when the gas reaction component is arranged around the carbon material as in the present invention, the initial reaction between the carbon material and the reaction component proceeds as a reaction between the gas phase and the solid phase. in this case,
Since the diffusion of the gas into the solid is not influenced by the surface tension, it can freely penetrate into the inside of the carbon material, and as a result, a reaction conversion layer having a deep reaction depth can be formed.
Moreover, since the reaction between the gas component and the carbon material is more likely to occur than the reaction between the liquid component and the carbon material,
The reaction does not stop on the surface of the carbon material, and the reaction does not proceed preferentially on either the matrix or the carbon fiber.

【0029】炭素材料と反応可能で、かつ耐酸化皮膜と
して有効に作用する皮膜を形成しうる気体反応成分形成
物質は、得られるセラミック皮膜が耐熱耐酸化性である
ことおよび後工程(CVD)で用いる皮膜が耐熱材料と
して安価で、かつ安定的に形成できる炭化珪素であるこ
とから、炭素材料と反応して炭化珪素を形成するSi
O、CとSiO2 との混合物、およびSiOとCとSi
2 との混合物から選択される材料であることが好まし
い。これらのうち、安価で、かつ取り扱いの容易さを考
えれば、CおよびSiO2 の混合物が、特に好ましい。
CおよびSiO2の混合物を用いる場合、そのモル比は
1:3から3:1の範囲にあることが好ましく、さらに
好ましくは等モルに混合してあることである。すなわ
ち、等モル混合物であれば、炭素材料の表面SiC化が
完了した場合CおよびSiO2 が消失するからである。
さらに、SiO、C、 SiO2 の粒径は0.1〜84
0μmの範囲にあることが好ましい。すなわち、粒径が
840μmより大きい場合、粒子間の接触面積が小さ
く、反応効率が低下することおよび反応終了後に粒子が
残存する可能性が大きいことから好ましくない。粒径が
0.1μmより小さい場合、特にCとSiO2 の混合物
を用いたときに炭素材料のCによる目詰まりが生じやす
くなり、その結果気相拡散の効果が低下するため好まし
くない。
The gas reaction component forming substance capable of reacting with the carbon material and capable of forming a film which effectively acts as an oxidation resistant film is such that the resulting ceramic film is heat and oxidation resistant and in the subsequent step (CVD). Since the film to be used is silicon carbide that is inexpensive and can be stably formed as a heat-resistant material, Si that reacts with the carbon material to form silicon carbide
O, a mixture of C and SiO 2 , and SiO, C and Si
It is preferably a material selected from a mixture with O 2 . Of these, a mixture of C and SiO 2 is particularly preferable in view of its low cost and easy handling.
When a mixture of C and SiO 2 is used, the molar ratio is preferably in the range of 1: 3 to 3: 1, and more preferably equimolar. That is, in the case of an equimolar mixture, C and SiO 2 disappear when the surface of the carbon material is converted into SiC.
Furthermore, the particle size of SiO, C, and SiO 2 is 0.1 to 84.
It is preferably in the range of 0 μm. That is, when the particle size is larger than 840 μm, the contact area between particles is small, the reaction efficiency is lowered, and there is a high possibility that the particles remain after the completion of the reaction, which is not preferable. When the particle diameter is smaller than 0.1 μm, the carbon material is apt to be clogged with C, particularly when a mixture of C and SiO 2 is used, and as a result, the effect of vapor phase diffusion is reduced, which is not preferable.

【0030】気体反応成分形成物質と炭素材料との反応
はSiO蒸気が発生する温度に加熱するのが好ましく、
1800〜2000℃の範囲が好ましい。すなわち、1
800℃より低温では炭素材料とSiO等の気体反応成
分(CとSiO2 の場合もSiOが生成して反応する)
との反応がほとんど起こらないからであり、逆に200
0℃を超えた場合反応が進行しすぎて炭素材料の破壊が
生じるからである(SiOは融点1700℃)。また、
炭素材料と気体反応成分との反応時間は、上記反応温度
において5〜120分の範囲であるのが好ましい。つま
り、5分未満では反応の進行が期待できないためであ
り、120分を超えた場合過剰反応により炭素材料の破
壊や強度の著しい低下が生じるため好ましくない。
The reaction between the gas reaction component forming substance and the carbon material is preferably carried out by heating to a temperature at which SiO vapor is generated,
The range of 1800 to 2000 ° C is preferable. Ie 1
At temperatures lower than 800 ° C, carbon materials and gaseous reaction components such as SiO (in the case of C and SiO 2 , SiO is generated and reacts)
This is because there is almost no reaction with
This is because if the temperature exceeds 0 ° C., the reaction proceeds too much and the carbon material is destroyed (SiO has a melting point of 1700 ° C.). Also,
The reaction time between the carbon material and the gas reaction component is preferably in the range of 5 to 120 minutes at the above reaction temperature. That is, if the time is less than 5 minutes, the progress of the reaction cannot be expected, and if it exceeds 120 minutes, it is not preferable because the carbon material is destroyed or the strength is remarkably reduced due to the excessive reaction.

【0031】炭素材料の周囲に密着して充填する気体反
応成分形成物質の厚さは、1〜5mmの範囲であるのが
好ましい。つまり、本発明の特徴は、前記反応条件によ
って炭素材料と気体反応成分が反応した後には、気体反
応成分形成物質が反応系から消滅するか、またはその存
在量がほとんど零になることを意図しているからであ
る。その結果、気体反応成分の反応後には、炭素材料の
周囲を新たに液体反応成分形成物質が取り囲むことにな
り、液体反応成分形成物質と炭素材料が反応し、CVD
処理を行う場合、CVD層とC/C複合材料との密着性
が良好となる。すなわち、気体反応成分形成物質の厚さ
が5mm超であると、所定時間反応後も気体反応成分形
成物質が残存し、液体反応成分形成物質と炭素材料の接
触を妨害するため好ましくない。逆に、気体反応成分形
成物質の厚さが1mmより薄い場合、炭素材料の内部お
よび表層を十分にSiC化することができないため好ま
しくない。
The thickness of the gas reaction component-forming substance that is closely packed in the periphery of the carbon material is preferably in the range of 1 to 5 mm. That is, the feature of the present invention is that the gas reaction component-forming substance disappears from the reaction system or the existing amount thereof becomes almost zero after the carbon material and the gas reaction component react with each other under the reaction conditions. Because it is. As a result, after the reaction of the gas reaction component, the liquid reaction component forming substance newly surrounds the periphery of the carbon material, and the liquid reaction component forming substance and the carbon material react with each other to form the CVD.
When the treatment is performed, the adhesion between the CVD layer and the C / C composite material becomes good. That is, if the thickness of the gas reaction component forming substance is more than 5 mm, the gas reaction component forming substance remains after the reaction for a predetermined time and interferes with the contact between the liquid reaction component forming substance and the carbon material, which is not preferable. On the contrary, when the thickness of the gas reaction component forming substance is less than 1 mm, the inside and the surface layer of the carbon material cannot be sufficiently converted into SiC, which is not preferable.

【0032】炭素材料と反応可能で、かつ耐酸化皮膜と
して有効に作用する皮膜を形成しうる液体反応成分形成
物質としては、SiまたはSiを含むセラミックス粉末
であるのが好ましい。さらに好ましくは、セラミックス
粉末は主にSiCによって形成されるのが良い。すなわ
ち、本反応では炭素材料の表層部分をSiC化するだけ
でなく、その上部にも新たなSiC層を形成する必要が
あるからであり、通常の気体成分では焼結によるSiC
層の形成は行えないからである。炭素材料の表層にSi
C層を形成する目的は、さらに上部に形成されるCVD
・SiC層と炭素材料間の密着性を向上させるためであ
る。つまり、炭素複合材料の場合、炭素繊維クロスを常
法によってSiCに転化したとしてもそれは依然として
異方性を有するからであり、CVD・SiC皮膜形成の
核となり難いからである。ところが、本発明のように炭
素材料上部に新たなSiC層を形成することにより、反
応の核ができることになり、上部に密着性に優れたCV
D・SiC層を形成することができる。この場合、上部
に形成するSiC皮膜は特開平02−74669号公報
に記載されているように多孔質なものであることが好ま
しい。
As the liquid reaction component forming substance capable of forming a film capable of reacting with the carbon material and effectively acting as an oxidation resistant film, Si or a ceramic powder containing Si is preferable. More preferably, the ceramic powder is mainly formed of SiC. That is, in this reaction, not only the surface layer of the carbon material needs to be converted into SiC, but also a new SiC layer needs to be formed on the surface of the carbon material.
This is because layers cannot be formed. Si on the surface of carbon material
The purpose of forming the C layer is to form a CVD film further above.
This is to improve the adhesion between the SiC layer and the carbon material. That is, in the case of a carbon composite material, even if the carbon fiber cloth is converted into SiC by a conventional method, it still has anisotropy, and it is difficult to become a nucleus for forming a CVD / SiC film. However, by forming a new SiC layer on the upper portion of the carbon material as in the present invention, a reaction nucleus is formed, and CV having excellent adhesion is formed on the upper portion.
A D / SiC layer can be formed. In this case, the SiC film formed on the upper portion is preferably porous as described in JP-A-02-74669.

【0033】液体反応成分形成物質と炭素材料との反応
温度は、1600〜1800℃の範囲であるのが好まし
い。すなわち、1600℃より低い温度では液体反応成
分と炭素材料との反応が十分に進行しないからであり、
逆に1800℃を超える温度では炭素材料上部に形成さ
れる新たなSiC層が緻密になりすぎ、熱応力の開放に
役立たないため好ましくない。
The reaction temperature between the liquid reaction component forming substance and the carbon material is preferably in the range of 1600 to 1800 ° C. That is, at a temperature lower than 1600 ° C., the reaction between the liquid reaction component and the carbon material does not proceed sufficiently,
On the contrary, if the temperature exceeds 1800 ° C., the new SiC layer formed on the upper portion of the carbon material becomes too dense and is not useful for releasing thermal stress, which is not preferable.

【0034】液体反応成分と炭素材料との反応時間は、
上記反応条件において30〜600分の範囲にあるのが
好ましい。すなわち、30分より短い場合反応の進行が
不十分であり、逆に600分を超えると上部に形成され
る皮膜が緻密になりすぎたり厚くなりすぎるため好まし
くない。
The reaction time between the liquid reaction component and the carbon material is
It is preferably in the range of 30 to 600 minutes under the above reaction conditions. That is, when the time is shorter than 30 minutes, the progress of the reaction is insufficient, and when the time is longer than 600 minutes, the coating formed on the upper portion becomes too dense or too thick, which is not preferable.

【0035】さらに、上記炭素材料と気体および液体反
応成分形成物質との反応はすべて真空または不活性ガス
雰囲気下で行うことが好ましい。すなわち、他の雰囲気
ガスを用いた場合、炭素材料のSiC形成反応が干渉さ
れるからである。
Further, it is preferable that all the reaction between the carbon material and the gas or liquid reaction component forming substance is carried out in a vacuum or an inert gas atmosphere. That is, when another atmosphere gas is used, the SiC forming reaction of the carbon material interferes.

【0036】炭素材料表面をSiCに転化した後、化学
気相反応(CVD)法により緻密なSiC皮膜を形成す
ることができる。CVD法によるSiCの被覆は最も一
般的に行われている方法の一つであり、例えば四塩化け
い素(または、炭化ジルコニウム、炭化ハフニウム)、
メタン、水素、アルゴンの混合気体(体積比1:1:
5:1)を、10〜400mmHgの減圧下、1000
〜1500℃の温度で20〜300分程度反応させるこ
とにより得ることができる。但し、CVD法の反応条件
は、析出させるSiCの結晶構造、用いる原料ガスの種
類によって非常に異なり、必ずしも上述の反応条件に限
定されるものではない。
After converting the surface of the carbon material into SiC, a dense SiC film can be formed by a chemical vapor reaction (CVD) method. The coating of SiC by CVD is one of the most commonly used methods, for example silicon tetrachloride (or zirconium carbide, hafnium carbide),
Mixed gas of methane, hydrogen and argon (volume ratio 1: 1:
5: 1) under reduced pressure of 10 to 400 mmHg and 1000
It can be obtained by reacting at a temperature of ~ 1500 ° C for about 20 to 300 minutes. However, the reaction conditions of the CVD method are very different depending on the crystal structure of the SiC to be precipitated and the type of raw material gas used, and are not necessarily limited to the above reaction conditions.

【0037】上述の方法によれば、通常の炭素材料のみ
ならずピッチ炭素をマトリックスとするC/C複合材料
でも容易に耐酸化被覆を行うことができる。この場合S
iC転化層の上部に新たに形成されるSiC皮膜の厚さ
は、5〜200μmであるのが好ましい。この厚さが5
μm未満ではCVD・SiC層形成の核となり難いから
であり、また200μm超では、該皮膜内での破壊が起
こり易くなるために好ましくない。
According to the above method, the oxidation resistant coating can be easily applied not only to the ordinary carbon material but also to the C / C composite material having pitch carbon as a matrix. In this case S
The thickness of the SiC film newly formed on the iC conversion layer is preferably 5 to 200 μm. This thickness is 5
If it is less than μm, it is difficult to become a nucleus for forming the CVD / SiC layer, and if it exceeds 200 μm, breakage easily occurs in the film, which is not preferable.

【0038】図1は、本発明により耐酸化被覆を行って
得られた炭素材料の断面図である。1は炭素材料、4は
主に気体反応成分形成物質との反応で生成されたSiC
転化層、5は液体反応成分形成物質との反応で生成され
たSiC形成層(焼結層)、3は液体反応成分形成物質
をそれぞれ示す。
FIG. 1 is a sectional view of a carbon material obtained by applying an oxidation resistant coating according to the present invention. 1 is a carbon material, 4 is SiC produced mainly by a reaction with a gas reaction component forming substance
The conversion layer, 5 is a SiC forming layer (sintered layer) generated by the reaction with the liquid reaction component forming substance, and 3 is the liquid reaction component forming substance.

【0039】図2〜4は、本発明の反応過程における状
態変化を経時的に表わした炭素材料の断面図である。図
2は反応前の状態、図3は気体反応成分形成物質が反応
中の状態、図4は液体反応成分形成物質が反応中の状態
をそれぞれ示している。2は気体反応成分形成物質であ
る。図4の反応が終了すると図1に示す状態の目的物が
得られる。
2 to 4 are cross-sectional views of a carbon material showing the state change with time in the reaction process of the present invention. 2 shows a state before the reaction, FIG. 3 shows a state where the gas reaction component forming substance is reacting, and FIG. 4 shows a state where the liquid reaction component forming substance is reacting. 2 is a gas reaction component forming substance. When the reaction of FIG. 4 is completed, the target product in the state shown in FIG. 1 is obtained.

【0040】[0040]

【実施例】以下に本発明を実施例に基づき具体的に説明
する。 (実施例1)基材として用いるC/C複合材料は以下の
方法によって作製した。二次元炭素繊維織布(使用糸:
PAN系高弾性炭素繊維、1K8HS)を300×30
0mmに切断し、フェノール樹脂(大日本インキ化学工
業(株)製)を含浸してプリプレグを得た。このとき、
樹脂目付量が85g/m2になるようにした。このプリプレ
グを12枚積層し、真空バッグ内にセットした。オート
クレーブにセット後、真空バッグ内の真空引き操作を行
いながら、150℃まで加熱して成型した。このときオ
ートクレーブ内圧力は5kg/cm2とした。このようにして
得られた炭素複合材料前駆体(FRP)の後硬化を20
0℃で5時間行った後、アルゴンガス流通下、5℃/min
の昇温速度で1000℃まで焼成し、厚さ1.5mmの
C/C複合材料を得た。このC/C複合材料はさらに、
タールピッチ(川崎製鉄(株)製含浸ピッチ、商品名p
K−QL)の含浸・焼成を5回繰り返すことにより高密
度高強度化した。
EXAMPLES The present invention will be specifically described below based on examples. (Example 1) A C / C composite material used as a base material was produced by the following method. Two-dimensional carbon fiber woven cloth (use thread:
PAN-based high elastic carbon fiber, 1K8HS) 300 × 30
It was cut to 0 mm and impregnated with phenol resin (Dainippon Ink and Chemicals, Inc.) to obtain a prepreg. At this time,
The resin areal weight was adjusted to 85 g / m 2 . Twelve sheets of this prepreg were laminated and set in a vacuum bag. After setting in the autoclave, while vacuuming the inside of the vacuum bag, it was heated to 150 ° C. and molded. At this time, the pressure inside the autoclave was set to 5 kg / cm 2 . The carbon composite material precursor (FRP) thus obtained was post-cured to 20
After 5 hours at 0 ℃, under argon gas flow, 5 ℃ / min
The temperature was increased to 1000 ° C. to obtain a C / C composite material having a thickness of 1.5 mm. This C / C composite material
Tar pitch (impregnated pitch manufactured by Kawasaki Steel Co., Ltd., trade name p
K-QL) was impregnated and fired 5 times to increase the density and strength.

【0041】上記の方法によって得られたC/C複合材
料を50×50mmに切断し、このC/C複合材料の周
囲にSiO粒子(大阪チタニウム製造(株)製、粒径4
4〜105μmのもの)を使用し、層厚3mmになるよ
うに配置した。また、SiとSiCの混合割合を7:3
(重量比)とした混合粉末をSiOの周囲に配し、これ
らを黒鉛容器に入れ電気炉内にセットした。電気炉内を
10-3torrまで排気後、Arを導入して2kg/cm2
加圧した。その後、10℃/minの昇温速度で1900℃
まで加熱し、30分間保持することによりC/C複合材
料の内部および表層部をSiCに転化した。さらに17
00℃まで冷却し、液体Siによって該C/C複合材料
表層部および外部に新たなSiC層を形成した。ことの
きの保持時間は120分とした。
The C / C composite material obtained by the above method was cut into 50 × 50 mm, and SiO particles (made by Osaka Titanium Manufacturing Co., Ltd., particle size 4) were cut around the C / C composite material.
4 to 105 μm) was used and arranged so that the layer thickness was 3 mm. Further, the mixing ratio of Si and SiC is set to 7: 3.
The mixed powder (weight ratio) was placed around SiO, and these were put in a graphite container and set in an electric furnace. After evacuating the electric furnace to 10 −3 torr, Ar was introduced and the pressure was increased to 2 kg / cm 2 . After that, at a heating rate of 10 ° C / min, 1900 ° C
The inside of the C / C composite material and the surface layer part were converted into SiC by heating up to and holding it for 30 minutes. Further 17
After cooling to 00 ° C., a new SiC layer was formed on the surface layer part of the C / C composite material and outside by liquid Si. The holding time of the mushroom was 120 minutes.

【0042】上述の方法によってC/C複合材料に熱応
力緩和層を形成した後、CVD法によってさらに上部に
緻密なSiC層を形成した。CVD被覆における反応条
件は、反応ガスとしてメチルトリクロロシラン(CH3SiCl
3)を約5wt%含有する水素ガスを12 l/min送り込
み、反応温度1000℃、反応圧力15torrで10
時間反応させるものとした。
After the thermal stress relaxation layer was formed on the C / C composite material by the method described above, a dense SiC layer was formed further on the CVD method. The reaction conditions in the CVD coating are methyltrichlorosilane (CH 3 SiCl) as a reaction gas.
Hydrogen gas containing about 5 wt% of 3 ) was fed at 12 l / min, and the reaction temperature was 1000 ° C. and the reaction pressure was 15 torr.
It was made to react for a time.

【0043】以上の方法によって得られた耐酸化被覆C
/C複合材料を横型電気炉に入れ、1500℃で60分
保持する酸化試験を行った。その結果を表1に示した。
Oxidation resistant coating C obtained by the above method
The / C composite material was put in a horizontal electric furnace, and an oxidation test was carried out by holding it at 1500 ° C for 60 minutes. The results are shown in Table 1.

【0044】(実施例2)実施例1で用いたものと同様
のC/C複合材料を50×50mmの大きさに切断し、
CおよびSiO2の粒径を105〜177μmの範囲に調製
し、その等モル混合物をC/C複合材料の周囲に層厚1
mmになるように配置した。また、SiとSiCの混合
割合は7:3(重量比)とし、CおよびSiO2粒子の混合
物の周囲に配し、これらを黒鉛容器に入れ電気炉内にセ
ットした。電気炉内を10-3torrまで排気後、Ar
を導入して2kg/cm2に加圧した。その後、10℃/minの
昇温速度で1950℃まで加熱し、45分間保持するこ
とによりC/C複合材料の内部および表層部をSiCに
転化した。さらに1700℃まで冷却し、液体Siによ
って該C/C複合材料表層部および外部に新たなSiC
層を形成した。このときの保持時間は120分とした。
Example 2 A C / C composite material similar to that used in Example 1 was cut into a size of 50 × 50 mm,
The particle size of C and SiO 2 was adjusted to be in the range of 105 to 177 μm, and the equimolar mixture was applied to the C / C composite material to form a layer thickness 1
It was arranged to be mm. Further, the mixing ratio of Si and SiC was set to 7: 3 (weight ratio), the mixture was placed around the mixture of C and SiO 2 particles, and these were put in a graphite container and set in an electric furnace. After exhausting the electric furnace to 10 -3 torr, Ar
Was introduced and the pressure was increased to 2 kg / cm 2 . After that, the inside and the surface layer of the C / C composite material were converted to SiC by heating to 1950 ° C. at a heating rate of 10 ° C./min and holding for 45 minutes. After further cooling to 1700 ° C., a new SiC is added to the surface layer of the C / C composite material and the outside by liquid Si.
Layers were formed. The holding time at this time was 120 minutes.

【0045】上述の方法によってC/C複合材料に熱応
力緩和層を形成した後、実施例1と同様の条件でCVD
法によりさらに上部に緻密なSiC層を形成した。
After the thermal stress relaxation layer was formed on the C / C composite material by the above method, the CVD was performed under the same conditions as in Example 1.
A dense SiC layer was formed on the upper part by the method.

【0046】以上の方法によって得られた耐酸化被覆C
/C複合材料を横型電気炉に入れ、1500℃で60分
保持する酸化試験を行った。その結果を表1に示した。
Oxidation resistant coating C obtained by the above method
The / C composite material was put in a horizontal electric furnace, and an oxidation test was carried out by holding it at 1500 ° C for 60 minutes. The results are shown in Table 1.

【0047】(比較例1)実施例1で用いたものと同じ
C/C複合材料を50×50mmの大きさに切断し、C
およびSiO2粒子の等モル混合物とともに黒鉛容器に入れ
電気炉内にセットした。このとき、CおよびSiO2粒子の
粒径は、実施例2と同様に105〜177μmのものを
用い、C/C複合材料の周囲に10mmの厚さになるよ
うに配置した。その後、10℃/minの昇温速度で195
0℃まで加熱し、45分保持することによりC/C複合
材料の内部および表層部をSiCに転化した。さらに実
施例1と同様の反応条件でCVD法により上部に緻密な
SiC層を形成した。
Comparative Example 1 The same C / C composite material as that used in Example 1 was cut into a size of 50 × 50 mm, and C
And an equimolar mixture of SiO 2 particles were placed in a graphite container and set in an electric furnace. At this time, the particle diameters of C and SiO 2 particles were 105 to 177 μm as in Example 2, and were arranged around the C / C composite material so as to have a thickness of 10 mm. Then 195 at a heating rate of 10 ° C / min
The inside and the surface layer of the C / C composite material were converted to SiC by heating to 0 ° C. and holding for 45 minutes. Further, a dense SiC layer was formed on the upper portion by the CVD method under the same reaction conditions as in Example 1.

【0048】以上の方法によって得られた耐酸化被覆C
/C複合材料を横型電気炉に入れ、1500℃で60分
保持する酸化試験を行った。その結果を表1に示した。
Oxidation resistant coating C obtained by the above method
The / C composite material was put in a horizontal electric furnace, and an oxidation test was carried out by holding it at 1500 ° C for 60 minutes. The results are shown in Table 1.

【0049】(比較例2)実施例1で用いたものと同様
のC/C複合材料を50×50mmの大きさに切断し、
SiおよびSiC混合物(重量比3:7)とともに黒鉛
容器に入れ電気炉内にセットした。このとき、Siおよ
びSiCの厚さは15mmになるようにC/C複合材料
の周囲に配置した。その後10℃/minの昇温速度で17
00℃まで加熱し、120分保持することによりC/C
複合材料の内部および表層部をSiCに転化した。さら
に、実施例1と同様の条件で、CVD法により前記転化
層の上部に緻密なSiC層を形成した。
Comparative Example 2 The same C / C composite material as that used in Example 1 was cut into a size of 50 × 50 mm,
It was put into a graphite container together with a mixture of Si and SiC (weight ratio 3: 7) and set in an electric furnace. At this time, Si and SiC were arranged around the C / C composite material so as to have a thickness of 15 mm. After that, at a heating rate of 10 ° C / min, 17
C / C by heating to 00 ℃ and holding for 120 minutes
The interior and surface of the composite material was converted to SiC. Further, under the same conditions as in Example 1, a dense SiC layer was formed on the conversion layer by the CVD method.

【0050】以上の方法によって得られた耐酸化被覆C
/C複合材料の横型電気炉に入れ、1500℃で60分
保持する酸化試験を行った。その結果を表1に示した。
Oxidation resistant coating C obtained by the above method
The / C composite material was placed in a horizontal electric furnace and an oxidation test was carried out by holding it at 1500 ° C for 60 minutes. The results are shown in Table 1.

【0051】(比較例3)1700℃における保持時間
を360分にした以外はすべて比較例2と同様の条件で
耐酸化被覆した耐酸化被覆C/C複合材料を横型電気炉
に入れ、1500℃で60分保持する酸化試験を行っ
た。その結果を表1に示した。
(Comparative Example 3) The oxidation-resistant coated C / C composite material was placed in a horizontal electric furnace at 1500 ° C under the same conditions as in Comparative Example 2 except that the holding time at 1700 ° C was 360 minutes. Then, an oxidation test was carried out for 60 minutes. The results are shown in Table 1.

【0052】表1から明らかなように実施例1および2
は酸化試験後の重量減少が少なく良好な耐酸化性を示し
た。
As is clear from Table 1, Examples 1 and 2
Showed a small weight loss after the oxidation test and showed good oxidation resistance.

【0053】 [0053]

【0054】[0054]

【発明の効果】本発明は、以上説明したように構成され
ているので、気相・固相反応と液相・固相反応を組み合
わせ、そのなかでも気相・固相反応を優先的に行わせる
ことにより、黒鉛化度の大きな材料でさえも容易に反応
転化させ、耐酸化皮膜を容易に得ることができる。その
結果、C/C複合材料の製造においても安価なタールピ
ッチを用いることができ、しかも高強度な材料とするこ
とができる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, gas-phase / solid-phase reactions are combined with liquid-phase / solid-phase reactions, among which gas-phase / solid-phase reactions are preferentially performed. By doing so, even a material having a high degree of graphitization can be easily subjected to reaction conversion to easily obtain an oxidation resistant film. As a result, inexpensive tar pitch can be used also in the production of the C / C composite material, and a high-strength material can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって得られた炭素材料の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of a carbon material obtained by the present invention.

【図2】本発明による反応前の状態を示す炭素材料の断
面図である。
FIG. 2 is a cross-sectional view of a carbon material showing a state before a reaction according to the present invention.

【図3】本発明により気体反応成分形成物質が反応中の
状態を示す炭素材料の断面図である。
FIG. 3 is a cross-sectional view of a carbon material showing a state in which a gas reaction component forming substance is reacting according to the present invention.

【図4】本発明により液体反応成分形成物質が反応中の
状態を示す炭素材料の断面図である。
FIG. 4 is a cross-sectional view of a carbon material showing a state in which a liquid reaction component forming substance is reacting according to the present invention.

【符号の説明】[Explanation of symbols]

1 炭素材料 2 気体反応成分形成物質 3 液体反応成分形成物質 4 SiC転化層 5 SiC形成層(焼結層) 1 carbon material 2 gas reaction component forming substance 3 liquid reaction component forming substance 4 SiC conversion layer 5 SiC formation layer (sintered layer)

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】炭素材料を耐酸化被覆するに際し、前記炭
素材料の周囲に炭素材料と反応可能で、かつ耐酸化皮膜
として有効に作用する皮膜を形成しうる気体反応成分形
成物質を充填し、その周囲に炭素材料と反応可能で、か
つ耐酸化皮膜として有効に作用する皮膜を形成しうる液
体反応成分形成物質を充填して反応を行うことを特徴と
する炭素材料の耐酸化被覆方法。
1. When a carbon material is coated with an oxidation resistant material, a gas reactive component forming substance capable of reacting with the carbon material and forming a film that effectively acts as an oxidation resistant film is filled around the carbon material, An oxidation-resistant coating method for a carbon material, characterized in that the reaction is performed by filling a liquid reaction component forming substance which can react with the carbon material and can form a film effectively acting as an oxidation-resistant film around the periphery.
【請求項2】前記気体反応成分形成物質は、SiO、C
とSiO2 との混合物およびSiOとCとSiO2 との
混合物から選択される材料である請求項1に記載の炭素
材料の耐酸化被覆方法。
2. The gas reaction component forming substance is SiO or C.
The oxidation resistant coating method for a carbon material according to claim 1, which is a material selected from a mixture of SiO 2 and SiO 2 and a mixture of SiO, C and SiO 2 .
【請求項3】前記気体反応成分形成物質の粒径は、0.
1〜840μmの範囲である請求項1または2に記載の
炭素材料の耐酸化被覆方法。
3. The particle size of the gas reaction component forming substance is 0.
The oxidation resistant coating method for a carbon material according to claim 1 or 2, which has a range of 1 to 840 µm.
【請求項4】前記液体反応成分形成物質は、Siまたは
Siを含むセラミックス粉末である請求項1〜3のいず
れかに記載の炭素材料の耐酸化被覆方法。
4. The oxidation resistant coating method for a carbon material according to claim 1, wherein the liquid reaction component forming substance is Si or a ceramic powder containing Si.
【請求項5】前記炭素材料の耐酸化被覆反応は、真空ま
たは不活性ガス雰囲気下で行う請求項1〜4のいずれか
に記載の炭素材料の耐酸化被覆方法。
5. The oxidation resistant coating method for a carbon material according to claim 1, wherein the oxidation resistant coating reaction of the carbon material is performed in a vacuum or in an inert gas atmosphere.
【請求項6】前記炭素材料の耐酸化被覆反応は、前記気
体反応成分形成物質がSiO蒸気を発生する温度に加熱
した後、前記液体反応成分形成物質が溶融して炭素材料
と反応する温度に加熱して行う請求項1〜5のいずれか
に記載の炭素材料の耐酸化被覆方法。
6. The oxidation resistant coating reaction of the carbon material is carried out at a temperature at which the liquid reaction component forming substance melts and reacts with the carbon material after the gas reaction component forming substance is heated to a temperature at which SiO vapor is generated. The oxidation resistant coating method for a carbon material according to claim 1, which is carried out by heating.
【請求項7】前記SiO蒸気を発生する温度の加熱は、
1800〜2000℃の範囲である請求項6に記載の炭
素材料の耐酸化被覆方法。
7. Heating the temperature for generating the SiO vapor comprises:
The oxidation resistant coating method for a carbon material according to claim 6, which is in the range of 1800 to 2000 ° C.
【請求項8】前記液体反応成分形成物質が溶融して炭素
材料と反応する温度の加熱は、1600〜1800℃の
範囲である請求項6に記載の炭素材料の耐酸化被覆方
法。
8. The oxidation resistant coating method for a carbon material according to claim 6, wherein the heating at a temperature at which the liquid reaction component forming substance melts and reacts with the carbon material is in the range of 1600 to 1800 ° C.
【請求項9】前記SiO蒸気を発生する温度の加熱時間
は、5〜120分である請求項6または7に記載の炭素
材料の耐酸化被覆方法。
9. The oxidation resistant coating method for a carbon material according to claim 6, wherein a heating time at a temperature for generating the SiO vapor is 5 to 120 minutes.
【請求項10】前記液体反応成分形成物質が溶融して炭
素材料と反応する温度の加熱時間は、30〜600分で
ある請求項6または8に記載の炭素材料の耐酸化被覆方
法。
10. The method for coating an oxidation resistant coating of a carbon material according to claim 6, wherein a heating time at a temperature at which the liquid reaction component forming substance melts and reacts with the carbon material is 30 to 600 minutes.
【請求項11】前記気体反応成分形成物質は、炭素材料
の周囲に密着して厚さ1〜5mmの範囲になるように充
填する請求項1〜10のいずれかに記載の炭素材料の耐
酸化被覆方法。
11. The oxidation resistant carbon material according to claim 1, wherein the gas reaction component forming substance is filled in close contact with the periphery of the carbon material so as to have a thickness of 1 to 5 mm. Coating method.
【請求項12】炭素材料を耐酸化被覆するに際し、炭素
材料の周囲にSiO、CとSiO2 との混合物およびS
iOとCとSiO2 との混合物から選択される材料を充
填し、さらにその外周にSiを含むセラミックス粉末を
充填し、加熱処理を施すことにより前記炭素材料表面を
SiCに転化し、その後化学気相反応法により緻密なS
iC皮膜を形成することを特徴とする炭素材料の耐酸化
被覆方法。
12. An oxidation resistant coating of a carbon material, wherein SiO, a mixture of C and SiO 2 and S are provided around the carbon material.
A material selected from a mixture of iO, C, and SiO 2 is filled, and the outer periphery thereof is filled with a ceramic powder containing Si, and the surface of the carbon material is converted into SiC by heat treatment, and then a chemical vapor is added. Precise S by phase reaction method
An oxidation resistant coating method for a carbon material, which comprises forming an iC film.
【請求項13】炭素繊維とマトリックスを有する炭素複
合材料を耐酸化被覆するに際し、前記炭素複合材料の周
囲に充填した炭素材料と反応可能で、かつ耐酸化皮膜と
して有効に作用する皮膜を形成しうる気体反応成分形成
物質との反応によって前記炭素材料の最深部から表層ま
で前記炭素繊維およびマトリックスをSiCに転化し、
さらにその周囲に充填した炭素材料と反応可能で、かつ
耐酸化皮膜として有効に作用する皮膜を形成しうる液体
反応成分形成物質によって前記SiCの上部に新たなS
iC皮膜を形成することを特徴とする炭素材料の耐酸化
被覆方法。
13. When a carbon composite material having carbon fibers and a matrix is oxidation-resistant coated, a coating capable of reacting with the carbon material filled around the carbon composite material and effectively acting as an oxidation-resistant coating is formed. Converting the carbon fibers and matrix into SiC from the deepest part of the carbon material to the surface layer by reaction with a gaseous reaction component forming substance,
Further, a new S component is added to the upper portion of the SiC by a liquid reaction component forming substance capable of reacting with the carbon material filled around it and forming a film that effectively acts as an oxidation resistant film.
An oxidation resistant coating method for a carbon material, which comprises forming an iC film.
【請求項14】前記SiCの上部に新たに形成されるS
iC皮膜の厚さは、5〜200μmである請求項13に
記載の炭素材料の耐酸化被覆方法。
14. S newly formed on the SiC.
The oxidation resistant coating method for a carbon material according to claim 13, wherein the iC coating has a thickness of 5 to 200 μm.
JP4000669A 1992-01-07 1992-01-07 Oxidation resistant coating method of carbon material Withdrawn JPH05186286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000669A JPH05186286A (en) 1992-01-07 1992-01-07 Oxidation resistant coating method of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000669A JPH05186286A (en) 1992-01-07 1992-01-07 Oxidation resistant coating method of carbon material

Publications (1)

Publication Number Publication Date
JPH05186286A true JPH05186286A (en) 1993-07-27

Family

ID=11480154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000669A Withdrawn JPH05186286A (en) 1992-01-07 1992-01-07 Oxidation resistant coating method of carbon material

Country Status (1)

Country Link
JP (1) JPH05186286A (en)

Similar Documents

Publication Publication Date Title
US6455160B1 (en) High purity C/C composite and manufacturing method thereof
CN113045325B (en) Preparation method of high-strength carbon/carbon-silicon carbide composite material
KR100417161B1 (en) Method for manufacturing carbon/silicon-carbide composite
CN111072399A (en) Carbon/carbon heater with silicon carbide coating for czochralski silicon furnace
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
JP4077601B2 (en) Method for producing C / C crucible for pulling single crystal
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP2002326890A (en) Crucible made of carbon fiber reinforced carbon composite to be used for pulling single crystal
KR100694913B1 (en) A method of manufacturing a thermostructural composite material bowl, in particular for an installation that produces silicon single crystals
KR20220050429A (en) Manufacturing method of multi-layer coatings for oxidation resistance on carbon composite, and oxidation resistance carbon composite manufactured by the same
JP2000351689A (en) Carbon fiber-reinforced carbon composite material coated with pyrolyzed carbon and part for single crystal-pulling device
CN114455969B (en) High-density C/C-SiC composite material crucible containing alumina coating
JPH05186286A (en) Oxidation resistant coating method of carbon material
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JPH10158090A (en) Manufacture of c/c material (carbon fiber-carbon composite material) crucible for pulling up semiconductor single crystal
JP4358313B2 (en) Seed chuck for semiconductor single crystal pulling equipment
JP2867536B2 (en) Corrosion and oxidation resistant materials
CN114368975A (en) Containing alpha-Al2O3Coated low density C/C-SiC composite crucible
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JP2787164B2 (en) High oxidation resistant carbonaceous insulation
JPH09507465A (en) Method for densifying porous structure with boron nitride and porous structure densified with boron nitride
JP4170426B2 (en) High temperature member for single crystal pulling apparatus and manufacturing method thereof
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
CN114455964B (en) C/SiC composite material crucible containing alumina coating
CN114455971B (en) A composition containing alpha-Al 2 O 3 High-density C/C-SiC composite material crucible of coating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408