JPH05182828A - Superconducting magnet for nmr analysis - Google Patents

Superconducting magnet for nmr analysis

Info

Publication number
JPH05182828A
JPH05182828A JP15692A JP15692A JPH05182828A JP H05182828 A JPH05182828 A JP H05182828A JP 15692 A JP15692 A JP 15692A JP 15692 A JP15692 A JP 15692A JP H05182828 A JPH05182828 A JP H05182828A
Authority
JP
Japan
Prior art keywords
coil
superconductor wire
magnetic field
superconducting wire
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15692A
Other languages
Japanese (ja)
Inventor
Koichi Oka
皓一 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15692A priority Critical patent/JPH05182828A/en
Publication of JPH05182828A publication Critical patent/JPH05182828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To generate a high magnetic field by mounting a main coil using an oxide superconductor wire and a shim coil employing a metallic group superconductor wire on the outer circumference of the main coil and arranging these main coil and shim coil into a cryostat, in which liquid helium is housed. CONSTITUTION:A main coil 1 for generating a magnetic field is composed of the oxide superconductor wire coil 1a of an internal layer coil using a BiSrCaCuO oxide superconductor wire, the NbTi superconductor wire coil 1b of a metallic group superconductor and an NbTi superconductor wire sub-coil 1c. A shim coil group 2 includes a saddle type coil, and employs an NbTi superconductor wire. A self-shield coil 3 for shielding uses a metallic group superconductor wire or an oxide superconductor wire. These coils 1, 2, 3 are housed collectively into a liquid helium tank 4, and the whole is operated at a liquid helium temperature. Accordingly, a high magnetic field of 15T or more can be generated easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NMR(核磁気共鳴)
分析用超電導マグネットに関するものである。
The present invention relates to NMR (nuclear magnetic resonance).
The present invention relates to a superconducting magnet for analysis.

【0002】[0002]

【従来の技術】従来のNMR分析用超電導マグネットは
主コイルには金属系超電導体、具体的はNbTi系超電
導線あるいはNb3Sn系超電導線が使用されている。
2. Description of the Related Art In a conventional superconducting magnet for NMR analysis, a metal superconductor, specifically, an NbTi superconducting wire or an Nb 3 Sn superconducting wire is used as a main coil.

【0003】[0003]

【発明が解決しようとする課題】材料の臨界磁場の制約
からNbTi超電導線コイルでは9T(テスラ)が、N
3Sn超電導線コイルでは15〜16Tがそれぞれ発
生磁場の限界になっている。
Due to the restriction of the critical magnetic field of the material, NbTi superconducting wire coil has N of 9T (Tesla).
In the b 3 Sn superconducting wire coil, 15 to 16 T is the limit of the generated magnetic field.

【0004】本発明は以上の点に鑑みなされたものであ
り、発生磁場を大幅に引き上げることを可能としたNM
R分析用超電導マグネットを提供することを目的とする
ものである。
The present invention has been made in view of the above points, and it is possible to significantly increase the generated magnetic field.
It is intended to provide a superconducting magnet for R analysis.

【0005】[0005]

【課題を解決するための手段】上記目的は、酸化物超電
導線を使用した主コイルと、この主コイルの外周に金属
系超電導線を使用したシムコイルとを持ち、これら主コ
イルおよびシムコイルを液体ヘリウムを収納したクライ
オスタット内に配置することにより、達成される。
The above object is to have a main coil using an oxide superconducting wire and a shim coil using a metal superconducting wire on the outer periphery of the main coil, and the main coil and the shim coil are liquid helium. This is achieved by placing the inside of the cryostat.

【0006】[0006]

【作用】上記手段を設けたので、金属系超電体では容易
に発生できない15T以上の高磁界が発生できるように
なる。
Since the above-mentioned means is provided, it becomes possible to generate a high magnetic field of 15 T or more, which cannot be easily generated by the metal-based superconductor.

【0007】すなわち磁場発生のための主コイルの超電
導線としてBi−Sr−Ca−Cu−O、Y−Ba−C
u−O等の酸化物超電導線を使用する。これらの材料は
臨界磁界が100T程度であるので、液体ヘリウム
(4.2K)温度において20Tの磁場発生が可能にな
る。NMR分析装置の分解能は用いる磁場が高くなるほ
ど上がる。
That is, Bi-Sr-Ca-Cu-O and Y-Ba-C are used as the superconducting wire of the main coil for generating a magnetic field.
An oxide superconducting wire such as u-O is used. Since these materials have a critical magnetic field of about 100T, it is possible to generate a magnetic field of 20T at a liquid helium (4.2K) temperature. The resolution of the NMR analyzer increases as the magnetic field used increases.

【0008】ところで酸化物超電導線はセラミックスな
ので、くら型コイルを含む複雑な形状のシムコイルを形
成するのは難しい。幸いにしてコイル外周では磁場は比
較的低くなっているので従来のNbTi超電導線を使用
することができる。
By the way, since the oxide superconducting wire is a ceramic, it is difficult to form a shim coil having a complicated shape including a paddle coil. Fortunately, since the magnetic field is relatively low on the outer circumference of the coil, the conventional NbTi superconducting wire can be used.

【0009】そこで本発明ではシムコイルには金属系の
NbTi超電導線を使用する。また、主コイルは必要に
応じて内層、外層の2ケ以上のコイルに分けてもよく、
その場合は内層に酸化物超電導線を用い、外層にはNb
Ti超電導線を使用する。
Therefore, in the present invention, a metallic NbTi superconducting wire is used for the shim coil. Further, the main coil may be divided into two or more coils of an inner layer and an outer layer, if necessary,
In that case, an oxide superconducting wire is used for the inner layer and Nb is used for the outer layer.
A Ti superconducting wire is used.

【0010】[0010]

【実施例】次に本発明を実施例により具体的に説明す
る。
EXAMPLES Next, the present invention will be specifically described by way of examples.

【0011】〔実施例1〕図1には本発明の一実施例が
示されている。本実施例では酸化物超電導線を使用した
主コイル1と、この主コイル1の外周に金属系超電導線
を使用したシムコイル2とを持ち、これら主コイル1お
よびシムコイル2を液体ヘリウムを収納したクライオス
タット内に配置した。このようにすることにより、金属
系超電線では容易に発生できない15T以上の高磁界が
発生できるようになって、発生磁場を大幅に引き上げる
ことを可能としたNMR分析用超電導マグネットを得る
ことができる。
[Embodiment 1] FIG. 1 shows an embodiment of the present invention. In the present embodiment, a cryostat having a main coil 1 using an oxide superconducting wire and a shim coil 2 using a metal superconducting wire on the outer periphery of the main coil 1 and storing the main coil 1 and the shim coil 2 with liquid helium Placed inside. By doing so, it is possible to generate a high magnetic field of 15 T or more, which cannot be easily generated by a metal-based super electric wire, and it is possible to obtain a superconducting magnet for NMR analysis capable of significantly increasing the generated magnetic field. .

【0012】すなわち同図で1a、1b、1cは磁場発
生用の主コイル1であり、2が磁場変歪矯正用のシムコ
イル群である。
That is, in the figure, reference numerals 1a, 1b, and 1c are main coils 1 for generating a magnetic field, and 2 is a shim coil group for correcting magnetic field distortion.

【0013】本実施例で1aは高磁場発生用のBiSr
CaCuO酸化物超電導線を使用した内層コイルの酸化
物超電導線コイル、1bは金属系超電導体であるNbT
i超電導線を用い、7Tを発生する外層コイルのNbT
i超電導線コイル、1cは磁場分布を平坦化するための
NbTi超電導線を用いたサブコイルのNbTi超電導
線サブコイルである。
In this embodiment, 1a is BiSr for generating a high magnetic field.
Inner layer coil oxide superconducting wire coil using CaCuO oxide superconducting wire, 1b is NbT which is a metal-based superconductor
NbT of outer layer coil that generates 7T using i superconducting wire
i superconducting wire coil 1c is an NbTi superconducting wire subcoil of a subcoil using an NbTi superconducting wire for flattening the magnetic field distribution.

【0014】2はシムコイル群であるが、くら型コイル
を含み、コイル形状が複雑であるため巻線自在なNbT
i超電導線を用いている。
Reference numeral 2 denotes a shim coil group, which includes a paddle-shaped coil and has a complicated coil shape, so that it can be freely wound.
i Superconducting wire is used.

【0015】3は主コイル1とは逆向きの電流を通じ、
コイル外部空間の磁場強度を低減させるシールド用の自
己シールドコイルであり、NbTi超電導線を使用する
こともできるし、BiSrCaCuO等の酸化物超電導
線を使用することもできる。
3 passes a current in the direction opposite to that of the main coil 1,
It is a self-shielding coil for shielding that reduces the magnetic field strength in the space outside the coil, and can use NbTi superconducting wire or oxide superconducting wire such as BiSrCaCuO.

【0016】以上のコイル1、2、3全体を一括して液
体ヘリウム槽4の中に収容し、全体を液体ヘリウム温度
4.2kで動作させる。このようにすことにより金属系
超電導体では容易に発生できない15T以上の高磁界を
発生させることができる。
All of the above coils 1, 2, and 3 are housed together in a liquid helium bath 4, and the whole is operated at a liquid helium temperature of 4.2k. By doing so, it is possible to generate a high magnetic field of 15 T or more, which cannot be easily generated by the metal-based superconductor.

【0017】このように本実施例によればBiSrCa
CuO、YBaCuO等は100T以上の上部磁界磁場
C2を有するため、15T以上の高磁界を発生すること
ができる。
Thus, according to this embodiment, BiSrCa is
Since CuO, YBaCuO, and the like have an upper magnetic field H C2 of 100 T or more, a high magnetic field of 15 T or more can be generated.

【0018】[0018]

【発明の効果】上述のように本発明は、酸化物超電導線
を使用した主コイルと、この主コイルの外周に金属系超
電導線を使用したシムコイルとを持ち、これら主コイル
およびシムコイルを液体ヘリウムを収納したクライオス
タット内に配置したので、金属系超電体では容易に発生
できない15T以上の高磁界が発生できるようになっ
て、発生磁場を大幅に引き上げることを可能としたNM
R分析用超電導マグネットを得ることができる。
As described above, the present invention has a main coil using an oxide superconducting wire and a shim coil using a metal superconducting wire on the outer periphery of this main coil, and these main coil and shim coil are liquid helium. Since it was placed in the cryostat that housed it, it became possible to generate a high magnetic field of 15T or more, which could not be easily generated by a metal-based superconductor, and it was possible to significantly raise the generated magnetic field.
A superconducting magnet for R analysis can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のNMR分析用超電導マグネットの一実
施例の縦断側面図である。
FIG. 1 is a vertical side view of an embodiment of a superconducting magnet for NMR analysis of the present invention.

【符号の説明】[Explanation of symbols]

1 主コイル 1a 酸化物超電導線コイル 1b NbTi超電導線コイル 1c NbTi超電導線サブコイル 2 NbTi超電導線シムコイル 3 自己シールドコイル 4 液体ヘリウム槽 1 Main coil 1a Oxide superconducting wire coil 1b NbTi superconducting wire coil 1c NbTi superconducting wire sub-coil 2 NbTi superconducting wire shim coil 3 Self-shielding coil 4 Liquid helium tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化物超電導線を使用した主コイルと、こ
の主コイルの外周に金属系超電導線を使用したシムコイ
ルとを持ち、これら主コイルおよびシムコイルが液体ヘ
リウムを収納したクライオスタット内に配置されたもの
であることを特徴とするNMR分析用超電導マグネッ
ト。
1. A main coil using an oxide superconducting wire and a shim coil using a metal superconducting wire on the outer periphery of the main coil, the main coil and the shim coil being arranged in a cryostat containing liquid helium. A superconducting magnet for NMR analysis, characterized in that
【請求項2】前記超電導マグネットが、前記クライオス
タット外空間に対して自己シールド機能を有する自己シ
ールドコイルを備えたものである請求項1記載のNMR
分析用超電導マグネット。
2. The NMR according to claim 1, wherein the superconducting magnet has a self-shielding coil having a self-shielding function with respect to the space outside the cryostat.
Superconducting magnet for analysis.
【請求項3】前記主コイルが、内側に配置された酸化物
超電導線を使用した超電導コイルと、この外側に配置さ
れた金属系超電導線を使用した超電導コイルとで構成さ
れたものである請求項1記載のNMR分析用超電導マグ
ネット。
3. The main coil is composed of a superconducting coil using an oxide superconducting wire arranged inside and a superconducting coil using a metallic superconducting wire arranged outside this. Item 1. A superconducting magnet for NMR analysis according to Item 1.
JP15692A 1992-01-06 1992-01-06 Superconducting magnet for nmr analysis Pending JPH05182828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15692A JPH05182828A (en) 1992-01-06 1992-01-06 Superconducting magnet for nmr analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15692A JPH05182828A (en) 1992-01-06 1992-01-06 Superconducting magnet for nmr analysis

Publications (1)

Publication Number Publication Date
JPH05182828A true JPH05182828A (en) 1993-07-23

Family

ID=11466182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15692A Pending JPH05182828A (en) 1992-01-06 1992-01-06 Superconducting magnet for nmr analysis

Country Status (1)

Country Link
JP (1) JPH05182828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153408A (en) * 1995-11-30 1997-06-10 Hitachi Medical Corp Superconducting magnet device
JP2014068001A (en) * 2012-08-31 2014-04-17 Bruker Biospin Gmbh Magnet system for generating highly stable magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153408A (en) * 1995-11-30 1997-06-10 Hitachi Medical Corp Superconducting magnet device
JP2014068001A (en) * 2012-08-31 2014-04-17 Bruker Biospin Gmbh Magnet system for generating highly stable magnetic field

Similar Documents

Publication Publication Date Title
EP0817211A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
EP0826977B1 (en) Compact MRI superconducting magnet
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
US20130102472A1 (en) Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
Yanagisawa et al. Combination of high hoop stress tolerance and a small screening current-induced field for an advanced Bi-2223 conductor coil at 4.2 K in an external field
Iguchi et al. Advanced field shimming technology to reduce the influence of a screening current in a REBCO coil for a high-resolution NMR magnet
US4974113A (en) Shielding superconducting solenoids
Iguchi et al. Shimming for the 1020 MHz LTS/Bi-2223 NMR magnet
WO2002049513A1 (en) Low-leakage magnetic-field magnet and shield coil assembly
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
JPH05182828A (en) Superconducting magnet for nmr analysis
US5521571A (en) Open MRI magnet with uniform imaging volume
JP3184678B2 (en) Variable intensity uniform parallel magnetic field generator
US20030218872A1 (en) Superconducting magnetic shield
Iwai et al. Experimental results of screening-current field with 10-T class small REBCO coil
US11199599B2 (en) Magnet assembly comprising closed superconducting HTS shims
JP2005512646A (en) Gradient coil arrangement structure
JPH03503945A (en) Winding arrangement for cryomagnets
US6633215B2 (en) Superconducting magnetic resonance imaging magnet assembly and method with reverse wire channel orientation
JP2000068118A (en) Persistent current superconducting magnet device
US20060152315A1 (en) Superconductor magnet coil configuration
JP2583234B2 (en) Magnetic shield device
Tashiro et al. A low-cost magnetic shield consisting of nonoriented silicon steel
US6657527B2 (en) Apparatus and method for fabricating magnet support structure
Itoh et al. Magnetic shielding effects by the superposition of a six-layered ferromagnetic cylinder over a BPSCCO cylinder