JPH0518533Y2 - - Google Patents
Info
- Publication number
- JPH0518533Y2 JPH0518533Y2 JP1987187912U JP18791287U JPH0518533Y2 JP H0518533 Y2 JPH0518533 Y2 JP H0518533Y2 JP 1987187912 U JP1987187912 U JP 1987187912U JP 18791287 U JP18791287 U JP 18791287U JP H0518533 Y2 JPH0518533 Y2 JP H0518533Y2
- Authority
- JP
- Japan
- Prior art keywords
- housing
- coolant
- seal
- hole
- mechanical seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002826 coolant Substances 0.000 claims description 34
- 238000005086 pumping Methods 0.000 claims description 26
- 238000005192 partition Methods 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 238000007789 sealing Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 239000000110 cooling liquid Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mechanical Sealing (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、ポンプ等の回転機器における軸封装
置として有用なメカニカルシール、特にシールハ
ウジング内に冷却液を循環流通させて摺接封止部
の摩擦発熱を防止する冷却機能付きのメカニカル
シールに関する。[Detailed description of the invention] (Industrial application field) The present invention is a mechanical seal useful as a shaft sealing device for rotating equipment such as a pump, and in particular, a mechanical seal that circulates a cooling liquid in a seal housing and has a sliding seal. This product relates to a mechanical seal with a cooling function that prevents frictional heat generation.
(従来の技術)
一般に、メカニカルシールは、シールハウジン
グ側の固定リングと回転軸側の回転リングとをば
ね力によつて圧接させ、両リングの相対回転摺接
面で封止するようになされているが、この摺接面
での摩擦発熱による焼けや劣化に起因する封止不
良を防止するためにシールハウジング内に冷却液
を循環流通させて摺接面の冷却および潤滑を図る
ようにしたものが知られる。(Prior Art) In general, a mechanical seal is configured such that a fixed ring on the seal housing side and a rotating ring on the rotating shaft side are brought into pressure contact with each other by a spring force, and a seal is formed between the relatively rotating sliding contact surfaces of both rings. However, in order to prevent sealing failures caused by burning and deterioration due to frictional heat generation on the sliding contact surface, a cooling liquid is circulated within the seal housing to cool and lubricate the sliding contact surface. is known.
このような冷却機能付きメカニカルシールにお
ける冷却液の循環方式として、外部動力を使用せ
ずに回転軸の回転を利用して強制循環させる方式
があり、従来では例えば、封止部の回転リングの
外周に羽根を設け、かつ該羽根の外周に沿う凹溝
をシールハウジング内面に形成し、流入口から摺
接面に向けて流入させた冷却液を該羽根の回転力
によつて上記凹溝の回転方向終端に位置した流出
口より強制排出させるもの(実開昭59−68866号
等)、シールハウジングの一端側に流入口、他端
側に流出口を設け、かつ中間部に上記流入口側か
ら流出口側への冷却流の軸方向流れを生じさせる
傾斜羽根を有するエキスペラーを回転軸に固着し
たもの、上記同様に流入口と流出口とをシールハ
ウジングの両端部に分けて形成すると共に、該ハ
ウジングの流出口側の内径を大きくし、かつ上記
エキスペラーの代わりにハウジング内を流入側と
流出側とに仕切る仕切り壁部とそれより流出側に
延出する周壁部とからなる径断面略コ字状のポン
ピングリングを固着し、その仕切り壁部に形成し
た通液孔と周壁部の流出口対向位置に設けた通液
孔との半径位置の違いによる遠心力差でポンプ作
用を行うもの等が採用されている。 As a method of circulating the coolant in such a mechanical seal with a cooling function, there is a method of forced circulation using the rotation of the rotating shaft without using external power. A blade is provided on the seal housing, and a groove is formed on the inner surface of the seal housing along the outer periphery of the blade, and the coolant flowing from the inlet toward the sliding surface is rotated by the rotational force of the blade. Forcibly discharging from the outlet located at the end of the direction (such as Utility Model Application No. 59-68866), with an inlet at one end of the seal housing and an outlet at the other end, and from the inlet at the middle part. An expeller having inclined blades that generate an axial flow of cooling flow toward the outlet side is fixed to a rotating shaft, and the inlet and outlet are formed separately at both ends of the seal housing as described above, and the The inner diameter of the outlet side of the housing is increased, and instead of the above-mentioned expeller, the inside of the housing is divided into an inflow side and an outflow side by a partition wall part, and a circumferential wall part extending from the partition wall part to the outflow side. A type of pumping ring is fixed, and the pumping action is performed by the difference in centrifugal force due to the difference in radial position between the liquid passage hole formed in the partition wall and the liquid passage hole formed in the peripheral wall opposite the outlet. It has been adopted.
(考案が解決しようとする問題点)
しかしながら、前記従来の回転リング自体に羽
根を設けるものでは、シールハウジングの両側封
止部にそれぞれ流出入口と凹溝および羽根を設け
ることから、構造的に非常に複雑で製作コストが
高く付くという欠点があつた。また、前記従来の
エキスペラーやポンピングリングを回転軸に固着
するものでは、循環液量が通常0.5〜2/min
程度と小さいため、回転軸の軸径が大きい場合や
回転数が高い場合に冷却能力が不足するという問
題点があつた。(Problems to be Solved by the Invention) However, in the conventional rotary ring itself in which blades are provided, an inlet and an inlet, a groove, and a blade are provided on both side sealing portions of the seal housing, resulting in structural problems. The drawback was that it was complicated and the manufacturing cost was high. In addition, in the conventional expeller and pumping ring fixed to the rotating shaft, the circulating fluid volume is usually 0.5 to 2/min.
Because of the relatively small diameter, there was a problem in that the cooling capacity was insufficient when the diameter of the rotating shaft was large or when the rotational speed was high.
本考案は、上記従来の問題点を解決すべくなさ
れたものであり、構造的に簡単で、しかも循環液
量が飛躍的に増大して冷却効果の大きいメカニカ
ルシールを提供することを目的としている。 The present invention was made to solve the above-mentioned conventional problems, and aims to provide a mechanical seal that is structurally simple, dramatically increases the amount of circulating fluid, and has a large cooling effect. .
(問題点を解決するための手段)
上記目的を達成するために、本考案のメカニカ
ルシールは、シールハウジング7の両端がそれぞ
れ、ばね力により相互に圧接するシールハウジン
グ側の固定リング10と回転軸6側の回転リング
14との摺接部20で密封され、該ハウジング7
の一端側に冷却液流入孔11が形成され、同他端
側に冷却液流出孔13が形成されてなるメカニカ
ルシールにおいて、回転軸6に固着されて上記ハ
ウジング7内を流入側空間22aと流出側空間2
2bとに区画し、かつハウジング内周面との間で
小間〓t1を形成する環状仕切り壁部21aと、該
仕切り壁部21aの流出孔側側面の周縁部に固着
されて回転軸6を取囲む円筒部21bと、該円筒
部21bの上記流出孔近傍に位置した開口端縁に
沿つて所定間隔で固着され且つハウジング内端面
との間で小間〓t2を形成する複数枚の羽根21e
とで構成されるポンピングインペラー21が配設
され、かつ該インペラー21の環状仕切り壁21
aには上記両空間22a,22bを連通する通液
孔23が周方向に所定間隔おきに穿設された構成
を採用している。(Means for Solving the Problems) In order to achieve the above object, the mechanical seal of the present invention has two ends of the seal housing 7, a fixed ring 10 on the seal housing side and a rotating shaft, which are pressed against each other by spring force. The housing 7 is sealed at the sliding contact portion 20 with the rotating ring 14 on the 6 side.
A mechanical seal having a coolant inflow hole 11 formed at one end and a coolant outflow hole 13 formed at the other end is fixed to the rotating shaft 6 and flows through the housing 7 to the inflow side space 22a. side space 2
2b and an annular partition wall 21a forming a booth t1 with the inner circumferential surface of the housing; A plurality of blades 21e are fixed at predetermined intervals along the edge of the opening of the cylindrical portion 21b located near the outflow hole, and form a booth t2 between the surrounding cylindrical portion 21b and the inner end surface of the housing.
A pumping impeller 21 is provided, and the annular partition wall 21 of the impeller 21 is
In a, a structure is adopted in which liquid passage holes 23 are bored at predetermined intervals in the circumferential direction to communicate both the spaces 22a and 22b.
(実施例)
以下、本考案を図示実施例に基づいて説明す
る。(Example) Hereinafter, the present invention will be explained based on illustrated examples.
第1図においては、1は基台2上に設置された
遠心ポンプ、3は基台2の後部に立設された取付
フレーム2aの上部にブラケツト4を介して支持
固定された冷却液タンクであり、このタンク3と
ポンプ1の軸封装置部分との間に冷却液の導入管
5aおよび導出管5bが配管されている。 In Fig. 1, 1 is a centrifugal pump installed on a base 2, and 3 is a coolant tank supported and fixed via a bracket 4 on the upper part of a mounting frame 2a erected at the rear of the base 2. A coolant inlet pipe 5a and a coolant outlet pipe 5b are installed between the tank 3 and the shaft sealing device portion of the pump 1.
第2図は上記遠心ポンプ1の軸封装置部分の径
方向端面を示す。図中、6は回転軸であつて、そ
の外側に両端部の外径が中間部より若干小さいス
テンレス鋼製のスリーブ6aが嵌装固着されてい
る。7はメカニカルシールの外殻をなすシールハ
ウジングであり、ポンプ本体側つまり図示左側よ
り、ポンプのケーシングカバー部7a、両端にフ
ランジ部を有する筒状のシール部カバー7b、環
状スペーサー7c、環状端板7dのそれぞれステ
ンレス鋼からなる各部材を順次、段状をなす端面
相互で四弗化樹脂等からなるOリング8を介して
接合して連結ボルト9a,9b,9cにより締め
付けて一体化することにより構成されている。し
かして、シールハウジング7の両端においては、
ケーシングカバー部7aとシール部カバー7bと
の間の内周面側、ならびに環状スペーサ7cと環
状端板7dとの間の内周面側に形成された環状凹
部7e,7eに、それぞれ炭化ケイ素等の高硬度
セラミツクスからなる固定リング10がその外周
面の環状凸部10aを嵌合挟着されて、回転軸6
とは非接触状態で固定されている。 FIG. 2 shows a radial end face of the shaft sealing device portion of the centrifugal pump 1. As shown in FIG. In the figure, reference numeral 6 denotes a rotating shaft, and a stainless steel sleeve 6a is fitted and fixed on the outside of the rotating shaft, the outer diameter of both ends being slightly smaller than that of the middle part. Reference numeral 7 denotes a seal housing forming the outer shell of the mechanical seal, and from the pump main body side, that is, from the left side in the figure, a pump casing cover part 7a, a cylindrical seal part cover 7b having flanges at both ends, an annular spacer 7c, and an annular end plate. 7d, each made of stainless steel, are sequentially joined at their stepped end faces via O-rings 8 made of tetrafluoride resin, etc., and then tightened with connecting bolts 9a, 9b, and 9c to integrate them. It is configured. Therefore, at both ends of the seal housing 7,
Silicon carbide, etc. are applied to annular recesses 7e and 7e formed on the inner peripheral surface side between the casing cover portion 7a and the seal portion cover 7b, and on the inner peripheral surface side between the annular spacer 7c and the annular end plate 7d, respectively. A fixing ring 10 made of high-hardness ceramics is fitted with an annular convex portion 10a on the outer peripheral surface of the fixing ring 10, and the rotating shaft 6 is fixed.
It is fixed in a non-contact state.
また、シールハウジング7の一端側では前記導
入管5aを接続する冷却液流入孔11が環状スペ
ーサー7cに半径方向に沿つて穿設され、同他端
側ではシール部カバー7bの内面に環状凹溝12
が形成されると共に、前記導出管5bに接続する
冷却液流孔13が上記溝底に開口してかつ第3図
で示すように該凹溝の形成内に対して接線方向に
沿うように穿設されている。なお、流入孔11の
開口位置は流出孔13の開口位置に比べて回転軸
6の軸心に近く設定されている。 Further, at one end side of the seal housing 7, a coolant inlet hole 11 connecting the introduction pipe 5a is bored in the annular spacer 7c along the radial direction, and at the other end side, an annular groove is formed on the inner surface of the seal part cover 7b. 12
At the same time, a coolant flow hole 13 connected to the outlet pipe 5b is opened at the bottom of the groove and is bored along a tangential direction to the inside of the groove, as shown in FIG. It is set up. Note that the opening position of the inflow hole 11 is set closer to the axis of the rotating shaft 6 than the opening position of the outflow hole 13.
14は内周面が外端側ほど小径となる三段状に
形成されたカーボン製の回転リングであり、外端
面が固定リング10の内端面の環状凸部10bに
対接するように回転軸6にそのスリーブ6aの段
部に位置して外嵌されており、内端面側では回転
軸6との間でシールハウジング中央側に開く環状
凹溝14aを構成している。 Reference numeral 14 denotes a rotating ring made of carbon and formed in three stages, with the inner circumferential surface becoming smaller in diameter toward the outer end. The sleeve 6a is positioned and externally fitted on the stepped portion of the sleeve 6a, and an annular groove 14a that opens toward the center of the seal housing is formed between the inner end surface and the rotary shaft 6.
15は外周面が外端側を小径とする二段状に形
成されたステンレス鋼製の押圧リングであり、回
転リング14よりもシールハウジング中央側に位
置して回転軸6を外嵌されると共に、小径部15
aがOリング16を介して回転リング14の環状
凹溝14aに嵌入して配置されている。しかし
て、小径部15aの要所には係合ピン15bが螺
着されており、この係合ピン15bを回転リング
14に形成されたU字状切欠部14bに係合する
ことにより、両リング14,15が一体的に回転
するように設定されている。 Reference numeral 15 denotes a stainless steel pressing ring whose outer peripheral surface is formed in a two-stage shape with a smaller diameter on the outer end side. , small diameter portion 15
a is fitted into the annular groove 14a of the rotary ring 14 via the O-ring 16. An engaging pin 15b is screwed into the small diameter portion 15a at a key point, and by engaging the engaging pin 15b with a U-shaped notch 14b formed in the rotating ring 14, both rings 14 and 15 are set to rotate together.
17はステンレス鋼製のばね保持リングであ
り、第4図でも示すように、軸方向に平行な3本
のピン挿通孔17aが周方向に等配穿設され、か
つ各挿通孔17a,17a間に軸方向に平行で外
端面に開口した有底のばね保持孔17bが2本ず
つ等配穿設されている。このばね保持リング17
は、各ばね保持孔17bにコイルばね18を嵌装
した状態で押圧リング15よりも更にシールハウ
ジング中央側に位置して回転軸6に外嵌されると
共に、セツトねじ17c,17cにて該回転軸6
に固着されている。しかして各ピン挿通孔17a
には内端側からねじ形のドライブピン19が挿通
され、該ピン19の先端ねじ部が押圧リング15
に螺着されている。このドライブピン19は、ね
じ頭部が挿通孔17aの内端側に形成された切欠
部17dに位置しており、押圧リング15をばね
保持リング17と一体回転させると共に、シール
組立時に押圧リングの押圧リングの離脱を防止す
る機能を果たす。 Reference numeral 17 denotes a spring retaining ring made of stainless steel, and as shown in FIG. Two bottomed spring holding holes 17b which are parallel to the axial direction and open to the outer end surface are equally spaced. This spring retaining ring 17
is located further toward the center of the seal housing than the press ring 15 with the coil spring 18 fitted in each spring holding hole 17b, and is fitted onto the rotating shaft 6, and the rotation is controlled by the set screws 17c, 17c. axis 6
is fixed to. Therefore, each pin insertion hole 17a
A screw-shaped drive pin 19 is inserted from the inner end side, and the threaded end of the pin 19 is inserted into the press ring 15.
It is screwed on. This drive pin 19 has a screw head located in a notch 17d formed on the inner end side of the insertion hole 17a, and allows the press ring 15 to rotate integrally with the spring retaining ring 17, and also allows the press ring to rotate when assembling the seal. It functions to prevent the pressure ring from coming off.
従つて、押圧リング15はばね保持リング17
のコイルばね18にて押圧されてOリング16を
介して回転リングを固定リング10に常時圧接さ
せており、回転軸6が駆動した際、押圧リング1
5および回転リング14はドライブピン19およ
び係合ピン15bを介してばね保持リング17と
共に一体回転し、回転リング14と固定リングと
が相対回転摺接し、この摺接部20においてシー
ルハウジング内外が常時封止される。なお、この
封止構造はシールハウジング7の両端部にそれぞ
れ設けてある。 Therefore, the pressing ring 15 is the spring retaining ring 17
The rotating ring is always pressed against the fixed ring 10 via the O-ring 16 by being pressed by a coil spring 18, and when the rotating shaft 6 is driven, the pressing ring 1
5 and the rotating ring 14 rotate together with the spring retaining ring 17 via the drive pin 19 and the engagement pin 15b, and the rotating ring 14 and the fixed ring are in relative rotational sliding contact, and at this sliding contact portion 20, the inside and outside of the seal housing are always connected. sealed. Note that this sealing structure is provided at both ends of the seal housing 7, respectively.
21はポンピングインペラーであり、第5図、
第6図でも示すようにシールハウジング7の中央
部において該ハウジング7内を流入側空間22a
と流出側空間22bとに区画する環状仕切り壁部
21aと、該仕切り壁部21aの流出孔側側面の
周縁部に一端を溶接固着されて回転軸6を取囲む
円筒部21bと、該円筒部21bの他端に溶接固
着された羽根車21cとで構成されている。しか
して、環状仕切り壁部21aは、円筒部21bよ
り内側位置に流入側空間22aと流出側空間22
bとを連通する通液孔23が周方向に沿つて等配
穿設されており、セツトピン21dを介して回転
軸6に固着され、この固着状態でその外周面とシ
ールハウジング7の内周面との間で小間〓tを形
成するように設定されている。また羽根車21c
は、第5図で示すように、その側面部に複数枚の
傾斜羽根21eが周方向に沿つて等配する形で突
設されており、ポンピングインペラーの回転軸へ
の固着状態で傾斜羽根21eの外周が冷却液流出
孔13の開口している環状凹溝12に面するよう
に設定されている。 21 is a pumping impeller, as shown in Fig. 5,
As shown in FIG. 6, in the center of the seal housing 7, the interior of the housing 7 is
and an annular partition wall 21a that partitions into an outflow side space 22b, a cylindrical part 21b surrounding the rotating shaft 6 and having one end welded and fixed to the peripheral edge of the side surface of the outflow hole of the partition wall 21a, and the cylindrical part 21b. The impeller 21c is welded to the other end of the impeller 21b. Thus, the annular partition wall 21a has an inflow side space 22a and an outflow side space 22 at an inner position than the cylindrical part 21b.
Liquid passage holes 23 are equally spaced along the circumferential direction and are fixed to the rotating shaft 6 via a set pin 21d, and in this fixed state, the outer circumferential surface and the inner circumferential surface of the seal housing 7 The booth is set to form a booth 〓t. Also, the impeller 21c
As shown in FIG. 5, a plurality of inclined blades 21e are protruded from the side surface thereof so as to be equally distributed along the circumferential direction. The outer periphery of the cooling liquid outlet hole 13 is set so as to face the annular groove 12 in which the coolant outlet hole 13 is opened.
上記構成のメカニカルシールにおいて、シール
ハウジング7内部に冷却液が充満した状態で回転
軸6を回転させた場合、シールハウジング7内の
冷却液は回転軸6の回転に伴つて回転して遠心力
を受けるわけであるが、流入側空間22aはその
外周側が非回転体であるシールハウジング7の内
周面により形成され、流出側空間22bはそのほ
とんど大部分が環状仕切り壁21bと円筒部21
bとよりなる、回転軸6と一体のポンピングイン
ペラー21によつて占められていることから、流
出側空間22b内の冷却液に作用する遠心力は流
入側空間22a内の冷却液に作用する遠心力より
もはるかに大きい。しかも前記円筒部21bにお
ける流出孔13側端部の開口部の開口面積は前記
環状仕切り壁21aに設けられた通液孔23の全
開口面積より十分大きい。 In the mechanical seal having the above configuration, when the rotary shaft 6 is rotated with the inside of the seal housing 7 filled with coolant, the coolant in the seal housing 7 rotates with the rotation of the rotary shaft 6 and exerts centrifugal force. However, the outer peripheral side of the inflow side space 22a is formed by the inner peripheral surface of the seal housing 7, which is a non-rotating body, and the outflow side space 22b is mostly formed by the annular partition wall 21b and the cylindrical part 21.
Since the pumping impeller 21 is integral with the rotating shaft 6 and consists of Much greater than force. Moreover, the opening area of the opening on the side end of the outflow hole 13 in the cylindrical portion 21b is sufficiently larger than the total opening area of the liquid passage hole 23 provided in the annular partition wall 21a.
したがつて、円筒部21b内の冷却液は大きな
遠心力による速度エネルギーを受けて、当該円筒
部21bの流出孔13側端部開口部から流出孔1
3へと流出し、それにより流入側空間22a内の
冷却液が前記通液孔23より前記円筒部21b内
に流入し、しかしてこの円筒部21b内には、流
入側空間22a内の冷却液を一端側の通液孔23
より吸引して他端側の開口部より排出せしめると
いうポンプ作用が発生する。しかも、この円筒部
21b内の冷却液が排出する当該円筒部21bの
流出孔13側端部には流出孔13近傍位置に傾斜
羽根21eが設けてあつて、この流出孔13の附
近では傾斜羽根21eの回転による強力なポンプ
作用が働き、円筒部21b内により排出された冷
却液は更に大きな速度エネルギーを受けて流出孔
13へ到る。 Therefore, the coolant in the cylindrical portion 21b receives velocity energy due to a large centrifugal force, and flows from the opening at the end of the cylindrical portion 21b on the side of the outflow hole 1 to the outflow hole 1.
As a result, the coolant in the inflow side space 22a flows into the cylindrical portion 21b from the liquid passage hole 23, and the coolant in the inflow side space 22a flows into the cylindrical portion 21b. The liquid passage hole 23 on one end side
A pumping action occurs in which the liquid is sucked in more and discharged from the opening at the other end. Moreover, an inclined blade 21e is provided in the vicinity of the outflow hole 13 at the end of the cylindrical portion 21b on the side of the outflow hole 13 through which the coolant in the cylindrical portion 21b is discharged. A strong pumping action is exerted by the rotation of 21e, and the coolant discharged from inside the cylindrical portion 21b receives even greater velocity energy and reaches the outflow hole 13.
このように、前記ポンピングインペラー21に
よつて円筒部21b内部と流出孔13近傍とにそ
れぞれポンプ作用が働くことから、両ポンプ作用
の相乗効果によつて流出孔13→導出管5b→冷
却液タンク3→導入管5a→流入孔11→シール
ハウジング7内部という冷却液循環の流量が非常
に大きくなり、これによつてシールハウジング7
両端の封止部つまり摺接部20,20が効率よく
強力に冷却されることになる。従つて、回転軸6
の軸径が大きい場合や回転数が高い場合でも、充
分な冷却効果が得られ、摩擦発熱による昇温が回
避される。なお、この循環過程では、ポンピング
インペラー21の仕切り壁部21aの外周面とシ
ールハウジング7の内周面との間〓を通して流出
側空間22bから流入側空間22aへの冷却液の
戻りを生じるが、上記間〓は小間〓t1に設定して
あるためにその圧損失は無視できる程度となる。
更にまたケーシング7の内端面と、これに対向す
る羽根21eとの小間〓t2をできるだけ小さくす
ることによつてポンピングインペラー21のポン
プ作用を一層高めることができる。 In this way, since the pumping impeller 21 exerts a pumping action on the inside of the cylindrical portion 21b and the vicinity of the outflow hole 13, the synergistic effect of the two pumping actions causes the flow from the outflow hole 13 to the outlet pipe 5b to the coolant tank. 3→Introduction pipe 5a→Inflow hole 11→Inside of seal housing 7 The flow rate of the coolant circulation becomes very large, and as a result, the flow rate of the coolant circulation becomes very large.
The sealing portions at both ends, that is, the sliding contact portions 20, 20 are efficiently and strongly cooled. Therefore, the rotating shaft 6
Even when the shaft diameter is large or the rotational speed is high, a sufficient cooling effect can be obtained and temperature rise due to frictional heat generation can be avoided. In this circulation process, the cooling liquid returns from the outflow side space 22b to the inflow side space 22a through the space between the outer peripheral surface of the partition wall 21a of the pumping impeller 21 and the inner peripheral surface of the seal housing 7. Since the above distance is set to t 1 , the pressure loss will be negligible.
Furthermore, the pumping action of the pumping impeller 21 can be further enhanced by making the space t 2 between the inner end surface of the casing 7 and the opposing blade 21e as small as possible.
しかして、特に上記実施例では、流出孔13の
開口するシールハウジング内周面に環状凹溝12
が形成されているため、この凹溝12において渦
巻室が構成され、上記ポンプ作用がより大きくな
り、更に流出孔13が上記内周面に対して接線方
向に穿設されていることから、冷却液の排出抵抗
が小さく円滑が流れを生じ、更にポンプ作用が大
きくなるという利点がある。 In particular, in the above embodiment, the annular groove 12 is formed on the inner circumferential surface of the seal housing where the outflow hole 13 opens.
Since a spiral chamber is formed in the groove 12, the pumping action becomes stronger, and the outflow hole 13 is formed tangentially to the inner circumferential surface, which improves the cooling efficiency. It has the advantage that the liquid discharge resistance is small, smooth flow occurs, and the pumping action is increased.
因に、上記実施例構成のメカニカルシールの冷
却液循環流量は、通常のスケールで冷却液として
グリセリンと水との混合液(常温粘度30cp)を
使用した場合に10/min程度となり、前記従来
のエキスペラーやポンピングリングを使用した同
スケールのものの循環液量が0.5〜2/min程
度であるのに比較して5〜20倍という大きな値を
示す。 Incidentally, the coolant circulation flow rate of the mechanical seal configured in the above example is about 10/min when a mixture of glycerin and water (viscosity at room temperature 30 cp) is used as the coolant on a normal scale, which is different from that of the conventional mechanical seal described above. The circulating fluid volume is 5 to 20 times larger than that of similar scale models using an expeller or pumping ring, which is about 0.5 to 2/min.
なお、本考案では、封止部を構成する回転リン
グと固定リングの形状や弾圧構造等の細部構成に
ついては上述実施例以外に種々設計変更可能であ
り、またメカニカルシールを適用する回転機器に
ついても遠心ポンプ等のポンプ類に限らず種々の
回転機器を対象とできる。 In addition, in this invention, the detailed configurations of the shape of the rotating ring and fixed ring that make up the sealing part, the elastic pressure structure, etc. can be variously designed in addition to the above-mentioned embodiments, and the rotating equipment to which the mechanical seal is applied can be various rotating equipment, not limited to pumps such as centrifugal pumps.
(考案の作用及び効果)
本考案によれば、次のような作用効果を奏する
ことができる。(Operations and effects of the invention) According to the invention, the following effects can be achieved.
すなわち、本考案のメカニカルシールにおいて
は、シールハウジング内部に冷気液が充満した状
態で回転軸を回転させた場合、シールハウジング
内の冷却液も回転軸の回転に伴つて回転し、遠心
力を受けるわけであるが、ポンピングインペラー
の環状仕切り壁を介して流出側空間と仕切られた
流入側空間は、その外周側が非回転体であるシー
ルハウジングの内周面により形成され、反対側の
流出側空間部はそのほとんど大部分が前記仕切り
壁とこの仕切り壁の流出孔側側面の周縁部に固着
された円筒部とからなる、回転軸と一体のポンピ
ングインペラーによつて占められていることか
ら、流出側空間内の冷却液に作用する遠心力は流
入側空間内の冷却液に作用する遠心力よりもはる
かに大きい。しかも前記円筒部における流出孔側
端部の開口面積は前記仕切り壁に設けられた通液
孔の開口面積より十分大きい。 In other words, in the mechanical seal of the present invention, when the rotary shaft is rotated with the seal housing filled with cold liquid, the coolant inside the seal housing also rotates with the rotation of the rotary shaft and is subject to centrifugal force. However, the inflow side space, which is separated from the outflow side space through the annular partition wall of the pumping impeller, has an outer peripheral side formed by the inner peripheral surface of the seal housing, which is a non-rotating body, and an outflow side space on the opposite side. Most of the area is occupied by the pumping impeller integrated with the rotating shaft, which consists of the partition wall and a cylindrical part fixed to the peripheral edge of the side surface of the partition wall on the outflow hole side. The centrifugal force acting on the coolant in the side space is much larger than the centrifugal force acting on the coolant in the inflow side space. Moreover, the opening area of the end of the cylindrical portion on the outflow hole side is sufficiently larger than the opening area of the liquid passage hole provided in the partition wall.
したがつて、前記円筒部内の冷却液は大きな遠
心力による速度エネルギーを受けて、当該円筒部
の流出孔側端部開口部から流出孔へと流出し、そ
れにより流入側空間内の冷却液が前記通液孔より
前記円筒部内に流入し、しかしてこの円筒部内に
は、流入側空間内の冷却液を一端側の通液孔より
吸引して他端側の開口部より排出せしめるという
ポンプ作用が働く。しかも、この円筒部内の冷却
液が排出する当該円筒部の流出孔側端部には流出
孔近傍位置に傾斜羽根が設けてあつて、この流出
孔の附近では傾斜羽根の回転による強力なポンプ
作用が働き、円筒部内より排出された冷却液は更
に大きな速度エネルギーを受けて流出孔へ到る。 Therefore, the cooling liquid in the cylindrical part receives velocity energy due to a large centrifugal force and flows out from the opening at the end of the cylindrical part on the outflow hole side to the outflow hole, thereby causing the cooling liquid in the inflow side space to The liquid flows into the cylindrical part through the liquid passage hole, and the cylindrical part has a pump action that sucks the coolant in the inflow side space through the liquid passage hole at one end and discharges it from the opening at the other end. works. Moreover, an inclined vane is provided near the outflow hole at the end of the cylindrical part on the side of the outflow hole through which the coolant inside the cylindrical part is discharged, and a strong pumping action is generated near the outflow hole by the rotation of the inclined vane. works, and the coolant discharged from the cylindrical portion receives even greater velocity energy and reaches the outflow hole.
このように、前記ポンピングインペラーによつ
て円筒部内部と流出孔近傍とにそれぞれポンプ作
用が働くことから、両ポンプ作用の相乗的効果に
よつて、冷却液の循環液量が非常に大きくなり、
固定リングと回転リングとの相対回転摺接による
封止部が極めて効率よく強力に冷却され、回転軸
の軸径が大きい場合や回転数が高い場合でも充分
な冷却効果が得られて摩擦発熱による昇温が防止
される。また、本考案のメカニカルシールは構造
的に非常に簡素であるため、製造コストが安く付
き、組立・分解の作業性にも優れている。 In this way, since the pumping impeller exerts a pumping action on the inside of the cylindrical portion and in the vicinity of the outflow hole, the amount of circulating coolant becomes extremely large due to the synergistic effect of both pumping actions.
The sealing part due to the relative rotational sliding contact between the fixed ring and the rotating ring is extremely efficiently and powerfully cooled, and even when the rotating shaft diameter is large or the rotation speed is high, a sufficient cooling effect can be obtained and the frictional heat generation is prevented. Temperature rise is prevented. Furthermore, since the mechanical seal of the present invention has a very simple structure, manufacturing costs are low and it is easy to assemble and disassemble.
図面は本考案の一実施例を示すものであつて、
第1図は本考案を適用した遠心ポンプの側面図、
第2図は上記ポンプの軸封装置部分から縦断正面
図、第3図は第2図の−線の断面矢視図、第
4図は第2図の−線の断面図、第5図はポン
ピングインペラーの正面図、第6図は第5図の
−線の断面矢視図である。
6……回転軸、7……シールハウジング、10
……固定リング、11……冷却液流入孔、12…
…環状凹溝、13……冷却液流、14……回転リ
ング、18……コイルばね、20……摺接部、2
1……ポンピングインペラー、21a……環状仕
切り壁部、21b……円筒部、21e……傾斜羽
根、22a……流入側空間、22b……流出側空
間、23……通液孔、t1,t2……小間〓。
The drawings show one embodiment of the present invention,
Figure 1 is a side view of a centrifugal pump to which the present invention is applied.
Fig. 2 is a longitudinal sectional front view taken from the shaft sealing device portion of the pump, Fig. 3 is a sectional view taken along the - line in Fig. 2, Fig. 4 is a sectional view taken along the - line in Fig. 2, and Fig. 5 is a sectional view taken along the - line in Fig. 2. A front view of the pumping impeller, FIG. 6 is a sectional view taken along the - line in FIG. 5. 6...Rotating shaft, 7...Seal housing, 10
...Fixing ring, 11...Cooling liquid inflow hole, 12...
...Annular groove, 13...Cooling liquid flow, 14...Rotating ring, 18...Coil spring, 20...Sliding contact part, 2
DESCRIPTION OF SYMBOLS 1... Pumping impeller, 21a... Annular partition wall part, 21b... Cylindrical part, 21e... Inclined vane, 22a... Inflow side space, 22b... Outflow side space, 23... Liquid passage hole, t1 , t 2 ...booth〓.
Claims (1)
より相互に圧接するシールハウジング側の固定
リングと回転軸側の回転リングとの摺接部で密
封され、該ハウジングの一端側に冷却液流入孔
が形成され、同他端側に冷却液流出孔が形成さ
れてなるメカニカルシールにおいて、回転軸に
固着されて上記ハウジング内を流入側空間と流
出側空間とに区画し、かつハウジング内周面と
の間で小間〓を形成する環状仕切り壁部と、該
仕切り壁部の流出孔側側面の周縁部に固着され
て回転軸を取囲む円筒部と、該円筒部の上記流
出孔近傍に位置した開口端縁に沿つて所定間隔
で固着され且つハウジング内端面との間で小間
〓を形成する複数板の羽根とで構成されたポン
ピングインペラーが配設され、かつ該インペラ
ーの環状仕切り壁部には上記両空間を連通する
通液孔が周方向に所定間隔おきに穿設されてい
ることを特徴とするメカニカルシール。 2 冷却液流出孔がシールハウジングの内周に対
して接線方向に穿設されてなる実用新案登録請
求の範囲第1項記載のメカニカルシール。 3 シールハウジングの冷却液流出孔側の端部内
面に環状凹溝が形成され、この溝底に冷却液流
出孔が開口してなる実用新案登録請求の範囲第
第1項または第2項記載のメカニカルシール。[Claims for Utility Model Registration] 1. Both ends of the seal housing are sealed at sliding contact portions between a fixed ring on the seal housing side and a rotating ring on the rotating shaft side, which are pressed against each other by spring force, and one end of the housing A mechanical seal having a coolant inflow hole and a coolant outflow hole formed at the other end thereof, the mechanical seal being fixed to a rotating shaft to partition the inside of the housing into an inflow side space and an outflow side space; an annular partition wall that forms a booth with an inner circumferential surface; a cylindrical part that is fixed to the peripheral edge of the side surface of the partition wall on the outflow hole side and surrounds the rotating shaft; and the outflow hole of the cylindrical part. A pumping impeller configured with a plurality of blades fixed at predetermined intervals along the edge of the opening located nearby and forming a space with the inner end surface of the housing is disposed, and an annular partition of the impeller. A mechanical seal characterized in that the wall portion has liquid passage holes formed at predetermined intervals in the circumferential direction to communicate the two spaces. 2. The mechanical seal according to claim 1, wherein the coolant outflow hole is formed tangentially to the inner periphery of the seal housing. 3. A utility model according to claim 1 or 2, wherein an annular groove is formed on the inner surface of the end of the seal housing on the coolant outlet side, and the coolant outlet hole is opened at the bottom of the groove. mechanical seal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987187912U JPH0518533Y2 (en) | 1987-12-10 | 1987-12-10 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987187912U JPH0518533Y2 (en) | 1987-12-10 | 1987-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0191165U JPH0191165U (en) | 1989-06-15 |
JPH0518533Y2 true JPH0518533Y2 (en) | 1993-05-17 |
Family
ID=31479041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987187912U Expired - Lifetime JPH0518533Y2 (en) | 1987-12-10 | 1987-12-10 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0518533Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124157A (en) * | 1981-01-26 | 1982-08-02 | Hitachi Ltd | Shaft seal device internally cooled by forcible circulation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60147859U (en) * | 1984-03-13 | 1985-10-01 | 内山工業株式会社 | Cushion ring for mechanical seal |
-
1987
- 1987-12-10 JP JP1987187912U patent/JPH0518533Y2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124157A (en) * | 1981-01-26 | 1982-08-02 | Hitachi Ltd | Shaft seal device internally cooled by forcible circulation |
Also Published As
Publication number | Publication date |
---|---|
JPH0191165U (en) | 1989-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4013384A (en) | Magnetically driven centrifugal pump and means providing cooling fluid flow | |
US5378121A (en) | Pump with fluid bearing | |
US4388915A (en) | Heat generator for a circulating heating system | |
US3850550A (en) | Centrifugal pump and motor | |
JP4004572B2 (en) | Centrifugal pump | |
JP4084351B2 (en) | Motor-integrated internal gear pump and electronic equipment | |
CA2046983C (en) | Centrifugal pumps | |
US20080159885A1 (en) | Motor-Mounted Internal Gear Pump and Manufacturing Method Thereof and Electronic Equipment | |
US3107625A (en) | Centrifugal liquid pump | |
US3779667A (en) | Semi-seal device | |
US4005747A (en) | Multi-flow, multi-path heat exchanger for pump-mechanical seal assembly | |
KR940021938A (en) | West nose pump | |
KR910012535A (en) | Liquid pump with degassing function | |
JPH0518533Y2 (en) | ||
KR100540381B1 (en) | Impeller for Self-priming Pump | |
CN218760600U (en) | Stator for heating pump and heating pump | |
CN220956081U (en) | Pump with a pump body | |
KR20190135379A (en) | Rotary disk pump | |
JP2000274386A (en) | External driving type line pump | |
CN216867025U (en) | Dish washer pump and dish washer | |
JPH07119678A (en) | Canned motor pump device | |
CN118423291B (en) | Pump body structure | |
KR970006208Y1 (en) | Warm water circulating pump for cooling ability developed | |
CN211288238U (en) | Pump and method of operating the same | |
JPS624709Y2 (en) |