JPH0518623Y2 - - Google Patents

Info

Publication number
JPH0518623Y2
JPH0518623Y2 JP1986152785U JP15278586U JPH0518623Y2 JP H0518623 Y2 JPH0518623 Y2 JP H0518623Y2 JP 1986152785 U JP1986152785 U JP 1986152785U JP 15278586 U JP15278586 U JP 15278586U JP H0518623 Y2 JPH0518623 Y2 JP H0518623Y2
Authority
JP
Japan
Prior art keywords
pipe
heat
liquid injection
injection pipe
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986152785U
Other languages
Japanese (ja)
Other versions
JPS6361672U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986152785U priority Critical patent/JPH0518623Y2/ja
Publication of JPS6361672U publication Critical patent/JPS6361672U/ja
Application granted granted Critical
Publication of JPH0518623Y2 publication Critical patent/JPH0518623Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案はヒートパイプを介して高温部から低
温部に熱を輸送する熱交換器などの装置に関し、
特にヒートパイプの容量が大きいヒートパイプ式
熱輸送装置に関するものである。
[Detailed description of the invention] Industrial application field This invention relates to devices such as heat exchangers that transport heat from a high temperature area to a low temperature area via a heat pipe.
In particular, the present invention relates to a heat pipe type heat transport device having a large heat pipe capacity.

従来の技術 周知のようにヒートパイプは、密閉管の内部に
水やアンモニアなどの目標とする使用温度で蒸発
および凝縮する流体を作動流体として封入し、さ
らに金網や細溝等の毛細管圧力を生じさせるウイ
ツクを前記密閉管の内部に設けたものであり、作
動流体が蒸発および凝縮を伴つて流動することに
よりその潜熱として熱の輸送を行なうものである
から、極めて高い熱輸送能力を有し、熱交換器に
多用されている。
BACKGROUND TECHNOLOGY As is well known, a heat pipe is a sealed tube in which a fluid such as water or ammonia that evaporates and condenses at a target operating temperature is sealed as a working fluid, and a capillary tube such as a wire mesh or narrow groove is used to generate pressure. It has an extremely high heat transport capacity because the working fluid flows as it evaporates and condenses and transports heat as its latent heat. Often used in heat exchangers.

ところでヒートパイプは、通常、作動流体のみ
を密閉管の内部に封入したものであるから、入熱
のない静止状態では、内部の作動流体が液化して
いるために高い真空状態にあり、これに対して入
熱がある状態では、内部の作動流体が蒸発するか
ら、内部圧力が高くなる。したがつて例えば入熱
と放熱とのアンバランスが生じ、放熱量に対して
入熱量が多くなつた場合には、内部圧力が極めて
高くなり、爆発する危険がある。特に径が大きく
かつ内部圧力の高くなることのあるヒートパイプ
は、高圧ガス取締法の適用を受け、圧力容器とな
るから、内部のガスを逃がして安全性を確保する
ための手段を施すことが要求される。そのため従
来、前述したような危険を未然に防ぐために、例
えば実開昭58−181180号では、ヒートパイプ本体
の開口端を閉じる端板に薄肉の易破裂部を形成し
ておき、内部圧力の上昇によつてその易破裂部が
破損して開口することにより、内部の圧力を逃が
す構成が示されている。また特開昭51−104653号
や特開昭54−10463号では、使用限界温度以下の
温度で軟化する金属で栓を構成し、もしくは接合
する構成が示されている。
By the way, a heat pipe is usually a hermetically sealed tube containing only the working fluid, so in a static state with no heat input, the working fluid inside is liquefied and is in a high vacuum state. On the other hand, when there is heat input, the internal working fluid evaporates, increasing the internal pressure. Therefore, for example, if an imbalance occurs between heat input and heat radiation, and the amount of heat input becomes larger than the amount of heat released, the internal pressure will become extremely high, and there is a risk of explosion. Heat pipes, which have particularly large diameters and can have high internal pressure, are subject to the High Pressure Gas Control Law and are treated as pressure vessels, so it is necessary to take measures to ensure safety by releasing the internal gas. required. Therefore, in order to prevent the above-mentioned dangers, for example, in Utility Model Application Publication No. 181180/1983, a thin-walled easily ruptured part is formed on the end plate that closes the open end of the heat pipe body, and this prevents the internal pressure from increasing. A structure is shown in which the easily ruptured portion is broken and opened by the rupture, thereby releasing the internal pressure. Furthermore, Japanese Patent Application Laid-open No. 51-104653 and Japanese Patent Application Laid-open No. 54-10463 disclose a structure in which the stopper is made of a metal that softens at a temperature below the service limit temperature or is bonded.

考案が解決しようとする問題点 ところで高圧ガス取締法の規制を受ける程度の
大きさのヒートパイプは、その本体部分の径が大
きいために、一般には、作動流体を注入するため
の細い液注入管を本管部分の端部に設け、作動流
体の注入の後は、その液注入管を圧潰するととも
に溶着させて封止する。したがつてこのようなヒ
ートパイプを熱交換器に用いる場合には、液注入
管の損傷に起因する外気の流入や作動流体の漏洩
を防ぐために、液注入管を取付けた端部が低温部
側に位置し、これとは反対側の端板が高温側に位
置するよう配置する。しかるに前掲の実開昭58−
181180号公報に記載されたヒートパイプでは、安
全装置として機能する易破裂部が高温側(ヒート
パイプとしては作動流体の蒸発側)に位置するこ
とになるために、易破裂部が外部の熱の影響を受
けて強度が低下し、設計通りに機能しなくなつた
り、あるいは高温源を工場廃ガスとした場合に
は、腐蝕により設計通りに機能しなくなつたりす
るおそれがあり、さらにヒートパイプは熱輸送を
容易ならしめるために、加熱部が低くくなるよう
に設置するのが一般的であるから、上記従来のヒ
ートパイプでは、作動液が溜る加熱部で易破裂部
が破裂することになり、その結果、易破裂部が破
裂した場合には、作動液が蒸気と共に噴出する危
険があつた。
Problems that the invention aims to solve By the way, heat pipes that are large enough to be regulated by the High Pressure Gas Control Law have large main body diameters, so they are generally made with thin liquid injection pipes for injecting working fluid. is provided at the end of the main pipe section, and after injecting the working fluid, the liquid injection pipe is crushed and sealed by welding. Therefore, when using such a heat pipe in a heat exchanger, the end where the liquid injection pipe is attached should be placed on the low temperature side to prevent outside air from entering or working fluid leaking due to damage to the liquid injection pipe. The end plate on the opposite side is located on the high temperature side. However, the above-mentioned Jitsukai 58-
In the heat pipe described in Publication No. 181180, the easily ruptured part that functions as a safety device is located on the high temperature side (the evaporation side of the working fluid for a heat pipe), so the easily ruptured part is not exposed to external heat. If heat pipes are affected by heat pipes, their strength may decrease and they may no longer function as designed, or if the high-temperature source is factory waste gas, they may become corroded and may no longer function as designed. In order to facilitate heat transport, the heating section is generally installed low, so in the conventional heat pipe described above, the easily ruptured section will burst at the heating section where the working fluid accumulates. As a result, if the easily ruptured part were to rupture, there was a risk that the hydraulic fluid would be blown out along with steam.

また特開昭51−104653号公報や特開昭54−
10463号公報に記載されているヒートパイプでは、
破断箇所に軟化点の低い金属を用いているため
に、破断条件が温度と内部圧力との両方によつて
決定されることになり、しかも温度と内部圧力と
は相互関係があるから、破断圧力を正確に設定す
ることが実用上極めて困難であるなどの問題があ
つた。
Also, JP-A-51-104653 and JP-A-54-
In the heat pipe described in Publication No. 10463,
Since a metal with a low softening point is used at the rupture point, the rupture conditions are determined by both temperature and internal pressure, and since there is a correlation between temperature and internal pressure, the rupture pressure There were problems such as it being extremely difficult in practice to set accurately.

この考案は上記の事情を背景としてなされたも
ので、危険圧力すなわち内部の蒸気を逃がす圧力
を正確に設定することができ、ひいては安全性の
高いヒートパイプ式熱輸送装置を提供することを
目的とするものである。
This idea was developed against the background of the above-mentioned circumstances, and the purpose is to provide a highly safe heat pipe type heat transport device that can accurately set the critical pressure, that is, the pressure for releasing internal steam. It is something to do.

問題点を解決するための手段 この考案は、上記の目的を達成するために、密
閉構造の本管の一方の端部に本管より小径でかつ
予め定めた圧力で破損して開口する薄肉部を形成
した液注入管を取付けるとともに加熱されて蒸発
しかつ放熱して凝縮する作動流体を前記液注入管
から本管内に注入して液注入管を封止してなるヒ
ートパイプを、前記液注入管が熱交換すべき高温
部と低温部とのうち低温部側に位置しかつ液注入
管に対して反対側の端部より高い位置となるよ
う、高温部と低温部との間に設置し、さらに前記
本管のうち液注入管を設けた一方の端部に、液注
入管を包囲しかつ大気圧より低い内部圧力に設定
された密閉構造のキヤツプを取付けたことを特徴
とするものである。
Means for Solving the Problems In order to achieve the above object, this invention provides a thin-walled part at one end of a main pipe with a closed structure that is smaller in diameter than the main pipe and breaks open under a predetermined pressure. A heat pipe is formed by attaching a liquid injection tube formed with a liquid injection tube, and injecting a working fluid that is heated, evaporated, heat radiated, and condensed into the main pipe from the liquid injection tube to seal the liquid injection tube. The tube is installed between the high temperature section and the low temperature section so that it is located on the low temperature side of the high temperature section and low temperature section where heat should be exchanged, and at a higher position than the opposite end of the liquid injection tube. and further characterized in that a cap of a sealed structure is attached to one end of the main pipe where the liquid injection pipe is provided, surrounding the liquid injection pipe and setting the internal pressure to be lower than atmospheric pressure. be.

またこの考案では、非凝縮性ガスを作動流体と
併せて封入することより可変コンダクタンス型と
することができる。
Furthermore, in this invention, by sealing in a non-condensable gas together with the working fluid, a variable conductance type can be achieved.

さらに液注入管を本管より引張強度の低い材料
によつて構成し、あるいは本管の一方の端部を閉
じる端板と一体に加工成形することができる。
Furthermore, the liquid injection tube can be made of a material having a lower tensile strength than the main tube, or can be formed integrally with an end plate that closes one end of the main tube.

作 用 この考案の熱輸送装置においても液注入管に設
けた薄肉部が安全弁となり、設定圧力で破損・開
口することにより内部の圧力を逃がす。その場
合、この考案では液注入管が低温部側に位置して
いて熱影響を殆んど受けないから、設計上定めた
圧力と同圧力で薄肉部が破損・開口する。また液
注入管が他方の端部より高い位置でかつ低温部側
にあるから、薄肉部が破損・開口した場合には、
作動流体蒸気のみが流出して圧力を逃がす。そし
て液注入管は密閉構造のキヤツプにより包囲され
ており、かつそのキヤツプ内は低圧とされている
から、薄肉部が破損・開口してその部分から作動
流体蒸気が流出しても、キヤツプの外部への作動
流体蒸気の洩れは全く生じない。
Function In the heat transport device of this invention as well, the thin walled part provided in the liquid injection pipe acts as a safety valve, which breaks and opens at a set pressure to release the internal pressure. In that case, in this invention, since the liquid injection pipe is located on the low temperature side and is hardly affected by heat, the thin walled part will break and open at the same pressure as the design pressure. In addition, since the liquid injection tube is located higher than the other end and on the low temperature side, if the thin wall part is damaged or opened,
Only working fluid vapor escapes, relieving pressure. The liquid injection tube is surrounded by a cap with a sealed structure, and the pressure inside the cap is low, so even if the thin-walled part breaks or opens and the working fluid vapor flows out from that part, the outside of the cap is closed. There is no leakage of working fluid vapor to.

他方、非凝縮性ガスを混入させて可変コンダク
タンス型とした場合には、動作時に非凝縮性ガス
が液注入管側の端部に押し込められ、その結果、
液注入管の薄肉部が作動流体蒸気から遮蔽され、
薄肉部に対する熱影響が更に少なくなる。
On the other hand, when a variable conductance type is created by mixing a non-condensable gas, the non-condensable gas is forced into the end of the liquid injection tube during operation, and as a result,
The thin-walled part of the liquid injection tube is shielded from the working fluid vapor,
Thermal influence on thin-walled parts is further reduced.

実施例 つぎにこの考案の実施例を添附の図面を参照し
て説明する。
Embodiments Next, embodiments of this invention will be described with reference to the attached drawings.

第1図はこの考案の熱輸送装置の一例としての
熱交換器を示す略解図であつて、隔壁1によつて
高温ガス流路2と低温ガス流路3とを仕切るとと
もに、その隔壁1を貫通させて設けたヒートパイ
プ4を介して熱交換を行なわせるよう構成されて
いる。ここでヒートパイプ4は第2図に示すよう
に本管5の両端部に端板6,7を溶接することに
より密閉し、これらの端板6,7のうち一方の端
板6に貫通させて取付けた小径の液注入管8から
内部の空気などの非凝縮性ガスを真空排気すると
ともに適宜の凝縮性流体を作動流体として注入
し、しかる後液注入管8の先端部を溶着して封止
し、かつ本管5の内部に毛細管圧力を生じさせる
ためのウイツク(図示せず)を設けた構成であ
る。さらに本管5における液注入管8の側の端板
6には、密閉構造のキヤツプ14が取付られてお
り、このキヤツプ14によつて液注入管8が包囲
される。またこのキヤツプ14は、その内部圧力
が大気圧よりも低い低圧となるように設定されて
いる。そして液注入管8の一部には、第3図ない
し第5図に示すように、内部圧力が高くなつた場
合に本管5の破裂に優先して破損・開口する安全
弁としての薄肉部9が形成されている。この薄肉
部9は、図示の例では液注入管8の外周面に一部
を矩形状に切欠いて形成したものであつて、その
凹コーナ部には切欠き効果を防ぐためにR加工が
施されている。この薄肉部9の加工法としては、
切削加工やプレス加工などの各種の方法を採用す
ることができるが、液注入管8とされる素管の外
径にバラツキがあることも考えられるので、薄肉
部9の肉厚を正確にするために、液注入管8の内
面を基準とした加工を行なうことが好ましい。ま
た加工硬化による薄肉部9の破損強度のバラツキ
を防ぐために、薄肉部9の加工後に焼鈍を行なう
ことが好ましい。さらに液注入管8の素材として
は、耐圧性のある鋼管からなる本管5に対し、ア
ルミニウムや銅もしくはこれらの合金などの引張
強度の低い材料を用いることが好ましく、このよ
うにすれば液注入管8を細くすることができる。
FIG. 1 is a schematic diagram showing a heat exchanger as an example of the heat transport device of this invention. It is configured so that heat exchange is performed via a heat pipe 4 provided through it. Here, the heat pipe 4 is hermetically sealed by welding end plates 6 and 7 to both ends of the main pipe 5, as shown in FIG. Non-condensable gas such as air inside is evacuated from the small-diameter liquid injection tube 8 installed, and an appropriate condensable fluid is injected as a working fluid, and then the tip of the liquid injection tube 8 is welded and sealed. This structure is provided with a wick (not shown) for stopping the main pipe 5 and generating capillary pressure inside the main pipe 5. Furthermore, a cap 14 of a sealed structure is attached to the end plate 6 of the main pipe 5 on the liquid injection tube 8 side, and the liquid injection tube 8 is surrounded by the cap 14 . Further, this cap 14 is set so that its internal pressure is a low pressure lower than atmospheric pressure. As shown in FIGS. 3 to 5, a part of the liquid injection pipe 8 has a thin-walled part 9 that serves as a safety valve that breaks and opens before the main pipe 5 ruptures when the internal pressure becomes high. is formed. In the illustrated example, this thin wall portion 9 is formed by cutting a part of the outer peripheral surface of the liquid injection tube 8 into a rectangular shape, and the concave corner portion is rounded to prevent the notch effect. ing. The processing method for this thin section 9 is as follows:
Various methods such as cutting and press working can be employed, but since there may be variations in the outer diameter of the raw tube used as the liquid injection tube 8, the thickness of the thin wall portion 9 should be made accurate. Therefore, it is preferable to perform processing based on the inner surface of the liquid injection tube 8. Further, in order to prevent variations in the breakage strength of the thin wall portion 9 due to work hardening, it is preferable to perform annealing after processing the thin wall portion 9. Furthermore, as for the material of the liquid injection pipe 8, it is preferable to use a material with low tensile strength such as aluminum, copper, or an alloy of these, in contrast to the main pipe 5 which is made of a pressure-resistant steel pipe. The tube 8 can be made thinner.

そして上述のように構成したヒートパイプ4
は、液注入管8が低温ガス側でかつ他方の端部よ
り高い位置にあるよう水平面に対して傾斜して配
置され、また外周面には多数のフイン10が取付
けられている。
And the heat pipe 4 configured as described above
is arranged to be inclined with respect to the horizontal plane so that the liquid injection pipe 8 is on the low temperature gas side and at a higher position than the other end, and a number of fins 10 are attached to the outer peripheral surface.

上記の熱交換器において高温ガス流路2に工場
廃ガスなどの高温ガスを流すとともに、加熱昇温
すべき空気などの低温ガスを低温ガス流路3に流
すと、ヒートパイプ4に温度差が生じることによ
り、その内部の作動流体が第1図の左半分の部分
で蒸発し、その蒸気が液注入管8を設けてある右
半分の部分に流れ、そこで放熱して凝縮する。す
なわちヒートパイプ4は第1図の左半分の部分が
蒸発部となるとともに、右半分の部分が凝縮部と
なり、これらの蒸発部と凝縮部との間で作動流体
が蒸発および凝縮を行なつて循環流動することに
より、高温ガスの有する熱を低温ガスに対して作
動流体の潜熱として輸送する。このようにして熱
交換を行なつている間に、高温ガスの温度が大き
く上昇したり、あるいは反対に低温ガスによる吸
熱量が大幅に低下したりした場合、ヒートパイプ
4に対する入熱のみが多くなるので、作動流体が
激しく蒸発し、その結果、ヒートパイプ4の内部
圧力が高くなる。ヒートパイプ4の内部圧力が予
め設定した危険圧力に達すると、液注入管8に形
成してある薄肉部9が破損・開口し、そこから作
動流体蒸気が流出することによりヒートパイプ4
の内部圧力が下がり、その本管5の破裂が防止さ
れる。すなわち薄肉部9が安全弁として作用す
る。
In the heat exchanger described above, when high-temperature gas such as factory waste gas flows through the high-temperature gas flow path 2 and low-temperature gas such as air to be heated is flowed through the low-temperature gas flow path 3, a temperature difference is created in the heat pipe 4. As a result, the working fluid inside evaporates in the left half of FIG. 1, and the vapor flows to the right half where the liquid injection pipe 8 is provided, where it radiates heat and condenses. In other words, the left half of the heat pipe 4 in FIG. 1 serves as an evaporation section, and the right half serves as a condensation section, and the working fluid evaporates and condenses between these evaporation and condensation sections. By circulating the fluid, the heat of the high-temperature gas is transferred to the low-temperature gas as latent heat of the working fluid. During heat exchange in this way, if the temperature of the high-temperature gas increases significantly, or conversely, if the amount of heat absorbed by the low-temperature gas decreases significantly, only the heat input to the heat pipe 4 will increase. As a result, the working fluid evaporates violently, and as a result, the internal pressure of the heat pipe 4 increases. When the internal pressure of the heat pipe 4 reaches a preset dangerous pressure, the thin wall portion 9 formed in the liquid injection tube 8 breaks and opens, and the working fluid vapor flows out from there, causing the heat pipe 4 to
The internal pressure of the main pipe 5 is reduced and the bursting of the main pipe 5 is prevented. That is, the thin wall portion 9 acts as a safety valve.

ところで上述した熱交換器では、薄肉部9を形
成した液注入管8が低温ガス側でかつ蒸発部側の
端部より高い位置にあるから、液相の作動流体が
蒸発部側に下がつていることにより、薄肉部9が
破損・開口した場合には作動流体蒸気のみが噴出
し、周囲に対する安全性を確保することができ
る。また薄肉部9は高温ガスから直接には熱影響
を受けないこと、高温ガスによる腐食環境におか
れないこと、さらには凹コーナ部のR加工や焼鈍
によつて切欠き効果や加工硬化の影響を受けない
などの理由で、薄肉部9は設計上想定した圧力と
ほぼ同圧力で破損・開口し、この点でも安全性の
高いものとなる。さらに、薄肉部9を有する液注
入管8は、内部圧力が低圧の密閉構造のキヤツプ
14によつて包囲されているため、前述のように
薄肉部9の破損・開口によつてその部分から作動
流体蒸気が噴出しても、キヤツプ14の外部への
作動流体蒸気の流出を防止することができ、その
ため安全性が著しく高い。
By the way, in the heat exchanger described above, since the liquid injection pipe 8 forming the thin-walled part 9 is located on the low-temperature gas side and at a higher position than the end on the evaporator side, the liquid-phase working fluid flows down to the evaporator side. As a result, if the thin wall portion 9 is damaged or opened, only the working fluid vapor will be blown out, ensuring safety for the surroundings. In addition, the thin wall portion 9 is not directly affected by heat from high-temperature gas, is not exposed to a corrosive environment due to high-temperature gas, and is not affected by notch effects or work hardening due to rounding and annealing of concave corners. For reasons such as not being exposed to high pressure, the thin wall portion 9 will break and open at approximately the same pressure as the pressure assumed in the design, and in this respect as well, it will be highly safe. Furthermore, since the liquid injection tube 8 having the thin wall portion 9 is surrounded by the cap 14 having a sealed structure with a low internal pressure, if the thin wall portion 9 is damaged or opened as described above, the liquid injection tube 8 is activated from that portion. Even if the fluid vapor blows out, it is possible to prevent the working fluid vapor from flowing out to the outside of the cap 14, resulting in extremely high safety.

なおここで液注入管8は細くて強度が低いにも
かかわらず本管5から突出した形状となつている
ため、キヤツプ14を設けていなければ、運搬時
などに外力が加わつた場合に折損する危険があ
り、また薄肉部9が破損した場合にその破片が周
囲に飛散するおそれがあるが、キヤツプ14を設
けておくことによつて、外力による液注入管の折
損や薄肉部の破片の飛散を防止することができ
る。
Note that although the liquid injection tube 8 is thin and has low strength, it protrudes from the main tube 5, so if the cap 14 is not provided, it will break if external force is applied during transportation. There is a danger, and if the thin-walled part 9 is damaged, there is a risk that its fragments will be scattered around, but by providing the cap 14, the liquid injection tube can be prevented from breaking due to external force and the fragments of the thin-walled part can be scattered. can be prevented.

なおまた、キヤツプ14内に作動流体蒸気が流
出すれば、キヤツプ14の温度が上昇するから、
そのキヤツプ14の温度によつて薄肉部9の破
損・開口すなわちヒートパイプ4の異常を知得す
ることができる。
Furthermore, if the working fluid vapor flows out into the cap 14, the temperature of the cap 14 will rise.
Based on the temperature of the cap 14, it is possible to detect damage or an opening in the thin wall portion 9, that is, an abnormality in the heat pipe 4.

以上述べた実施例は本管5の内部に作動流体の
みを封入した例であるが、この考案の熱交換器で
用いるヒートパイプ4は、可変コンダクタンス型
のものであつてもよい。すなわち第6図は非凝縮
性ガス11を作動流体と共に本管5内に封入した
ヒートパイプ4の動作状態とその温度分布を示す
図であつて、この考案では薄肉部9が凝縮部側に
位置し、かつ非凝縮性ガス11は動作時にその凝
縮部側に押し込められるから、非凝縮性ガス11
が薄肉部9に対して熱的な遮蔽として作用し、そ
の結果、薄肉部9に対する熱影響が更に少なくな
る。換言すれば、安全弁として作用する薄肉部9
が破損・開口する圧力が設計圧力により近くなつ
て、安全性が高くなる。
Although the embodiment described above is an example in which only the working fluid is sealed inside the main pipe 5, the heat pipe 4 used in the heat exchanger of this invention may be of a variable conductance type. That is, FIG. 6 is a diagram showing the operating state and temperature distribution of the heat pipe 4 in which the non-condensable gas 11 is sealed in the main pipe 5 together with the working fluid. However, since the non-condensable gas 11 is forced into the condensing part side during operation, the non-condensable gas 11
acts as a thermal shield for the thin wall portion 9, and as a result, the thermal influence on the thin wall portion 9 is further reduced. In other words, the thin walled portion 9 acts as a safety valve.
The pressure at which the valve breaks or opens is closer to the design pressure, increasing safety.

第7図はこの考案で用いるヒートパイプ4の更
に他の例を示す略解図であつて、液注入管8と端
板6とを予め一体に加工成形し、その端板6を本
管5に溶接したものである。このような構成とす
れば、薄肉部9が破損・開口する圧力を一定化さ
せることができる。すなわち薄肉部9は、加工上
の制約から液注入管8を端板6あるいは本管5に
取付ける以前に加工するが、液注入管8と端板6
とが別体の場合には、これら両者を溶接する際の
熱影響が薄肉部9に及び、その強度に変動を来た
すおそれがあるが、第7図に示す構成では端板6
の溶接の際の熱影響が薄肉部9に及ばず、その結
果、薄肉部9の破損・開口圧力を一定化できる。
これに加え第7図に示す構成では、端板6の強度
が向上し、かつ溶接箇所が少なくなることにより
不良品の発生度合が低くなる。
FIG. 7 is a schematic diagram showing still another example of the heat pipe 4 used in this invention, in which the liquid injection pipe 8 and the end plate 6 are integrally formed in advance, and the end plate 6 is attached to the main pipe 5. It is welded. With such a configuration, the pressure at which the thin wall portion 9 breaks or opens can be made constant. In other words, the thin wall portion 9 is processed before the liquid injection tube 8 is attached to the end plate 6 or the main pipe 5 due to processing constraints.
If the end plates 6 and 6 are separate bodies, there is a risk that the heat effect when welding them will affect the thin walled part 9 and cause variations in its strength. However, in the configuration shown in FIG. 7, the end plate 6
Thermal influence during welding does not affect the thin wall portion 9, and as a result, the damage and opening pressure of the thin wall portion 9 can be made constant.
In addition, in the structure shown in FIG. 7, the strength of the end plate 6 is improved and the number of welded parts is reduced, so that the occurrence of defective products is reduced.

なお、この考案で薄肉部9は上記のように矩形
状に形成したものに限られず、例えば第8図およ
び第9図に示すように、コ字状に切込み溝を入れ
て形成し、その結果、舌片15を生じさせるもの
であつてもよい。
Note that in this invention, the thin wall portion 9 is not limited to being formed into a rectangular shape as described above, but may be formed by cutting grooves into a U-shape as shown in FIGS. 8 and 9, for example. , the tongue piece 15 may be formed.

またこの考案の装置は上記の実施例で示したよ
うに高温部と低温部との間で熱交換させるにあた
つて、熱の輸送を行なうものであればよいのであ
り、高温廃ガスからの熱回収などのための熱交換
器のほかに、地熱の採取を行なう装置や融雪を行
なうための熱輸送装置などにも適用することがで
きる。
Furthermore, the device of this invention can be used as long as it transports heat when exchanging heat between a high-temperature part and a low-temperature part, as shown in the above embodiment. In addition to heat exchangers for heat recovery, it can also be applied to equipment for extracting geothermal heat, heat transport equipment for snow melting, etc.

考案の効果 以上説明したようにこの考案の熱輸送装置で
は、安全弁となる薄肉部を設けた液注入管が、低
温部側でかつ他方の端部より高くなるようヒート
パイプを設置したから、薄肉部への熱影響や腐食
が防止され、その結果、薄肉部が設計上想定した
圧力で破損・開口するために、安全性が高くな
り、また液注入管側には液相の作動流体が極めて
少ないから、作動液の噴出を防止でき、さらに
は、液注入管が低圧の密閉構造のキヤツプによつ
て包囲されているため、薄肉部が破損・開口して
その部分から作動流体蒸気が流出した際にも、キ
ヤツプの外部までその作動流体蒸気が洩れでるこ
とを確実に防止でき、また細管である液注入管の
折損事故を防止できるに加え、薄肉部が破損した
際の破片の飛散をも防止でき、したがつて全体と
して安全性が極めて高い。
Effects of the invention As explained above, in the heat transport device of this invention, the heat pipe is installed so that the liquid injection pipe provided with the thin-walled part that serves as a safety valve is on the low-temperature part side and higher than the other end. As a result, the thin-walled parts break and open at the pressure assumed in the design, increasing safety.Also, the liquid-phase working fluid on the liquid injection pipe side is extremely low. This prevents the hydraulic fluid from spouting out, and since the fluid injection pipe is surrounded by a cap with a low-pressure hermetic structure, there is no possibility that the thin-walled part will break or open and the working fluid vapor will flow out from that part. In addition to preventing the working fluid vapor from leaking to the outside of the cap, it also prevents breakage of the liquid injection tube, which is a thin tube, and prevents fragments from scattering when the thin wall part is damaged. can be prevented and is therefore extremely safe overall.

またヒートパイプを、非凝縮性ガスを混入した
可変コンダクタンス型のものとすれば、動作時に
非凝縮性ガスが薄肉部に対する熱的な遮蔽材とし
て作用するため、薄肉部への熱影響が少なくなつ
てその破損圧力を一定化し、安全性を高めること
ができる。
Furthermore, if the heat pipe is of a variable conductance type that contains non-condensable gas, the non-condensable gas acts as a thermal shield for the thin-walled parts during operation, reducing the thermal effect on the thin-walled parts. This makes it possible to stabilize the failure pressure and improve safety.

さらに液注入管と端板とを予め一体に加工成形
した構成とすれば、端板を溶接する際の熱影響が
薄肉部に及ばないので、薄肉部の破損圧力を一定
化して安全性を高めることができる。
Furthermore, if the liquid injection tube and the end plate are integrally molded in advance, the heat effect when welding the end plate will not affect the thin wall part, so the failure pressure of the thin wall part will be constant and safety will be increased. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す略解図、第
2図はそのヒートパイプの一例を示す概略的な断
面図、第3図はその液注入管を示す部分図、第4
図は第3図の−線矢視図、第5図は第3図の
−線矢視図、第6図は可変コンダクタンス型
ヒートパイプの動作時の状態およびその温度分布
を示す図、第7図は液注入管と端板とを一体化し
たヒートパイプの部分図、第8図は薄肉部の他の
例を示す部分図、第9図は第8図の−線
矢視図である。 1……隔壁、2……高温ガス流路、3……低温
ガス流路、4……ヒートパイプ、5……本管、
6,7……端板、8……液注入管、9……薄肉
部、11……非凝縮性ガス、12……排気孔、1
3,14……キヤツプ。
Fig. 1 is a schematic diagram showing one embodiment of this invention, Fig. 2 is a schematic sectional view showing an example of the heat pipe, Fig. 3 is a partial view showing the liquid injection pipe, and Fig. 4 is a schematic sectional view showing an example of the heat pipe.
The figure is a view taken along the - line in Fig. 3, Fig. 5 is a view taken along the - line in Fig. 3, Fig. 6 is a view showing the operating state of the variable conductance type heat pipe and its temperature distribution, and Fig. 7 The figure is a partial view of a heat pipe in which a liquid injection tube and an end plate are integrated, FIG. 8 is a partial view showing another example of a thin walled portion, and FIG. 9 is a view taken along the - line in FIG. 1... Partition wall, 2... High temperature gas flow path, 3... Low temperature gas flow path, 4... Heat pipe, 5... Main pipe,
6, 7... End plate, 8... Liquid injection pipe, 9... Thin wall part, 11... Non-condensable gas, 12... Exhaust hole, 1
3,14...cap.

Claims (1)

【実用新案登録請求の範囲】 (1) 密閉構造の本管の一方の端部に本管より小径
でかつ予め定めた圧力で破損して開口する薄肉
部を形成した液注入管を取付けるとともに加熱
されて蒸発しかつ放熱して凝縮する作動流体を
前記液注入管から本管内に注入して液注入管を
封止してなるヒートパイプを、前記液注入管が
熱交換すべき高温部と低温部とのうち低温部側
に位置しかつ液注入管に対して反対側の端部よ
り高い位置となるよう、高温部と低温部との間
に設置し、かつ前記本管のうち液注入管を設け
た一方の端部側には、液注入管を包囲しかつ大
気圧より低い内部圧力に設定された密閉構造の
キヤツプを取付けたことを特徴とする安全装置
付きヒートパイプ式熱輸送装置。 (2) 前記本管の内部に、使用温度範囲で凝縮する
ことのない非凝縮性ガスを前記作動流体と併せ
て封入したことを特徴とする実用新案登録請求
の範囲第1項記載の安全装置付きヒートパイプ
式熱輸送装置。 (3) 前記液注入管が、本管を構成する材料よりも
引張強度の低い材料で構成されていることを特
徴とする実用新案登録請求の範囲第1項記載の
安全装置付きヒートパイプ式熱輸送装置。 (4) 前記液注入管が本管の一方の端部を封止する
端板と一体に加工成形されたものであることを
特徴とする実用新案登録請求の範囲第1項記載
の安全装置付きヒートパイプ式熱輸送装置。
[Scope of Claim for Utility Model Registration] (1) At one end of a main pipe with a sealed structure, a liquid injection pipe having a diameter smaller than that of the main pipe and forming a thin walled part that breaks open under a predetermined pressure is attached and heated. A heat pipe is formed by injecting a working fluid that evaporates, radiates heat, and condenses from the liquid injection pipe into the main pipe, and seals the liquid injection pipe, between the high temperature part and the low temperature part where the liquid injection pipe should exchange heat. The liquid injection pipe is installed between the high temperature part and the low temperature part so as to be located on the low temperature side of the main pipe and at a higher position than the end on the opposite side to the liquid injection pipe. 1. A heat pipe type heat transport device with a safety device, characterized in that a cap with a sealed structure that surrounds a liquid injection pipe and is set at an internal pressure lower than atmospheric pressure is attached to one end side of the heat pipe. (2) The safety device according to claim 1 of the utility model registration claim, characterized in that a non-condensable gas that does not condense in the working temperature range is sealed inside the main pipe together with the working fluid. Heat pipe type heat transport device. (3) The heat pipe heat pipe with a safety device according to claim 1, wherein the liquid injection pipe is made of a material having a lower tensile strength than the material constituting the main pipe. transport equipment. (4) A safety device according to claim 1 of the utility model registration claim, characterized in that the liquid injection pipe is integrally formed with an end plate that seals one end of the main pipe. Heat pipe type heat transport device.
JP1986152785U 1986-10-04 1986-10-04 Expired - Lifetime JPH0518623Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986152785U JPH0518623Y2 (en) 1986-10-04 1986-10-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986152785U JPH0518623Y2 (en) 1986-10-04 1986-10-04

Publications (2)

Publication Number Publication Date
JPS6361672U JPS6361672U (en) 1988-04-23
JPH0518623Y2 true JPH0518623Y2 (en) 1993-05-18

Family

ID=31071078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986152785U Expired - Lifetime JPH0518623Y2 (en) 1986-10-04 1986-10-04

Country Status (1)

Country Link
JP (1) JPH0518623Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024424A (en) * 2005-07-19 2007-02-01 Denso Corp Exhaust heat recovery device and refrigerant filling method of exhaust heat recovery device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05692Y2 (en) * 1984-12-26 1993-01-11

Also Published As

Publication number Publication date
JPS6361672U (en) 1988-04-23

Similar Documents

Publication Publication Date Title
US7143511B2 (en) Method of forming a heat pipe
JPH0518623Y2 (en)
JPS62245086A (en) Heat pipe
JP4849097B2 (en) Waste heat recovery unit
US4625789A (en) Double barrier heat exchanger
JPH09178393A (en) Heat exchanger
US3194591A (en) Tube penetration for cryogenic shield
US4280871A (en) Live steam shut-off device for pressurized water reactors
JP5026809B2 (en) Soaking structure
JPH05692Y2 (en)
JP5165473B2 (en) Heat pump and its internal inspection method
JP3333591B2 (en) Cooling structure of high temperature container seal
JPH05248778A (en) Composite heat pipe
JPS6383692A (en) Heat pipe type reactor
JPH03122496A (en) Heat pipe
JP2971685B2 (en) Heat exchanger and method of manufacturing the same
CN221351281U (en) Reflux preventing device of adiabatic acceleration calorimeter
JPH11210992A (en) Ammonia storage vaporizing device
CN114076659B (en) Determination device
JPS61191887A (en) Heat pipe
JPH05141881A (en) Structure of jacket
RU2059183C1 (en) Heat exchanger
EP3893251A1 (en) Nuclear power station pressurizer and water sealing device thereof
JPS5854356B2 (en) heat transfer device
JPS62272092A (en) Waste heat recovery device