JPH05183175A - Optical switching element - Google Patents

Optical switching element

Info

Publication number
JPH05183175A
JPH05183175A JP4017419A JP1741992A JPH05183175A JP H05183175 A JPH05183175 A JP H05183175A JP 4017419 A JP4017419 A JP 4017419A JP 1741992 A JP1741992 A JP 1741992A JP H05183175 A JPH05183175 A JP H05183175A
Authority
JP
Japan
Prior art keywords
optical switching
switching element
carrier
thin film
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4017419A
Other languages
Japanese (ja)
Inventor
Katsuhiro Nichiyougi
克洋 二挺木
Akira Taomoto
昭 田尾本
Taro Nanbu
太郎 南部
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP4017419A priority Critical patent/JPH05183175A/en
Publication of JPH05183175A publication Critical patent/JPH05183175A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To accelerate an operating speed of an optical switching element to be used in an electronic industrial field by reducing an optical switching phenomenon in a charge transfer complex to a low order. CONSTITUTION:A substituent of a long chain is modified at one or both of an electron donor and an electron acceptor to form a structure of a crystal or a thin film to be formed thereby in an alternately laminated layer structure of a conductive layer and an insulating layer. In this case, a Coulomb interaction between carrier of the conductive layer and carrier of the adjacent conductive layer is very weakened. Then, an optical switching phenomenon of a charge transfer complex is generated by self-breeding step of the carrier, but since a decrease in the coulomb interaction between the carriers alleviates bounding of the carrier, its operating speed is accelerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子産業分野において利
用される光スイッチング素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switching device used in the electronic industry field.

【0002】[0002]

【従来の技術】近年、シリコンを中心とした半導体デバ
イスの加工精度は、いわゆるサブミクロンの領域に達す
るようになり、その集積度は飛躍的な向上を見せてい
る。しかし、これらの機能は無機半導体のバルクとして
の機能を利用しているためにその集積度には物理的な限
界が自ずと存在する。
2. Description of the Related Art In recent years, the processing accuracy of semiconductor devices centered on silicon has reached the so-called submicron region, and the degree of integration has dramatically improved. However, since these functions utilize the function of the bulk of the inorganic semiconductor, the integration degree naturally has a physical limit.

【0003】一方、有機分子はそれ自体が一つの閉じた
系を成しているために分子一つが機能の基本単位となっ
ている。したがって、かかる機能を利用する場合、分子
オーダーのサイズが加工精度の物理的限界となり、か
つ、有機分子が持つ機能の多様性により、従来の無機半
導体デバイスに比べて高集積化、高機能化が可能であ
る。近年、ラングミュアー・ブロジェット法(以下、L
B法と略称する)や蒸着法に代表される有機分子の超薄
膜形成技術の進展により、有機薄膜を用いた素子の検討
が活発化している。
On the other hand, since the organic molecule itself constitutes one closed system, one molecule serves as a basic unit of function. Therefore, when utilizing such a function, the size of the molecular order becomes the physical limit of processing accuracy, and due to the variety of functions possessed by organic molecules, higher integration and higher functionality than conventional inorganic semiconductor devices can be achieved. It is possible. Recently, the Langmuir-Blodgett method (hereinafter, L
The development of ultra-thin film forming techniques for organic molecules, represented by the B method) and vapor deposition methods, has led to active studies of devices using organic thin films.

【0004】有機物を用いた光スイッチング素子に関し
ては、光電変換機能を有する有機薄膜を用い、金属、半
導体等との接合を利用して光入力に対する電気的スイッ
チング機能、すなわち光スイッチングを発現させるよう
になっている。
Regarding an optical switching element using an organic substance, an organic thin film having a photoelectric conversion function is used so that an electrical switching function with respect to a light input, that is, an optical switching function is exhibited by utilizing a junction with a metal, a semiconductor or the like. Is becoming

【0005】[0005]

【発明が解決しようとする課題】接合を利用する場合、
素子を構成する材料の表面状態が素子の特性に大きく影
響し、例えば、表面の粗さ等の影響を受けてその電気的
特性は変化する。したがって、製造工程が複雑なものに
なり、工程管理が重要である。
When using joining,
The surface state of the material forming the element greatly affects the characteristics of the element, and its electrical characteristics change under the influence of, for example, surface roughness. Therefore, the manufacturing process becomes complicated and process control is important.

【0006】有機材料においては、いくつかの電荷移動
錯体において材料固有の性質としての光スイッチング現
象が見いだされているが、動作速度が遅くて数百msecの
オーダーであり、実用には程遠い状況となっている。
In some organic materials, an optical switching phenomenon has been found as a property peculiar to the material in the charge transfer complex, but the operation speed is slow and it is on the order of several hundred msec, which is far from practical use. Is becoming

【0007】本発明は前記従来の課題を解決するもの
で、従来にはなかった光スイッチング素子を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an optical switching element which has not been available in the past.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の技術的解決手段は、電荷移動錯体における
光スイッチング現象を低次元化することによって高速で
動作する光スイッチング素子を提供する。電子供与体お
よび/または電子受容体に長鎖の置換基を付けた場合、
図1に示すように形成される電荷移動錯体の構造は導電
性層と長鎖の置換基により形成される絶縁層の交互積層
構造となり、電子系の次元を下げることができる。
In order to achieve the above object, the technical solution of the present invention provides an optical switching element which operates at high speed by reducing the optical switching phenomenon in a charge transfer complex. When a long-chain substituent is attached to the electron donor and / or the electron acceptor,
The structure of the charge transfer complex formed as shown in FIG. 1 is an alternating laminated structure of conductive layers and insulating layers formed by long-chain substituents, and the dimension of the electronic system can be reduced.

【0009】[0009]

【作用】本発明によって、従来知られている電荷移動錯
体の光スイッチング現象の動作速度を高速化することが
できる。電子供与体と電子受容体のどちらか一方あるい
は両方に長鎖の置換基を修飾することにより、これより
構成される結晶あるいは薄膜の構造は導電性層と絶縁層
との交互積層構造となる。この場合、導電性層のキャリ
アーと隣接する導電性層のキャリアーとの間のクーロン
相互作用は絶縁層の存在により非常に弱くなる。電荷移
動錯体における光スイッチング現象は、キャリアーの自
己増殖過程によるものであることがわかっているが、こ
のようなキャリアー間のクーロン相互作用の低下はキャ
リアーの束縛を緩めるため、動作速度が高速化する。
According to the present invention, the operation speed of the photoswitching phenomenon of the conventionally known charge transfer complex can be increased. By modifying one or both of the electron donor and the electron acceptor with a long-chain substituent, the structure of the crystal or thin film composed of this becomes an alternating laminated structure of conductive layers and insulating layers. In this case, the Coulomb interaction between the carrier of the conductive layer and the carrier of the adjacent conductive layer is very weak due to the presence of the insulating layer. It is known that the photoswitching phenomenon in the charge-transfer complex is due to the self-propagation process of carriers, but such a decrease in Coulomb interaction between carriers relaxes the constraint of the carriers, resulting in faster operation speed. ..

【0010】[0010]

【実施例】(実施例1)以下、本発明の一実施例につい
て図面を参照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0011】電子供与体として3,3',5,5'-テトラメチル
ベンチジン(TMB)、電子受容体として長鎖のアルキル基
を有する2-ドデシル-7,7,8,8-テトラシアノキノジメタ
ン(C12TCNQ)を用いて真空封管中で共昇華法により電荷
移動錯体TMB-C12TCNQを作製した。
3,3 ', 5,5'-Tetramethylbenzidine (TMB) as an electron donor and 2-dodecyl-7,7,8,8-tetracyano having a long-chain alkyl group as an electron acceptor Charge transfer complex TMB-C12TCNQ was prepared by the co-sublimation method in a vacuum sealed tube using quinodimethane (C12TCNQ).

【0012】構造解析の結果、図1の模式図に示すよう
に、TMBとTCNQから成る導電性層とドコシル基から成る
絶縁性層のシートが交互に積層した構造となっているこ
とが明かとなった。
As a result of the structural analysis, as shown in the schematic view of FIG. 1, it is clear that the sheet has a structure in which the conductive layers made of TMB and TCNQ and the insulating layers made of docosyl group are alternately laminated. became.

【0013】この結晶試料に銀ペーストを用いて1対の
電極を形成して、光照射による両電極間の電流変化を測
定したところ、図2に示すようになった。
When a pair of electrodes was formed on this crystal sample using silver paste and the change in current between both electrodes due to light irradiation was measured, the result was as shown in FIG.

【0014】すなわち、電圧入力によるスイッチングが
起きる電圧よりも低い電圧を素子に印加した状態でパル
ス光(c)を入力してその電流応答(a)を測定したとこ
ろ、光入力(c)により素子は低抵抗状態へとスイッチ
し、光入力(c)が遮断された後もその導通状態を保持し
た。初期の高抵抗状態へ戻す際には、(b)に示すよう
に、印加電圧を一旦下げればよく、その後もとの電圧ま
で戻して再度光入力(c)を与えると上と同じスイッチン
グを繰り返した。このときの光スイッチングの追随速度
は1kHzとなり、従来のものよりも10〜10000倍となっ
た。
That is, when the pulsed light (c) was input and the current response (a) was measured while a voltage lower than the voltage at which switching by voltage input occurs was applied to the element, the light input (c) caused an element Switched to a low resistance state and maintained its conducting state even after the light input (c) was cut off. When returning to the initial high resistance state, as shown in (b), the applied voltage can be lowered once, and then returning to the original voltage and applying the optical input (c) again, the same switching as above is repeated. It was The tracking speed of optical switching at this time was 1 kHz, which was 10 to 10,000 times faster than the conventional one.

【0015】(実施例2)電子供与体としてN,N,N',N'-
テトラメチル-P-フェニレンジアミン(TMPD)を、電子
受容体として2-オクタデシル-7,7,8,8-テトラシアノキ
ノジメタン(C18TCNQ)を用いて薄膜を作製した。薄膜
の作製は、LB法によりまずC18TCNQの薄膜を作製し、
そこに真空中でTMPDのドーピングを行なった。
(Example 2) N, N, N ', N'-as electron donors
Thin films were prepared from tetramethyl-P-phenylenediamine (TMPD) using 2-octadecyl-7,7,8,8-tetracyanoquinodimethane (C18TCNQ) as an electron acceptor. To make a thin film, first make a thin film of C18TCNQ by the LB method,
TMPD doping was performed there in a vacuum.

【0016】図3に示すように、対向した金の櫛形電極
2、3を石英基板1に蒸着したものを用いて、両電極
2、3をまたがるように薄膜4を形成して、この薄膜4
の光照射による電流変化を測定したところ、光スイッチ
ングの追随速度は0.1kHzとなり、従来の単結晶試料と同
程度かそれ以上となった。
As shown in FIG. 3, a thin film 4 is formed so as to straddle both electrodes 2 and 3 by using vapor-deposited opposing gold comb-shaped electrodes 2 and 3 on a quartz substrate 1.
When the current change due to light irradiation was measured, the tracking speed of optical switching was 0.1 kHz, which was about the same as or higher than the conventional single crystal sample.

【0017】(実施例3)電子供与体としてTMB、電子
受容体として2-ペンタデシル-7,7,8,8-テトラシアノキ
ノジメタン(C15TCNQ)を用いて、実施例1と同様にし
て結晶試料を作製し、さらにこれを蒸着法により蒸着し
た。基板としては実施例2と同じ金の櫛形電極を蒸着し
た石英基板を用いた。
(Example 3) Crystals were prepared in the same manner as in Example 1 using TMB as an electron donor and 2-pentadecyl-7,7,8,8-tetracyanoquinodimethane (C15TCNQ) as an electron acceptor. A sample was prepared and further vapor-deposited by the vapor deposition method. As the substrate, the same quartz substrate on which the gold comb-shaped electrode as in Example 2 was deposited was used.

【0018】この薄膜素子の光照射による電流の変化を
測定したところ光スイッチングの追随速度は0.1kHzとな
り、従来の単結晶試料と同程度かそれ以上となった。
When the change in current due to light irradiation of this thin film element was measured, the following speed of optical switching was 0.1 kHz, which was about the same as or higher than that of the conventional single crystal sample.

【0019】(他の実施例)以上の実施例においては、
電子受容体に長鎖の置換基を付けたものを用いている
が、電子供与体に置換基を付けてもかまわない。
(Other Embodiments) In the above embodiments,
Although a long-chain substituent is used for the electron acceptor, a substituent may be added to the electron donor.

【0020】また、電子供与体として芳香族アミンを用
いたが、その他にも芳香族アミン誘導体、テトラチオフ
ルバレンおよびその誘導体、有機色素などでもよく、電
子受容体としてはテトラシアノキノジメタンおよびその
誘導体、キノン系分子、無機系酸化材等でもよいが、電
子供与体と電子受容体の組合せとして好ましくはテトラ
チオフルバレン誘導体とクロラニル、テトラチオフルバ
レン誘導体とブロマニル、TMBとテトラシアノキノジメ
タン誘導体、TMPDとテトラシアノキノジメタン誘導体、
ジメチルフェナジンとテトラシアノキノジメタン誘導体
がよく、さらにテトラシアノキノジメタン誘導体および
テトラチオフルバレン誘導体としては、それぞれ
Although an aromatic amine was used as the electron donor, other aromatic amine derivatives, tetrathiofulvalene and its derivatives, organic dyes, etc. may be used, and the electron acceptor may be tetracyanoquinodimethane or It may be a derivative thereof, a quinone-based molecule, an inorganic oxide or the like, but a combination of an electron donor and an electron acceptor is preferably a tetrathiofulvalene derivative and chloranil, a tetrathiofulvalene derivative and bromanil, TMB and tetracyanoquinodide. Methane derivative, TMPD and tetracyanoquinodimethane derivative,
Dimethylphenazine and tetracyanoquinodimethane derivatives are good, and further tetracyanoquinodimethane derivatives and tetrathiofulvalene derivatives are respectively

【化1】 [Chemical 1]

【化2】 (R1は炭化水素鎖を含む置換基、R2は水素または炭化
水素鎖を含む置換基)に示すような構造のものがよい。
[Chemical 2] (R 1 is a substituent containing a hydrocarbon chain and R 2 is a substituent containing hydrogen or a hydrocarbon chain).

【0021】[0021]

【発明の効果】以上の実施例に基づく説明から明らかな
ように、本発明によると、電荷移動錯体における光スイ
ッチング現象をより高速にすることがことができる。
As is clear from the description based on the above examples, according to the present invention, the photoswitching phenomenon in the charge transfer complex can be made faster.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における電荷移動錯体の構造を示す模式
図、
FIG. 1 is a schematic diagram showing the structure of a charge transfer complex according to the present invention,

【図2】第1の実施例における光スイッチング素子の動
作を説明するための光照射による電流応答の波形図、
FIG. 2 is a waveform diagram of a current response due to light irradiation for explaining the operation of the optical switching element in the first embodiment.

【図3】本発明の光スイッチング素子の具体例を示す平
面図である。
FIG. 3 is a plan view showing a specific example of the optical switching element of the present invention.

【符号の説明】[Explanation of symbols]

1 石英基板 2、3 櫛形電極 4 スイッチング薄膜 1 Quartz substrate 2, 3 Comb electrode 4 Switching thin film

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 31/04 7376−4M H01L 31/04 D (72)発明者 南部 太郎 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 村上 睦明 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technology display location // H01L 31/04 7376-4M H01L 31/04 D (72) Inventor Taro Minami Tama-ku, Kawasaki-shi, Kanagawa 3-10-1 Mita Matsushita Giken Co., Ltd. (72) Inventor Mutsumi Murakami 3-10-1 Higashimita Tama-ku, Kawasaki-shi, Kanagawa Matsushita Giken Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子受容体および/または電子供与体に
長鎖の置換基を有し、電子受容体と電子供与体とを交互
に配列した積層カラムから成る電荷移動錯体の積層体を
具備することを特徴とする光スイッチング素子。
1. A charge transfer complex laminate comprising a laminate column having long-chain substituents in an electron acceptor and / or an electron donor and having electron acceptors and electron donors alternately arranged. An optical switching element characterized by the above.
【請求項2】 光スイッチング素子に用いる電荷移動錯
体が単結晶であることを特徴とする請求項1に記載の光
スイッチング素子。
2. The optical switching element according to claim 1, wherein the charge transfer complex used for the optical switching element is a single crystal.
【請求項3】 光スイッチング素子が薄膜から成り、該
薄膜がラングミュアー・ブロジェット法により作製され
ることを特徴とする請求項1に記載の光スイッチング素
子。
3. The optical switching element according to claim 1, wherein the optical switching element is composed of a thin film, and the thin film is manufactured by the Langmuir-Blodgett method.
【請求項4】 光スイッチング素子が薄膜から成り、該
薄膜が蒸着法により作製されることを特徴とする請求項
1に記載の光スイッチング素子。
4. The optical switching element according to claim 1, wherein the optical switching element is composed of a thin film, and the thin film is manufactured by a vapor deposition method.
JP4017419A 1992-01-04 1992-01-04 Optical switching element Pending JPH05183175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017419A JPH05183175A (en) 1992-01-04 1992-01-04 Optical switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017419A JPH05183175A (en) 1992-01-04 1992-01-04 Optical switching element

Publications (1)

Publication Number Publication Date
JPH05183175A true JPH05183175A (en) 1993-07-23

Family

ID=11943492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017419A Pending JPH05183175A (en) 1992-01-04 1992-01-04 Optical switching element

Country Status (1)

Country Link
JP (1) JPH05183175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221459A (en) * 1996-02-15 1997-08-26 Toshiba Corp Charge transfer complex and organic thin film element
JP2006024527A (en) * 2004-07-09 2006-01-26 Yamaguchi Univ Lb film that can give electrical conductivity and electrical conductive lb film
JP2011029229A (en) * 2009-07-21 2011-02-10 National Institute Of Advanced Industrial Science & Technology Organic photoelectric conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221459A (en) * 1996-02-15 1997-08-26 Toshiba Corp Charge transfer complex and organic thin film element
JP2006024527A (en) * 2004-07-09 2006-01-26 Yamaguchi Univ Lb film that can give electrical conductivity and electrical conductive lb film
JP4543169B2 (en) * 2004-07-09 2010-09-15 国立大学法人山口大学 Conductive LB film and conductive LB film
JP2011029229A (en) * 2009-07-21 2011-02-10 National Institute Of Advanced Industrial Science & Technology Organic photoelectric conversion device

Similar Documents

Publication Publication Date Title
US5185208A (en) Functional devices comprising a charge transfer complex layer
Porath et al. Direct measurement of electrical transport through DNA molecules
US7019449B2 (en) Chemical monolayer field emitter device
JP3071789B2 (en) Ultra-small electrochemical devices based on inorganic redox active materials
Lauters et al. Multilevel conductance switching in polymer films
EP0272937B1 (en) Switching device
US5009958A (en) Functional devices comprising a charge transfer complex layer
US8440467B2 (en) Electronic switching, memory, and sensor devices from a discontinuous graphene and/or graphite carbon layer on dielectric materials
Christy Electrical properties of thin polymer films. Part II. Thickness 50–150 Å
JPH05183175A (en) Optical switching element
Chen et al. Performance improvement by charge trapping of doping fluorescent dyes in organic memory devices
CN101174673A (en) Double-layer compound film non-volatile memory device and method for producing the same
JP3530471B2 (en) Gas detection method and gas sensor utilizing photocurrent amplification
JP2000012922A (en) Organic thin-film element
Dimitrakis et al. Electrical behavior of memory devices based on fluorene-containing organic thin films
Wilson Nano-molecular electronics: Ideas and experiments
Matsuda et al. Observations of photovoltage in Ag photodoping of amorphous As2S3 films
JPH05190880A (en) Optical switching element
JPH0521212A (en) Non-linear resistance element
Reucroft et al. Electrical characteristics of chlorophyll a films
JPH08116109A (en) Manufacture of organic thin-film switching-memory composite element and organic thin-film switching-memory composite element
JPS6242582A (en) Nonlinear resistance element and manufacture of same
JPS63146464A (en) Semiconductor element
JPS6242470A (en) Planar sensor
CN1324108C (en) Use of functional material with photoelectric dual response