JPH0518206U - Standard capacitor with built-in gas insulation line - Google Patents

Standard capacitor with built-in gas insulation line

Info

Publication number
JPH0518206U
JPH0518206U JP6608891U JP6608891U JPH0518206U JP H0518206 U JPH0518206 U JP H0518206U JP 6608891 U JP6608891 U JP 6608891U JP 6608891 U JP6608891 U JP 6608891U JP H0518206 U JPH0518206 U JP H0518206U
Authority
JP
Japan
Prior art keywords
electrode
gas
main electrode
coaxial
standard capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6608891U
Other languages
Japanese (ja)
Other versions
JP2526208Y2 (en
Inventor
利彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1991066088U priority Critical patent/JP2526208Y2/en
Publication of JPH0518206U publication Critical patent/JPH0518206U/en
Application granted granted Critical
Publication of JP2526208Y2 publication Critical patent/JP2526208Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】 【目的】 高精度の静電容量が得られる構造のガス絶縁
管路内蔵型標準コンデンサを提供する。 【構成】 ガス絶縁管路24内に、同軸母線21と、そ
の側面部が軸線方向に延びる主電極23aと該主電極2
3aの両端部に配されたガード電極23bとからなり、
両電極23a,23bは各々電気的に分離された構造の
ガス絶縁管路内蔵型標準コンデンサにおいて、主電極2
3a両端部に、微小静電容量を生じる複数の調整電極1
を絶縁部材2を介して並設し、該調整電極1の接続数を
主電極23aおよびガード電極23bとの間で振り分け
ることで主電極から得られる静電容量の値を要求される
精度内に調整し得るようにした。
(57) [Abstract] [Purpose] To provide a standard capacitor with a built-in gas-insulated conduit having a structure that can obtain a highly accurate capacitance. A coaxial bus bar 21, a main electrode 23a whose side surface extends in the axial direction, and the main electrode 2 are provided in a gas insulating conduit 24.
3a and guard electrodes 23b arranged at both ends,
In the standard capacitor with a built-in gas-insulated line, both electrodes 23a and 23b are electrically separated from each other.
A plurality of adjustment electrodes 1 that generate a small electrostatic capacitance at both ends of 3a.
Are arranged side by side via the insulating member 2, and the number of connections of the adjusting electrode 1 is distributed between the main electrode 23a and the guard electrode 23b to obtain the value of the capacitance obtained from the main electrode within the required accuracy. I was able to adjust.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、SF6ガス絶縁機器に内蔵され、ケーブル等の試験の際に用いられ るガス絶縁管路内蔵型標準コンデンサに関する。The present invention relates to a gas-insulated pipeline built-in type standard capacitor which is built in SF 6 gas-insulated equipment and used when testing cables and the like.

【0002】[0002]

【従来の技術】[Prior Art]

ケーブル等の試験に際し、その静電容量、誘導損失(tanδ)を例えばシェ ーリングブリッジを形成して精密に測定する場合は、高精度の標準コンデンサが 不可欠となる。 When testing the cable, etc., a high-precision standard capacitor is indispensable when measuring its capacitance and inductive loss (tan δ) accurately by forming a shering bridge, for example.

【0003】 図3は標準コンデンサによる試験構成の一例を示した図であり、10は試験用 交流変圧器、11は気中母線、12は標準コンデンサ、13は気中ケーブルヘッ ドを示す。一般に静電容量や誘導損失の測定では、絶縁を空気に依存すると試験 電圧が高くなるにつれ、離隔距離を大きく必要がある。そのため、高電圧の場合 には、図3に示すように、システムを各試験用機器毎に分離して構成せざるを得 ず、かなりの設置スペースを要する欠点があった。FIG. 3 is a diagram showing an example of a test configuration using a standard capacitor. 10 is a test AC transformer, 11 is an aerial bus bar, 12 is a standard capacitor, and 13 is an aerial cable head. Generally, in the measurement of capacitance and inductive loss, when the insulation depends on air, the separation distance must be increased as the test voltage increases. Therefore, in the case of high voltage, as shown in FIG. 3, the system had to be configured separately for each test device, which had the drawback of requiring a considerable installation space.

【0004】 そこで、従来はシステムの小型化を図るため、図4に示すように、試験用高圧 変圧器20とケーブルヘッド22とをSF6ガス絶縁管路24に封設した同軸母 線21で接続するとともに、ガス絶縁管路24の内壁に同心円筒状の同軸電極2 3を設けてガス絶縁管路内蔵型標準コンデンサを形成している。Therefore, in order to reduce the size of the system in the related art, as shown in FIG. 4, the test high-voltage transformer 20 and the cable head 22 are connected to each other by a coaxial bus 21 sealed in an SF 6 gas-insulated conduit 24. In addition to the connection, a coaxial electrode 23 having a concentric cylindrical shape is provided on the inner wall of the gas insulating conduit 24 to form a gas insulating conduit built-in type standard capacitor.

【0005】 同軸電極23は、図5の側部半断面図に示すように、その側面部が軸線方向に 延びる主電極23aと、この主電極23aの両端部に設けられたガード電極23 bとで構成されており、所用の静電容量は主電極23aと母線21との間で生じ させている。ガード電極23bは主電極23aの両端部の周囲の電極条件、例え ばケーブルヘッド22の有無、形状の違い等によって静電容量が影響を受けるの を防止するために設けるもので、高精度が要求される標準コンデンサでは一般に 不可欠のものとなっている。As shown in the side half sectional view of FIG. 5, the coaxial electrode 23 has a main electrode 23a whose side surface extends in the axial direction, and a guard electrode 23b provided at both ends of the main electrode 23a. And the required capacitance is generated between the main electrode 23a and the bus bar 21. The guard electrode 23b is provided to prevent the capacitance from being affected by the electrode conditions around both ends of the main electrode 23a, for example, the presence or absence of the cable head 22, the difference in shape, etc., and high accuracy is required. In general, standard capacitors are indispensable.

【0006】 なお、ガード電極23bは主電極23aとは絶縁部材により電気的に分離され ており、ガード電極23bに生じる漂遊静電容量が主電極23aの静電容量に影 響を与えないようになっている。The guard electrode 23b is electrically separated from the main electrode 23a by an insulating member so that the stray capacitance generated in the guard electrode 23b does not affect the capacitance of the main electrode 23a. Is becoming

【0007】 このようにして形成された標準コンデンサの静電容量Csは、SF6ガスの比誘 電率をεs、真空の誘電率をεo、中心軸から同軸母線21の表面までの距離(半 径)をr1、中心軸から主電極23内壁までの距離(半径)をr2、軸線方向の主 電極23aの側面部の長さをLとすると、下式で表される。The capacitance C s of the standard capacitor thus formed is ε s , the relative dielectric constant of SF 6 gas, ε o , the vacuum dielectric constant, and the distance from the central axis to the surface of the coaxial bus 21. Let r 1 be the distance (half diameter), r 2 be the distance from the central axis to the inner wall of the main electrode 23, and L be the length of the side surface portion of the main electrode 23 a in the axial direction.

【0008】[0008]

【数1】 [Equation 1]

【0009】 但し、通常、L≫r1、r2であり、εs≒1であることから、上記(1)式は下式 で表される。However, since L >> r 1 and r 2 are normally satisfied and ε s ≈1, the above equation (1) is expressed by the following equation.

【0010】[0010]

【数2】 [Equation 2]

【0011】 (2)式を参照すると、同軸電極23の径が固定の場合、同軸母線21の電界が 最小になるのは自然対数lnの底が2.72の逆数になる半径比のときであること が理論上導かれる。Referring to the equation (2), when the diameter of the coaxial electrode 23 is fixed, the electric field of the coaxial bus bar 21 is minimized when the base of the natural logarithm l n is a reciprocal of 2.72. Is theoretically derived.

【0012】 また、r2/r1を1に近付けるほど静電容量Csは大きくなり、逆に静電容量 Csが一定の場合は、r2/r1を1に近付けるほど同軸電極23をコンパクトに 設計できることがわかるが、高電圧に耐える設計とするには上記条件よりr2/ r1=2.72であることが理論上最適なため、実際にはr2/r1=2〜2.72 の範囲で設計される。Further, the capacitance C s increases as r 2 / r 1 approaches 1, and conversely, when the capacitance C s is constant, the coaxial electrode 23 becomes closer as r 2 / r 1 approaches 1. It can be seen that r 2 / r 1 = 2 can be designed compactly, but in order to withstand high voltage, r 2 / r 1 = 2.72 is theoretically optimal from the above conditions, so in practice r 2 / r 1 = 2 It is designed in the range of ~ 2.72.

【0013】[0013]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、標準コンデンサとしての容量精度は、一般に±1.0[%]〜±
0. 1[%]であることが要求される。したがって、標準コンデンサを構成する場合 は、上記(1)式あるいは(2)式からも明らかなように、その部品加工、組立を
高精 度で行う必要がある。しかるに、従来の標準コンデンサでは、母線21に対する 主電極23aの部品加工、組立を高精度で行うことが極めて困難であり、特に± 0.1[%]の精度のものを得ることは殆ど不可能に近かった。
By the way, the capacitance accuracy of a standard capacitor is generally ± 1.0 [%] to ±
0. It is required to be 1 [%]. Therefore, when constructing a standard capacitor, it is necessary to process and assemble the parts with high precision, as is clear from the above formula (1) or (2). However, with the conventional standard capacitor, it is extremely difficult to process and assemble the main electrode 23a with respect to the bus bar 21 with high precision, and it is almost impossible to obtain a precision of ± 0.1 [%]. Was close to

【0014】 また、r2/r1=2〜2.72の範囲の電極構造を設計する場合、同軸母線2 1は通常細いものであるため、標準コンデンサを形成する部位の径を他の部位の 径よりも太くしてr1の値を大きくしなければならない。しかし、そうすると、 太くした部位の両端部の電束が不均一になり、主電極23aの側面部の長さが理 論上のものとの間でずれてしまう。そこで静電容量の徴調整が必要となるが、従 来のガス絶縁管路内蔵型標準コンデンサには容量調整機能がなく、強く改善が求 められていた。When designing an electrode structure in the range of r 2 / r 1 = 2 to 2.72, since the coaxial bus 21 is usually thin, the diameter of the part forming the standard capacitor is set to another part. Should be made larger than the diameter of to increase the value of r 1 . However, in this case, the electric flux at both ends of the thickened portion becomes nonuniform, and the length of the side surface of the main electrode 23a deviates from the theoretical length. Therefore, it is necessary to adjust the capacitance, but the conventional standard capacitor with a built-in gas-insulated conduit does not have a capacitance adjustment function, and there has been a strong demand for improvement.

【0015】 本考案は、かかる背景のもとに創案されたもので、その設計、加工、組立が容 易で、且つ容量調整機能を有するガス絶縁管路内蔵型標準コンデンサを提供する ことにある。The present invention has been made in view of the above background, and an object thereof is to provide a standard capacitor with a built-in gas-insulated conduit, which is easy to design, process, and assemble and has a capacity adjusting function. ..

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

本考案のガス絶縁管路内蔵型標準コンデンサは、同軸母線と、その表面が前記 同軸母線表面と対向する同心円筒状の同軸電極とをガス絶縁管路内に封設し、該 同軸電極は、その側面部が軸線方向に延びる主電極と該主電極の両端部に配され たガード電極とからなり、両電極は電気的に分離された構造のものにおいて、前 記主電極の少なくとも一方の端部側に、軸線方向に微少厚みを有するとともに前 記主電極およびガード電極と電極的に接続可能の複数の調整電極を絶縁部材を介 して並設し、該調整電極の接続数を前記主電極およびガード電極との間で振り分 けることで前記主電極の側面部の長さを調整し得るようにしたものである。 The standard capacitor with a built-in gas-insulated line according to the present invention has a coaxial bus bar and a concentric cylindrical coaxial electrode whose surface faces the surface of the coaxial bus line sealed in the gas-insulated line. The side surface is composed of a main electrode extending in the axial direction and guard electrodes arranged at both ends of the main electrode. Both electrodes have a structure in which they are electrically separated. At least one end of the main electrode is described above. A plurality of adjusting electrodes, which have a small thickness in the axial direction and which can be electrically connected to the main electrode and the guard electrode, are arranged side by side through an insulating member on the part side, and the number of connecting adjusting electrodes is the same as that of the main electrode. The length of the side surface of the main electrode can be adjusted by distributing the electrode and the guard electrode.

【0017】 本考案のガス絶縁管路内蔵型標準コンデンサは、更に、上記構造のものにおい て、前記ガス絶縁管路に主電極の中心軸を連続的に偏心させる偏心手段を設け、 前記母線表面と主電極表面との対向距離を各表面間で連続的に変化し得るように したものである。The standard capacitor with a built-in gas-insulated line according to the present invention further has an eccentric means for continuously eccentricizing the central axis of the main electrode in the gas-insulated line having the above-mentioned structure. The distance between the surface and the surface of the main electrode can be changed continuously between the surfaces.

【0018】[0018]

【作用】[Action]

主電極に振り分ける調整電極の数を加減することで、主電極の側面部の長さが 変化する。これにより、上記(2)式の関係から同軸母線との間の静電容量が変化 する。 By adjusting the number of adjusting electrodes distributed to the main electrode, the length of the side surface of the main electrode changes. As a result, the capacitance with the coaxial bus changes from the relationship of the above equation (2).

【0019】 また、偏心手段により主電極の中心軸を連続的に偏心すると、主電極の表面と 同軸母線表面との間の対向距離が変わり、静電容量も該偏心に伴って変化する。 これにより、静電容量の徴調整を行うことができる。Further, when the center axis of the main electrode is continuously decentered by the eccentric means, the facing distance between the surface of the main electrode and the surface of the coaxial bus changes, and the capacitance also changes with the eccentricity. As a result, the capacitance adjustment can be performed.

【0020】[0020]

【実施例】【Example】

以下、図面を参照して本考案の実施例を説明する。なお、本考案は従来のこの 種の標準コンデンサの構造を改良したものなので、従来のものと同一構成部品に ついては同一符号を付してその説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. Since the present invention is an improvement of the structure of the conventional standard capacitor of this type, the same components as those of the conventional one are designated by the same reference numerals and the description thereof will be omitted.

【0021】 (第一実施例) 図1(a)は本考案の第一実施例に係るガス絶縁管路内蔵型標準コンデンサの 側部半断面図であり、主電極23aの両端部に複数の調整電極1を絶縁部材2を 介して並設するとともに、これら調整電極1を主電極23aとガード電極23b との間で振り分けて各々電気的に並列に接続することで主電極23aの側面部の 長さLを調整し、静電容量の値が変化し得るようにしたものである。First Embodiment FIG. 1A is a side half-sectional view of a standard capacitor with a built-in gas-insulated line according to a first embodiment of the present invention. The adjustment electrodes 1 are arranged side by side with the insulating member 2 interposed therebetween, and the adjustment electrodes 1 are distributed between the main electrode 23a and the guard electrode 23b and electrically connected in parallel to each other so that the side surfaces of the main electrode 23a are The length L is adjusted so that the capacitance value can be changed.

【0022】 図1(b)に、調整電極1の取付状態拡大図を示す。各調整電極1は、各々軸 線方向に微少厚みΔL、即ち、主電極23aの長さL×要求される標準コンデン サ精度以下(目安として±0.1[%]のときは、±0.05[%])の長さ(厚 み)を有するもので、各々同軸母線21との間で微小静電容量を生じる。FIG. 1B shows an enlarged view of the adjustment electrode 1 in a mounted state. Each adjusting electrode 1 has a small thickness ΔL in the axial direction, that is, the length L of the main electrode 23a × the required standard capacitor accuracy or less (± 0.1 [%] as a guide, ± 0. It has a length (thickness) of 05 [%]), and a minute electrostatic capacitance is generated between each of the coaxial buses 21.

【0023】 主電極23aおよびガード電極23bへの振り分けは、実際には静電容量を実 測しながら行い、実測値が要求された容量精度内に入るようにする。The distribution to the main electrode 23a and the guard electrode 23b is performed while actually measuring the electrostatic capacitance so that the measured value falls within the required capacitance accuracy.

【0024】 例えば、主電極23aと同軸母線21間の実測静電容量Coを47[pF]、 各調整電極1と同軸母線21間の静電容量を1[pF]、要求される静電容量C s を50[pF]とすると、図1(b)の四つの調整電極1のうち、三つを主電 極23a側に振り分けて主電極23aの側面部の長さをL+3ΔLとし、残りの 一つをガード電極23b側に振り分ける。これにより主電極23aから得られる 静電容量を50[pF]に調整している。For example, the measured capacitance C between the main electrode 23 a and the coaxial bus 21oIs 47 [pF], the capacitance between each adjustment electrode 1 and the coaxial bus 21 is 1 [pF], and the required capacitance C is s Is 50 [pF], three of the four adjusting electrodes 1 of FIG. 1 (b) are distributed to the main electrode 23a side, and the length of the side surface of the main electrode 23a is set to L + 3ΔL, and the remaining one Are distributed to the guard electrode 23b side. Thereby, the capacitance obtained from the main electrode 23a is adjusted to 50 [pF].

【0025】 (第二実施例) 本考案の第二実施例では、上記第一実施例において、ガス絶縁管路24に同軸 電極23の中心軸を連続的に偏心させる偏心手段を設けたものである。(Second Embodiment) In the second embodiment of the present invention, the eccentric means for continuously decentering the central axis of the coaxial electrode 23 is provided in the gas insulating conduit 24 in the first embodiment. is there.

【0026】 具体的には、図2(a)の側部断面図および同(b)のA−A断面図に示すよ うに、ガス絶縁管路24の外側からその中心軸方向に各々均等角度で4本のボル トを密封挿入し、同軸電極23をガス絶縁管路24内で4点支持している。これ らボルトの1本は偏心調整ボルト3aであり、その外側端を回転させることで内 側端の位置を矢印の方向に直線移動させ、ガス絶縁管路24内の同軸電極23の 中心軸を同方向に直線移動させている。調整ボルト3aと対向する側の支持ボル ト3bにはバネが付設され、その放勢力により同軸電極23を移動させる。なお 、移動方向と直角方向の支持ボルト3c,3dは、各々同軸電極23の直線移動 をガイドする。Specifically, as shown in the side sectional view of FIG. 2A and the AA sectional view of FIG. 2B, an equal angle is formed from the outside of the gas insulating conduit 24 to the central axis direction thereof. Four bolts are hermetically inserted to support the coaxial electrode 23 at four points in the gas insulating conduit 24. One of these bolts is an eccentricity adjusting bolt 3a, and by rotating the outer end of the eccentricity adjusting bolt 3a, the position of the inner end is linearly moved in the direction of the arrow, and the central axis of the coaxial electrode 23 in the gas insulation conduit 24 is moved. It is moving linearly in the same direction. A spring is attached to the support bolt 3b on the side opposite to the adjustment bolt 3a, and the coaxial electrode 23 is moved by its urging force. The support bolts 3c and 3d in the direction perpendicular to the moving direction guide the linear movement of the coaxial electrode 23, respectively.

【0027】 このような構造とすることで、同軸電極23の側面部表面から同軸母線21表 面までの対向距離を変化させ、静電容量を連続的に変化させることができる。こ れにより、以下のような効果を奏する。With such a structure, the facing distance from the surface of the side surface of the coaxial electrode 23 to the surface of the coaxial bus 21 can be changed, and the capacitance can be continuously changed. As a result, the following effects are achieved.

【0028】 (1)同軸電極23の構造を簡易なものにすることができる。即ち、前記第一実 施例の標準コンデンサで、調整電極1の微小厚みΔLを仮に1[mm]とすると 、0.1[%]の精度にする場合は前述のように同軸電極23の側面部の長さL が約2[m]にもなり、大型化してしまう。コンパクト化を図るためには調整電 極1を更に薄くすることが考えられるが、そうすると調整電極1の数が多くなり 、構成が複雑になるとともに、調整時間も長くなるという課題が残る。本実施例 では、同軸電極23の偏心それ自体で静電容量を変えることができるので、調整 電極1の厚みを数[%]〜1[%]の精度が得られる寸法にしてこれを粗調整用 とし、同軸電極23の偏心により徴調整して0.1[%]の精度を得るようにす る。これにより調整電極1の数を少なく且つその厚みΔLを大きくすることがで き、設計、加工、組立が容易になるので製造コストを大幅に抑えることができる 。また、容量調整のための工数も少なくなるので、調整時間も大幅に短縮される 。(1) The structure of the coaxial electrode 23 can be simplified. That is, in the standard capacitor of the first embodiment, assuming that the fine thickness ΔL of the adjusting electrode 1 is 1 [mm], in order to obtain an accuracy of 0.1 [%], the side surface of the coaxial electrode 23 is as described above. The length L 1 of the portion becomes about 2 [m], resulting in an increase in size. Although it is conceivable to make the adjustment electrode 1 thinner in order to make it compact, the problem remains that the number of adjustment electrodes 1 increases, the configuration becomes complicated, and the adjustment time also increases. In the present embodiment, since the capacitance can be changed by the eccentricity of the coaxial electrode 23 itself, the thickness of the adjusting electrode 1 is set to a dimension that can obtain an accuracy of several [%] to 1 [%], and this is roughly adjusted. The eccentricity of the coaxial electrode 23 is adjusted to obtain an accuracy of 0.1 [%]. As a result, the number of adjusting electrodes 1 can be reduced and the thickness ΔL can be increased, and the design, processing, and assembly are facilitated, so that the manufacturing cost can be significantly reduced. In addition, the number of man-hours for adjusting the capacity is reduced, and the adjustment time is greatly reduced.

【0029】 (2)同軸母線21の同軸電極23と対向する部位の太さを他の部位の太さより も大きくし、主電極23aの側面部の長さLをより短くすることができる。即ち 、従来のこの種の標準コンデンサでは、前述の理由より同軸母線21の太さを均 一にせざるを得ず、また、第一実施例の標準コンデンサでは、ある程度同軸母線 21を太くすることができるものの、調整電極1の最低厚みに制約されて主電極 23aの側面部の長さLが決定されてしまう。本実施例では、同軸母線21を太 くしたことによる電束の不均一を同軸電極23の偏心により是正することができ るので、調整電極1による制約が大幅に緩和され、設計の自由度が高まる。(2) The thickness of the portion of the coaxial bus bar 21 facing the coaxial electrode 23 can be made larger than the thickness of the other portions, and the length L of the side surface portion of the main electrode 23a can be made shorter. That is, in the conventional standard capacitor of this type, the thickness of the coaxial bus bar 21 must be made uniform for the above-mentioned reason, and in the standard capacitor of the first embodiment, the coaxial bus bar 21 may be thickened to some extent. However, the length L of the side surface portion of the main electrode 23a is determined by being restricted by the minimum thickness of the adjustment electrode 1. In this embodiment, since the unevenness of the electric flux due to the thickening of the coaxial bus 21 can be corrected by the eccentricity of the coaxial electrode 23, the restriction by the adjusting electrode 1 is greatly alleviated, and the degree of freedom in design is increased. Increase.

【0030】 いま、中心軸から同軸母線21表面までの距離(半径)をr10(>r1)、中 心軸から同軸電極23内壁までの距離(半径)をr20(=r2)主電極23aの 側面部の長さをLoとし、静電容量Csを共通にした場合の従来の標準コンデンサ (あるいは第一実施例のもの)の側面部長さLと比較すると、前記(2)式よりLo <Lとなり、コンパクト化が図れることがわかる。Now, the distance (radius) from the center axis to the surface of the coaxial bus 21 is r 10 (> r 1 ) and the distance (radius) from the center axis to the inner wall of the coaxial electrode 23 is r 20 (= r 2 ) Comparing with the side length L of the conventional standard capacitor (or the first embodiment) in the case where the side length of the electrode 23a is L o and the capacitance C s is common, the above (2) From the equation, L o <L, and it can be seen that compactness can be achieved.

【0031】 (3)静電容量を連続的に変化させることができるので、より高精度のガス絶縁 管路型標準コンデンサを実現することができる。(3) Since the capacitance can be continuously changed, it is possible to realize a more accurate gas-insulated conduit type standard capacitor.

【0032】 なお、本実施例では4本のボルトで同軸電極23を4点支持する構造としたが 、偏心調整ボルト3aおよび対向する支持ボルト3b(バネ付設)のみで同軸電 極23を支持するようにしても良い。Although the coaxial electrode 23 is supported at four points by four bolts in the present embodiment, the coaxial electrode 23 is supported only by the eccentricity adjusting bolt 3a and the opposing support bolt 3b (provided with a spring). You may do it.

【0033】[0033]

【考案の効果】[Effect of the device]

以上説明したように、本考案のガス絶縁管路内蔵型標準コンデンサでは、微小 静電容量を生じる複数の調整電極を設け、この調整電極数の振り分けにより合計 静電容量を調整するようにしたので、その設計、加工、組立が容易になり、多少 誤差を生じてもこれを是正することができる。また、ガス絶縁管路に同軸電極の 偏心手段を設け、静電容量を連続的に変化し得るようにしたので、より高精度の 標準コンデンサを実現することができる。 As described above, the standard capacitor with a built-in gas-insulated conduit of the present invention is provided with a plurality of adjusting electrodes that generate a small electrostatic capacity, and the total electrostatic capacity is adjusted by dividing the number of adjusting electrodes. , Its design, processing, and assembly become easier, and even if there is some error, it can be corrected. Further, since the coaxial electrode eccentric means is provided in the gas-insulated pipe line so that the electrostatic capacitance can be continuously changed, a more accurate standard capacitor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本考案の第一実施例に係るガス絶縁管
路内蔵型標準コンデンサの側部半断面構造図、(b)は
図1(a)の部分拡大図である。
1A is a side half-sectional view of a standard capacitor with a built-in gas-insulated conduit according to a first embodiment of the present invention, and FIG. 1B is a partially enlarged view of FIG. 1A.

【図2】(a)は本考案の第二実施例に係るガス絶縁管
路内蔵型標準コンデンサの側部断面構造図、(b)はそ
のA−A断面構造図である。
FIG. 2A is a side sectional structure view of a gas-insulated conduit type standard capacitor according to a second embodiment of the present invention, and FIG. 2B is an AA sectional structure view thereof.

【図3】標準コンデンサを用いた従来の試験構成の一例
を示した図である。
FIG. 3 is a diagram showing an example of a conventional test configuration using a standard capacitor.

【図4】従来のガス絶縁管路内蔵型標準コンデンサの外
観構成図である。
FIG. 4 is an external view of a conventional standard capacitor with a built-in gas-insulated conduit.

【図5】従来のガス絶縁管路内蔵型標準コンデンサの側
部半断面構造図である。
FIG. 5 is a side half cross-sectional structural diagram of a conventional standard capacitor with a built-in gas insulation line.

【符号の説明】[Explanation of symbols]

1…調整電極、2…絶縁部材、3a…偏心調整ボルト、
3b,3c,3d…支持ボルト、21…同軸母線、23
…同軸電極、23a…主電極、23b…ガード電極、2
4…ガス絶縁管路。
1 ... Adjusting electrode, 2 ... Insulating member, 3a ... Eccentricity adjusting bolt,
3b, 3c, 3d ... Support bolt, 21 ... Coaxial bus bar, 23
... coaxial electrode, 23a ... main electrode, 23b ... guard electrode, 2
4 ... Gas-insulated pipeline.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 同軸母線と、その表面が前記同軸母線表
面と対向する同心円筒状の同軸電極とをガス絶縁管路内
に封設し、該同軸電極は、その側面部が軸線方向に延び
る主電極と該主電極の両端部に配されたガード電極とか
らなり、両電極は電気的に分離された構造のガス絶縁管
路内蔵型標準コンデンサにおいて、 前記主電極の少なくとも一方の端部側に、軸線方向に微
小厚みを有するとともに、前記主電極およびガード電極
と電気的に接続可能の複数の調整電極を絶縁部材を介し
て並設し、該調整電極の接続数を前記主電極およびガー
ド電極との間で振り分けることで前記主電極の側面部の
長さを調整し得るようにしたことを特徴とするガス絶縁
管路内蔵標準コンデンサ。
1. A coaxial bus and a concentric cylindrical coaxial electrode whose surface faces the surface of the coaxial bus are sealed in a gas-insulated conduit, and the side surface of the coaxial electrode extends in the axial direction. In a standard capacitor with a built-in gas-insulated conduit, which is composed of a main electrode and guard electrodes arranged at both ends of the main electrode, and both electrodes are electrically separated, at least one end side of the main electrode In addition, a plurality of adjusting electrodes having a small thickness in the axial direction and electrically connectable to the main electrode and the guard electrode are arranged side by side through an insulating member, and the number of connecting the adjusting electrodes is set to the main electrode and the guard electrode. A standard capacitor with a built-in gas-insulated conduit, characterized in that the length of the side surface of the main electrode can be adjusted by distributing it to the electrode.
【請求項2】 請求項1記載のガス絶縁管路内蔵型標準
コンデンサにおいて、前記ガス絶縁管路に前記同軸電極
の中心軸を連続的に偏心させる偏心手段を設け、前記母
線表面と同軸電極表面との対向距離が各表面間で連続的
に変化し得るようにしたことを特徴とするガス絶縁管路
内蔵型標準コンデンサ。
2. The standard capacitor with a built-in gas-insulated conduit according to claim 1, wherein the gas-insulated conduit is provided with eccentric means for continuously eccentricizing the central axis of the coaxial electrode, and the surface of the busbar and the surface of the coaxial electrode. A standard capacitor with a built-in gas-insulated line, characterized in that the facing distance with respect to each surface can be changed continuously.
JP1991066088U 1991-08-21 1991-08-21 Standard capacitor with built-in gas-insulated conduit Expired - Lifetime JP2526208Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991066088U JP2526208Y2 (en) 1991-08-21 1991-08-21 Standard capacitor with built-in gas-insulated conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991066088U JP2526208Y2 (en) 1991-08-21 1991-08-21 Standard capacitor with built-in gas-insulated conduit

Publications (2)

Publication Number Publication Date
JPH0518206U true JPH0518206U (en) 1993-03-05
JP2526208Y2 JP2526208Y2 (en) 1997-02-19

Family

ID=13305761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991066088U Expired - Lifetime JP2526208Y2 (en) 1991-08-21 1991-08-21 Standard capacitor with built-in gas-insulated conduit

Country Status (1)

Country Link
JP (1) JP2526208Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163239A (en) * 2015-03-04 2016-09-05 矢崎総業株式会社 Coupler and wiring hardness employing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941822A (en) * 1972-08-09 1974-04-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941822A (en) * 1972-08-09 1974-04-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163239A (en) * 2015-03-04 2016-09-05 矢崎総業株式会社 Coupler and wiring hardness employing the same

Also Published As

Publication number Publication date
JP2526208Y2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5461319A (en) Symmetric differential capacitance transducer employing cross coupled conductive plates to form equipotential pairs
US4347478A (en) Capacitive gauge
US5272460A (en) Current and voltage transformer for a metal-encapsulated, gas-insulated high-voltage installation
JP2020532746A (en) Absolute type time grating angular displacement sensor based on alternating electric field
US5444599A (en) Capacitor having high stability with temperature
US5111694A (en) Accelerometer with rebalance coil stress isolation
JP2526208Y2 (en) Standard capacitor with built-in gas-insulated conduit
US6717499B2 (en) Transformer for gas insulated electric apparatus
Hillhouse et al. A 300-kV compressed gas standard capacitor with negligible voltage dependence
JP2005156492A (en) Movable apparatus, measuring device, electrostatic capacity typed range finder and positioning device
CN113655267B (en) Spherical six-electrode type overvoltage sensor for zero angle deviation measurement
US4580094A (en) Active capacitive voltage transformer
US4845586A (en) High power tunable capacitor
JPH04138376A (en) Capasitive sensor for potential measuring circuit of line conductor
CN114999821B (en) Calculable capacitor
JPH02171660A (en) Component force measuring apparatus for acceleration, especially gravity by angle measuring method
SU1249309A1 (en) Capacitive meter of angular shifts
WO2020090087A1 (en) Capacitive strain gauge and strain measurement system
RU2100779C1 (en) Inertial information converter
JP3406889B2 (en) Distance measuring device
JPH0640871U (en) AC high voltage measurement capacitor
SU1283516A1 (en) Displacement transducer
JPH07146313A (en) Capacitor voltage divider
CN103348425A (en) Transformer for instruments
SU989318A1 (en) Differential capacitive displacement pickup