JPH05181643A - Zero detecting circuit - Google Patents

Zero detecting circuit

Info

Publication number
JPH05181643A
JPH05181643A JP34590591A JP34590591A JPH05181643A JP H05181643 A JPH05181643 A JP H05181643A JP 34590591 A JP34590591 A JP 34590591A JP 34590591 A JP34590591 A JP 34590591A JP H05181643 A JPH05181643 A JP H05181643A
Authority
JP
Japan
Prior art keywords
carry
signal
zero
lower order
numbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34590591A
Other languages
Japanese (ja)
Other versions
JP3335653B2 (en
Inventor
Kazumasa Suzuki
一正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34590591A priority Critical patent/JP3335653B2/en
Publication of JPH05181643A publication Critical patent/JPH05181643A/en
Application granted granted Critical
Publication of JP3335653B2 publication Critical patent/JP3335653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a circuit for deriving directly a zero signal for showing whether a result of addition and subtraction is zero or not, from two numerals which are given, to execute a zero detection in parallel with a computing element, and to execute the detection at a high speed as the whole computing element. CONSTITUTION:Two numerals A, B of (n) bits are divided into AH, BH of the high order nh bits and AL, BL of the lower order n1 bits. AH and BH are inputted to a zero detecting circuit 2 of nh bits and zero signals ZH0, ZH1 and carry signals CH0, CH1 are generated. In the same way, by using a zero detecting circuit 3 of n1 bits, zero signals ZL0, ZL1 and carry signal CL0, CL1 are generated from AL and BL. From these signals, zero signals Z0, Z1 and carry signals C0, C1 after coupling are generated by a zero detecting signal synthesizing circuit 1. Z0 and Z1 become a zero signal of A+B, and a zero signal of A+B+1, respectively. The zero detecting circuit of the same constitution can be used for detecting zero in each divided part, as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディジタル型の加減算器
の加減算結果の零検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero detection circuit for an addition / subtraction result of a digital type adder / subtractor.

【0002】[0002]

【従来の技術】従来、加減算等の演算結果が零であるか
否かは、演算を行った結果全てのビットの反転論理和を
とった結果として得ることができる。
2. Description of the Related Art Conventionally, whether or not an operation result such as addition and subtraction is zero can be obtained as a result of taking an inverted logical sum of all bits as a result of operation.

【0003】図8はこの従来方法を説明するための、零
検出回路の構成図である。この演算器31はnビットの
2数A,Bを入力し、nビットの出力をする。反転論理
和回路32によって演算器31の出力の全てのビットの
反転論理和をとっている。これによって演算結果が零な
らば零信号Zは1となり、結果が零で無ければ零信号Z
は0となる。
FIG. 8 is a block diagram of a zero detection circuit for explaining this conventional method. The arithmetic unit 31 inputs n-bit two numbers A and B and outputs n-bit. The inverting logical sum circuit 32 takes the inverting logical sum of all bits of the output of the arithmetic unit 31. As a result, the zero signal Z becomes 1 if the operation result is zero, and the zero signal Z if the result is not zero.
Is 0.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の零
検出回路では、演算結果を求めた後、零の検出を行うた
め、零信号を得るのは演算結果が得られてからとなり、
結果を得るのに時間がかかる欠点があった。特に加減算
は、桁上げの伝搬が生じるため演算時間がかかり、さら
に零検出の時間が加わるため、全体としての演算時間が
増加してしまう。
However, in the conventional zero detection circuit, since the zero is detected after the calculation result is obtained, the zero signal is obtained only after the calculation result is obtained.
There is a drawback that it takes time to obtain the result. In particular, the addition and subtraction takes a calculation time because propagation of a carry occurs, and further, a time for zero detection is added, so that the calculation time as a whole increases.

【0005】減算の場合は2数が等しい場合に結果が零
となるため、2数の各ビット毎の排他的論理和が零であ
るか否かを調べることで代用できる。しかし、加算の場
合は2数が2の補数の関係である場合に結果が零となる
が、2の補数の関係であるのを調べる手段が必要にな
る。
In the case of subtraction, the result is zero when the two numbers are equal. Therefore, it can be substituted by checking whether the exclusive OR of each bit of the two numbers is zero. However, in the case of addition, the result is zero when the two numbers are in the two's complement relation, but a means for checking the two's complement relation is required.

【0006】本発明の目的は、2数の加減算の結果が零
であるか否かを示す零検出信号を2数から直接求める回
路を提供することにある。
An object of the present invention is to provide a circuit for directly obtaining a zero detection signal indicating whether or not the result of addition / subtraction of two numbers is zero, from the two numbers.

【0007】[0007]

【課題を解決するための手段】第1の発明は、任意ビッ
トの2数の加減算結果が零か否かを検出する零検出回路
において、前記2数を上位と下位に分割し、それぞれに
ついて下位からの桁上げがない場合と桁上げがある場合
での、加減算の結果が零か否かを示す零信号と桁上げの
有無を示す桁上げ信号を求め、前記下位の下位からの桁
上げ信号のない場合の桁上げ信号がない場合は、前記上
位の下位からの桁上げがない場合の零信号と下位の下位
からの桁上げ信号がない場合の零信号の論理積を前記2
数の加減算結果の下位からの桁上げがない場合の零信号
とし、前記上位の下位からの桁上げがない場合の桁上げ
信号を前記2数の加減算結果の下位から桁上げ信号がな
い場合の桁上げ信号とし、前記下位の下位からの桁上げ
信号がある場合の桁上げ信号がない場合は、前記上位の
下位からの桁上げがない場合の零信号と下位の下位から
の桁上げ信号がある場合の零信号の論理積を前記2数の
加減算結果の下位からの桁上げがある場合の零信号と
し、前記上位の下位からの桁上げがない場合の桁上げ信
号を前記2数の加減算結果の下位から桁上げ信号がある
場合の桁上げ信号とし、前記下位の下位からの桁上げ信
号がない場合の桁上げ信号がある場合は、前記上位の下
位からの桁上げがある場合の零信号と前記下位の下位か
ら桁上げ信号がない場合の零信号の論理積を前記2数の
加減算結果の下位から桁上げがない場合の零信号とし、
前記上位の下位からの桁上げがある場合の桁上げ信号を
前記2数の加減算結果の下位からの桁上げ信号がない場
合の桁上げ信号とし、前記下位の下位からの桁上げ信号
がある場合の桁上げ信号がある場合は、前記上位の下位
からの桁上げがある場合の零信号と前記下位の下位から
桁上げ信号がある場合の零信号の論理積を前記2数の加
減算結果の下位から桁上げがある場合の零信号とし、前
記上位の下位からの桁上げがある場合の桁上げ信号を前
記2数の加減算結果の下位からの桁上げ信号がある場合
の桁上げ信号とすることを特徴としている。
According to a first aspect of the present invention, in a zero detection circuit for detecting whether the addition / subtraction result of two numbers of an arbitrary bit is zero, the two numbers are divided into upper and lower parts, and a lower part for each. The carry signal from the lower order lower signal is obtained by obtaining a zero signal indicating whether or not the result of addition and subtraction is zero and a carry signal indicating the presence or absence of carry depending on whether there is a carry from the If there is no carry signal when there is no carry signal, the logical product of the zero signal when there is no carry signal from the higher order lower order and the zero signal when there is no carry signal from the lower order lower order is described in 2 above.
When there is no carry from the lower order of the number addition / subtraction result, the zero signal is used, and the carry signal when there is no carry from the higher order lower order is used when there is no carry signal from the lower order of the two number addition / subtraction results. As a carry signal, if there is no carry signal when there is a carry signal from the lower order lower, the zero signal when there is no carry from the higher order lower order and the carry signal from the lower order lower order. The logical product of the zero signals in a certain case is taken as the zero signal when there is a carry from the lower order of the addition / subtraction result of the two numbers, and the carry signal when there is no carry from the above lower order is the addition / subtraction of the two numbers. If there is a carry signal from the lower order of the result, the carry signal is used. If there is a carry signal when there is no carry signal from the lower order, the carry signal from the lower order is zero. Signal and carry signal from the lower order of the lower order The logical product of the zero signal if the zero signal in the case where there is no carry from the lower of the two numbers addition and subtraction result,
A carry signal when there is a carry signal from the lower order of the higher order is a carry signal when there is no carry signal from the lower order of the addition / subtraction result of the two numbers, and there is a carry signal from the lower order of the lower order. When there is a carry signal, the logical product of the zero signal when there is a carry signal from the upper lower order and the zero signal when there is a carry signal from the lower order lower order is the lower order of the addition / subtraction result of the two numbers. Is used as a zero signal when there is a carry signal, and the carry signal when there is a carry from the higher order lower order is the carry signal when there is a carry signal from the lower order of the addition / subtraction result of the two numbers. Is characterized by.

【0008】第2の発明は、任意ビットの2数の加減算
結果が零か否かを検出する零検出回路において、前記2
数を上位と下位に分割し、それぞれについて下位からの
桁上げがない場合と桁上げがある場合での、加減算の結
果が零か否かを示す零信号と桁上げの有無を示す桁上げ
信号を求め、前記下位の下位からの桁上げ信号のない場
合の桁上げ信号がない場合は、前記上位の下位からの桁
上げがない場合の零信号と下位の下位からの桁上げ信号
がない場合の零信号の論理積を前記2数の加減算結果の
下位からの桁上げがない場合の零信号とし、前記上位の
下位からの桁上げがない場合の桁上げ信号を前記2数の
加減算結果の下位から桁上げ信号がない場合の桁上げ信
号とし、前記下位の下位からの桁上げ信号がある場合の
桁上げ信号がない場合は、前記上位の下位からの桁上げ
がある場合の零信号と下位の下位からの桁上げ信号があ
る場合の零信号の論理積を前記2数の加減算結果の下位
からの桁上げがある場合の零信号とし、前記下位の下位
からの桁上げ信号がない場合の桁上げ信号がある場合
は、前記上位の下位からの桁上げがある場合の零信号と
前記下位の下位から桁上げ信号がない場合の零信号の論
理積を前記2数の加減算結果の下位から桁上げがない場
合の零信号とし、前記2数の加減算結果の下位からの桁
上げ信号がない場合の桁上げ信号を論理1とし、前記下
位の下位からの桁上げ信号がある場合の桁上げ信号があ
る場合は、前記上位の下位からの桁上げがある場合の零
信号と前記下位の下位から桁上げ信号がある場合の零信
号の論理積を前記2数の加減算結果の下位から桁上げが
ある場合の零信号とすることを特徴としている。
A second aspect of the present invention is a zero detection circuit for detecting whether or not the addition / subtraction result of two numbers of arbitrary bits is zero.
The number is divided into upper and lower, and there is no carry from the lower and there is a carry for each, and a zero signal indicating whether the result of addition and subtraction is zero and a carry signal indicating the presence or absence of carry. If there is no carry signal when there is no carry signal from the lower order lower, there is no zero signal when there is no carry from the higher order lower order and there is no carry signal from the lower order lower order. The logical product of the zero signals of is the zero signal when there is no carry from the lower part of the addition / subtraction result of the two numbers, and the carry signal when there is no carry from the lower part of the upper number is the addition signal of the two numbers. A carry signal when there is no carry signal from the lower order, and a zero signal when there is a carry signal from the above lower order when there is no carry signal when there is a carry signal from the lower order. Of the zero signal when there is a carry signal from the lower The logical product is a zero signal when there is a carry from the lower order of the addition / subtraction result of the two numbers, and when there is a carry signal when there is no carry signal from the lower order lower order, the logical product from the higher order lower order The logical product of the zero signal when there is a carry and the zero signal when there is no carry signal from the lower order is the zero signal when there is no carry from the lower order of the addition / subtraction result of the two numbers, and If there is no carry signal from the lower order of the addition / subtraction result, the carry signal is set to logic 1, and if there is a carry signal when there is a carry signal from the lower order, carry from the lower order of the higher order. And the zero signal when there is a carry signal from the lower order lower order is the logical product of the zero signal when there is a carry from the lower order of the addition / subtraction result of the two numbers.

【0009】第3の発明の零検出回路は、第1の発明ま
たは第2の発明において、任意ビットの2数を上位と下
位に分割したそれぞれの零信号を求めることを特徴とし
ている。
The zero detection circuit of the third invention is characterized in that, in the first invention or the second invention, each zero signal is obtained by dividing the number of two arbitrary bits into upper and lower.

【0010】第4の発明の零検出回路は、1ビットの2
数の排他的反転論理和を下位からの桁上げがない場合の
零信号とし、前記2数の排他的論理和を下位からの桁上
げがある場合の零信号とし、前記2数の一方を桁上げ信
号とすることにより、1ビットの加減算の結果が零か否
かを検出することを特徴としている。
According to the zero detection circuit of the fourth aspect of the present invention, 1 bit of 2 is used.
The exclusive inversion OR of the numbers is used as a zero signal when there is no carry from the lower side, and the exclusive OR of the two numbers is used as a zero signal when there is a carry from the lower side, and one of the two numbers is carried. It is characterized by detecting whether or not the result of the addition / subtraction of 1 bit is zero by using the raising signal.

【0011】第5の発明は、1ビットの2数の加減算の
結果が零か否かを検出する零検出回路において、加算の
時は前記2数の排他的反転論理和を下位からの桁上げが
ない場合の零信号とし、前記2数の排他的論理和を下位
からの桁上げがある場合の零信号とし、前記2数の一方
を桁上げ信号とし、減算の時は前記2数の排他的反転論
理和を零信号とし、桁上げ信号を桁上げ無しとすること
を特徴としている。
A fifth aspect of the present invention is a zero detection circuit for detecting whether or not the result of addition / subtraction of two 1-bit numbers is zero. At the time of addition, the exclusive inversion OR of the two numbers is carried from the lower order. Is used as a zero signal, the exclusive OR of the two numbers is used as a zero signal when there is a carry from the lower order, one of the two numbers is used as a carry signal, and the two numbers are exclusively used for subtraction. The characteristic is that the logical inversion OR is used as a zero signal and the carry signal is used as no carry.

【0012】[0012]

【作用】nビットの2数の加減算結果が零であるか否か
を検出するためには、演算中に桁上げ信号が最悪の場合
には最下位ビットから最上位ビットまで伝播するため、
演算時間が長くなる。nビットより短い2数では、桁上
げ信号の伝播段数が短くなるため、演算時間を少なくす
ることができる。そこで、nビットをその上位nhビッ
トと下位nlビットに分割し、それぞれの加減算結果が
零であるか否かを検出する。nhビット,nlビットは
ともにnビットより短いので、nビットの加減算結果の
零信号よりも、短時間で検出することができる。
In order to detect whether the addition / subtraction result of n-bit two numbers is zero, the carry signal propagates from the least significant bit to the most significant bit in the worst case during the operation.
Calculation time becomes long. When the number is 2 which is shorter than n bits, the number of stages of propagation of the carry signal becomes short, so that the operation time can be shortened. Therefore, the n bits are divided into the upper nh bits and the lower nl bits, and it is detected whether the addition / subtraction result of each is zero. Since both the nh bit and the nl bit are shorter than n bits, they can be detected in a shorter time than the zero signal of the addition / subtraction result of n bits.

【0013】次に、分割したそれぞれの零信号から、n
ビット全体の零信号を求める。それには、上位nhビッ
トの零信号は下位からの桁上げ信号がある場合とない場
合の2通り用意しておく必要がある。また、下位nlビ
ットの加減算において桁上げするか否かを示す桁上げ信
号も必要である。下位の桁上げ信号がない場合は、上位
の2通りの零信号の内、下位からの桁上げがないときの
零信号を選択し、下位の零信号とともにlであるなら
ば、全体のnビットの加減算での零信号もlとすれば良
い。下位の桁上げ信号がある場合は、上位の零信号とし
て下位からの桁上げがあるときの零信号を選択し、下位
の零信号とともにlであるならば全体nビットの加減算
での零信号もlとすれば良い。そのほかの場合は全体の
零信号は0である。
Next, from each divided zero signal, n
Find the zero signal for all bits. To this end, it is necessary to prepare two high-order nh-bit zero signals in the case where there is a carry signal from the lower order and when there is no carry signal. Further, a carry signal indicating whether to carry in addition or subtraction of the lower nl bits is also required. If there is no lower carry signal, select the zero signal when there is no carry from the lower two out of the upper two zero signals, and if it is l together with the lower zero signal, the entire n bits The zero signal in addition and subtraction of may be set to l. When there is a lower carry signal, select the zero signal when there is a carry from the lower as the upper zero signal, and if it is l together with the lower zero signal, the zero signal in the addition / subtraction of all n bits is also selected. It should be l. In all other cases, the total zero signal is zero.

【0014】分割したnhビットとnlビットの加減算
の結果が零であることを検出するため、さらに短いビッ
トに分割し、同じ方法によって零信号を求めることがで
きる。これを繰り返していくと最終的には、全てを1ビ
ットに分割することができる。1ビットの加算の場合
は、下位からの桁上げがない場合、2数ともに0または
1の時に結果が0となり、下位からの桁上げがある場
合、2数の一方が1もう一方が0であるときに結果が0
となる。よって簡単な論理ゲートで求めることができ
る。これらの結果を2ビットずつまとめ、2ビットの加
減算の零信号を求め、さらに2つ結合していくことで任
意のビットの零検出を行う。
Since it is detected that the result of the addition and subtraction of the divided nh bits and nl bits is zero, it can be divided into shorter bits and the zero signal can be obtained by the same method. By repeating this, finally, all can be divided into 1 bit. In the case of 1-bit addition, if there is no carry from the lower order, the result is 0 when both numbers are 0 or 1, and if there is a carry from the lower side, one of the two numbers is 1 and the other is 0. The result is 0
Becomes Therefore, it can be obtained by a simple logic gate. These results are grouped by 2 bits, a 2-bit addition / subtraction zero signal is obtained, and further two are combined to perform zero detection of an arbitrary bit.

【0015】先に述べたように、結合するためには、加
減算結果の零信号だけでなく、桁上げ信号が必要であ
る。1ビットの加減算の場合、下位からの桁上げが0の
場合、2数がともに1または0の時零であるので、桁上
げ信号は2数がともに1の時には1、ともに0の時は0
とすれば良い。2数が1と0である場合は、零信号が0
となるため、上位の零信号がどんな場合でも結合したと
きに0になるから、桁上げ信号は正しくなくてもかまわ
ない。よって、2数の内一方をそのまま桁上げ信号とす
れば十分である。下位からの桁上げがある場合は、2数
が1と0の時零信号が1となるので、下位の桁上げを加
えるとこのビットからも桁上げ信号が発生することにな
る。2数がともに1または0の時は零信号が0となる
が、桁上げ信号がない場合と同様に、正しい桁上げ信号
を求める必要がない。よってこの場合の桁上げ信号は常
に1とすれば良い。これらのことを式にまとめると、以
下のようになる。入力する2数をa,b、零信号をZ
0,Z1、桁上げ信号をC0,C1とする。最後の文字
が0のものは、下位からの桁上げが0の時の値、最後の
文字が1のものは下位からの桁上げが1の時の値であ
る。^は排他的論理和を〜はビットの反転を表す演算子
とすると、 Z0=〜(a^b) (1) Z1=a^b (2) C0=a(またはb) (3) C1=1 (4) となる。
As described above, not only the zero signal of the addition / subtraction result but also the carry signal is necessary for the combination. In the case of 1-bit addition and subtraction, when the carry from the lower order is 0, it is 0 when both numbers are 1 or 0. Therefore, the carry signal is 1 when both numbers are 1 and 0 when both numbers are 0.
It should be done. If the two numbers are 1 and 0, the zero signal is 0
Therefore, the carry signal does not have to be correct because the upper zero signal becomes 0 when combined in any case. Therefore, it is sufficient to use one of the two numbers as it is as a carry signal. When there is a carry from the lower order, the zero signal becomes 1 when the number 2 is 1 and 0. Therefore, when the carry is added to the lower order, a carry signal is also generated from this bit. When the two numbers are both 1 or 0, the zero signal becomes 0, but it is not necessary to obtain the correct carry signal as in the case where there is no carry signal. Therefore, the carry signal in this case may be always 1. The following is a summary of these things. Input two numbers a, b, zero signal Z
0, Z1 and carry signals C0, C1. When the last character is 0, the value when the carry from the lower order is 0, and when the last character is 1 is the value when the carry from the lower order is 1. If ^ is an exclusive OR and ~ is an operator representing bit inversion, Z0 = ~ (a ^ b) (1) Z1 = a ^ b (2) C0 = a (or b) (3) C1 = It becomes 1 (4).

【0016】結合を繰り返し行う場合は、結合後の零信
号と桁上げ信号を生成しなくてはならない。結合後の零
信号に下位からの桁上げの有無を考慮するためには、結
合する下位の零信号についても、下位からの桁上げがあ
る場合とない場合の2通りの信号を用意して使い分ける
ことで対応できる。これを式にまとめると以下のように
なる。下位の零信号をZL0,ZL1、下位の桁上げ信
号をCL0,CL1、上位の零信号をZH0,ZH1、
上位の桁上げ信号をCH0,CH1、結合後の零信号を
Z0,Z1、桁上げ信号をC0,C1とする。但し、最
後の文字が0のものは、その下位からの桁上げ信号が0
の時の値、1のものはその下位からの桁上げ信号は1の
時の値である。また、&は論理積、|は論理和、〜はビ
ットの反転を表す演算子とする。
When the combination is repeated, the zero signal and the carry signal after the combination must be generated. In order to consider the presence or absence of a carry from the lower order in the combined zero signal, two kinds of signals, one with a carry from the lower order and one without a carry from the lower order, are prepared and used properly. You can deal with it. This is summarized in the formula as follows. The lower zero signal is ZL0, ZL1, the lower carry signal is CL0, CL1, the upper zero signal is ZH0, ZH1,
The upper carry signals are CH0 and CH1, the combined zero signals are Z0 and Z1, and the carry signals are C0 and C1. However, if the last character is 0, the carry signal from the lower order is 0.
The value of 1 is the value of 1 and the carry signal from the lower order is the value of 1. Also, & is a logical product, | is a logical sum, and ~ is an operator representing bit inversion.

【0017】 Z0=ZL0&((〜CL0&ZH0)|(CL0&ZH1)) (5) Z1=ZL1&((〜CL1&ZH0)|(CL1&ZH1)) (6) C0=(〜CL0&CH0)|(CL0&CH1) (7) C1=(〜CL1&CH0)|(CL1&CH1) (8) (5),(6)式は下位からの桁上げ信号がないときに
は上位の零信号の内下位からの桁上げがないときのもの
を、下位からの桁上げ信号があるときには上位の零信号
の内、下位からの桁上げがないときのものを選択し、下
位の零信号との論理積をとることを意味している。ここ
で用いる下位の零信号と桁上げ信号を、その下位からの
桁上げがない場合の値を用いたのが(5)式で、桁上げ
がある場合の値を用いたのが(6)式である。桁上げ信
号についても、下位からの桁上げ信号がない場合は上位
の桁上げ信号の内、下位からの桁上げがない場合のもの
を、下位からの桁上げ信号がある場合は上位の桁上げ信
号の内、下位からの桁上げがある場合のものを選択す
る。下位からの桁上げ信号は、その下位からの桁上げが
ない場合の値を用いたのが(7)式で、桁上げがある場
合の値を用いたのが(8)式である。これらの4つの式
によって結合子のブロックでの零信号と桁上げ信号を生
成することができる。
Z0 = ZL0 & ((˜CL0 & ZH0) | (CL0 & ZH1)) (5) Z1 = ZL1 & ((˜CL1 & ZH0) | (CL1 & ZH1)) (6) C0 = (˜CL0 & CH0) | (CL0 & CH1) (7) C1 = (~ CL1 & CH0) | (CL1 & CH1) (8) Equations (5) and (6) show the case where there is no carry signal from the lower order when there is no carry from the lower order. This means that when there is a carry signal, one of the higher zero signals when there is no carry from the lower order is selected and the logical product is taken with the lower zero signal. For the lower zero signal and the carry signal used here, the value when there is no carry from the lower order is used in Equation (5), and the value when there is carry is used (6). It is an expression. As for the carry signal, if there is no carry signal from the lower order, the carry signal from the higher order carry signal if there is no carry signal from the lower order, and if there is a carry signal from the lower order, the carry carry signal from the lower order Select one of the signals that has a carry from the lower order. As for the carry signal from the lower order, the value when there is no carry from the lower order is used in the expression (7), and the value when there is a carry is used in the expression (8). These four equations make it possible to generate a zero signal and a carry signal in the block of connectors.

【0018】(4)式からわかるように、C1の値は必
ず1となるため、その後の選択器は必ず桁上げありの時
に固定されている。これを考慮して(6),(8)式を
書き直すと、 Z1=ZL1&CL1 (6’) C1=CH1=1 (8’) となる。このように、下位からの桁上げが1の時の桁上
げ信号は1となるため、結合するときにこの信号は必要
ない。
As can be seen from the equation (4), the value of C1 is always 1, so that the selector thereafter is always fixed when there is a carry. Rewriting the equations (6) and (8) in consideration of this, Z1 = ZL1 & CL1 (6 ′) becomes C1 = CH1 = 1 (8 ′). Thus, since the carry signal is 1 when the carry from the lower order is 1, this signal is not necessary when combining.

【0019】[0019]

【実施例】次に、本発明の実施例を図1から図7を用い
て説明する。
EXAMPLES Next, examples of the present invention will be described with reference to FIGS.

【0020】図1は本発明の一実施例を示したものであ
る。nビットの2数A,Bを上位nhビットのAH,B
Hと下位nlビットのAL,BLに分割する。AH,B
Hをnhビットの零検出回路2に入力し零信号ZH0,
ZH1と桁上げ信号CH0,CH1を生成する。同時に
nlビット零検出回路3を用いて、AL,BLから零信
号ZL0,ZL1と桁上げ信号CL0,CL1を生成す
る。これらの信号を用いて、(5)から(8)式を実現
した回路である零検出信号合成回路1によって結合後の
零信号Z0,Z1と桁上げ信号C0,C1を生成する。
ここで、Z0はA+Bの零信号、Z1はA+B+1の零
信号となる。減算はBをビット毎反転して〜Bとし、A
+(〜B)+1で求められるので、Z1を零信号とすれ
ば良い。
FIG. 1 shows an embodiment of the present invention. n bits of 2 numbers A and B are converted to upper nh bits of AH and B
It is divided into H and AL and BL of lower nl bits. AH, B
H is input to the nh-bit zero detection circuit 2 and the zero signal ZH0,
ZH1 and carry signals CH0 and CH1 are generated. At the same time, the nl bit zero detection circuit 3 is used to generate zero signals ZL0 and ZL1 and carry signals CL0 and CL1 from AL and BL. Using these signals, the zero signals Z0 and Z1 and the carry signals C0 and C1 after combination are generated by the zero detection signal synthesizing circuit 1 which is a circuit that realizes the equations (5) to (8).
Here, Z0 is an A + B zero signal and Z1 is an A + B + 1 zero signal. Subtraction inverts B bit by bit to ~ B,
Since it is obtained by + (-B) +1, Z1 may be a zero signal.

【0021】図2は零検出信号合成回路1の一構成例を
示す図である。選択器回路21と論理積回路25によっ
て(5)式の処理を、選択器回路23と論理積回路26
によって(6)式の処理を、また選択器回路22によっ
て(7)式の処理を、選択器回路24によって(8)式
の処理を行う。
FIG. 2 is a diagram showing a configuration example of the zero detection signal synthesizing circuit 1. The processing of the equation (5) is performed by the selector circuit 21 and the AND circuit 25, and the selector circuit 23 and the AND circuit 26 are used.
The processing of the equation (6) is performed by the selector circuit 22, the processing of the equation (7) is performed by the selector circuit 22, and the processing of the equation (8) is performed by the selector circuit 24.

【0022】図3は本発明の別の実施例である、1ビッ
トの零検出回路を示した図である。1ビットの2数a,
bを入力して、下位からの桁上げがないときの零信号Z
0をa,bの排他的反転論理和回路11から求め、下位
からの桁上げがあるときの零信号Z1をa,bの排他的
論理和回路12から求める。C0は(3)式に示した通
りaをそのまま出力している。また(4)式に示した通
り、論理1出力回路13を用いてC1を1としている。
FIG. 3 is a diagram showing a 1-bit zero detection circuit according to another embodiment of the present invention. 1-bit 2 number a,
Zero signal Z when there is no carry from the lower order by inputting b
0 is obtained from the exclusive-OR circuit 11 for a and b, and the zero signal Z1 when there is a carry from the lower order is obtained from the exclusive-OR circuit 12 for a and b. C0 outputs a as it is as shown in the equation (3). Further, as shown in the equation (4), C1 is set to 1 by using the logic 1 output circuit 13.

【0023】図4は本発明のさらに別の実施例を示した
ものである。(6’),(8’)式によれば、下位から
の桁上げ信号がある場合の桁上げ信号は必ず1であるた
め、その信号によって制御される選択器回路23と24
は値が固定されてしまい、不要である。また、この桁上
げ信号も不要である。よって図1のように4本の信号を
必要とせず、2本の零信号と1本の桁上げ信号の計3本
の信号でよい。そこで図4は、3本の信号で処理を行う
ような零検出信号合成回路4とnhビット零検出回路5
と、nlビット零検出回路6からなる零検出回路であ
る。
FIG. 4 shows another embodiment of the present invention. According to the equations (6 ') and (8'), the carry signal is always 1 when there is a carry signal from the lower order, so that the selector circuits 23 and 24 controlled by the signals are always.
Is not necessary because the value is fixed. Further, this carry signal is also unnecessary. Therefore, it is not necessary to use four signals as shown in FIG. 1, and a total of three signals, that is, two zero signals and one carry signal may be used. Therefore, FIG. 4 shows a zero detection signal synthesizing circuit 4 and an nh-bit zero detection circuit 5 which perform processing with three signals.
And the nl bit zero detection circuit 6 is a zero detection circuit.

【0024】図5は零検出信号合成回路4の一構成例を
示す図である。選択器回路21と論理積回路25で
(5)式の処理を、論理積回路26で(6’)式の処理
を、選択器回路22で(7)式の処理を行っている。下
位からの桁上げ信号が1の時の桁上げ信号は不要なので
(8)式の処理に当たる部分はない。また、分割したブ
ロックからの桁上げ信号CH1がないため、論理1出力
回路27でその代わりをしている。
FIG. 5 is a diagram showing a configuration example of the zero detection signal synthesizing circuit 4. The selector circuit 21 and the AND circuit 25 perform the processing of the equation (5), the AND circuit 26 performs the processing of the equation (6 ′), and the selector circuit 22 performs the processing of the equation (7). Since the carry signal when the carry signal from the lower order is 1 is unnecessary, there is no part corresponding to the processing of formula (8). Further, since there is no carry signal CH1 from the divided block, the logic 1 output circuit 27 takes its place.

【0025】図6にさらに別の一実施例を示す。下位か
らの桁上げがある場合の桁上げ信号が不要であるため、
図3に比べてC1の出力が削除されている。
FIG. 6 shows still another embodiment. Since there is no need for a carry signal when there is a carry from the lower order,
The output of C1 is deleted as compared with FIG.

【0026】図7にさらに別の実施例を示す。入力とし
て、1ビットの2数a,bの他に、制御信号としてoが
加えられている。桁上げ信号を生成するときに、加算の
時はaをそのまま出力とすればよく、減算の時はa,b
が一致しているか否かを検出すれば良いため、そのとき
1となるZ0の信号を選択するようにすれば良い。そこ
で、桁上げ信号を0に固定して、必ずZ0が選択される
ようにする。入力oには加算の時1を減算の時0を与え
れば、以上の処理が行える。この零信号検出器を用いれ
ば、加算と減算の両方に対応する零検出回路が作れる。
FIG. 7 shows another embodiment. As an input, in addition to the 1-bit two numbers a and b, o is added as a control signal. When generating a carry signal, a may be output as it is for addition, and a and b for subtraction.
It suffices to detect whether or not match, so that the signal of Z0 which becomes 1 at that time may be selected. Therefore, the carry signal is fixed to 0 so that Z0 is always selected. The above processing can be performed by giving 1 to the input o at the time of addition and 0 at the time of subtraction. If this zero signal detector is used, a zero detection circuit corresponding to both addition and subtraction can be made.

【0027】[0027]

【発明の効果】本発明の零検出回路を使用すれば、加減
算の結果が零であるか否かを示す零信号を、与えられた
2数から直接求めることができるため、この零検出回路
を演算器と並列に設けることにより、演算器と並列に零
検出が行える。そのため演算器全体としての高速化が図
れる。また、2のべき乗のビット数の場合、ちょうど半
分に次々と分割できるため同じ回路が複数使えるため、
設計が楽である。
When the zero detection circuit of the present invention is used, a zero signal indicating whether or not the result of addition / subtraction is zero can be directly obtained from the given two numbers. Therefore, this zero detection circuit is used. By providing in parallel with the arithmetic unit, zero detection can be performed in parallel with the arithmetic unit. Therefore, the speed of the arithmetic unit as a whole can be increased. Also, when the number of bits is a power of 2, it can be divided into exactly half one after another, so the same circuit can be used multiple times.
Easy to design.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の零検出回路の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of a zero detection circuit of the present invention.

【図2】零検出信号合成回路を示す図である。FIG. 2 is a diagram showing a zero detection signal combining circuit.

【図3】本発明の1ビット零検出回路の実施例を示す図
である。
FIG. 3 is a diagram showing an embodiment of a 1-bit zero detection circuit of the present invention.

【図4】本発明の零検出回路の別の実施例を示す図であ
る。
FIG. 4 is a diagram showing another embodiment of the zero detection circuit of the present invention.

【図5】別の零検出信号合成回路を示す図である。FIG. 5 is a diagram showing another zero detection signal synthesizing circuit.

【図6】本発明の別の1ビット零検出回路の実施例を示
す図である。
FIG. 6 is a diagram showing an embodiment of another 1-bit zero detection circuit of the present invention.

【図7】本発明の別の1ビット零検出回路の実施例を示
す図である。
FIG. 7 is a diagram showing an embodiment of another 1-bit zero detection circuit of the present invention.

【図8】従来の零検出回路の一例を示す図である。FIG. 8 is a diagram showing an example of a conventional zero detection circuit.

【符号の説明】[Explanation of symbols]

1 零検出信号合成回路 2 nhビット零検出回路 3 nlビット零検出回路 4 零検出信号合成回路 5 nhビット零検出回路 6 nlビット零検出回路 11 排他的反転論理和回路 12 排他的論理和回路 13 論理1出力回路 14 論理和回路 21 選択器 22 選択器 23 選択器 24 選択器 25 論理積回路 26 論理積回路 27 論理1出力回路 31 演算器 32 反転論理和回路 DESCRIPTION OF SYMBOLS 1 zero detection signal synthesis circuit 2 nh bit zero detection circuit 3 nl bit zero detection circuit 4 zero detection signal synthesis circuit 5 nh bit zero detection circuit 6 nl bit zero detection circuit 11 exclusive inversion OR circuit 12 exclusive OR circuit 13 Logical 1 output circuit 14 Logical sum circuit 21 Selector 22 Selector 23 Selector 24 Selector 25 Logical product circuit 26 Logical product circuit 27 Logical 1 output circuit 31 Operator 32 Inverting logical sum circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】任意ビットの2数の加減算結果が零か否か
を検出する零検出回路において、前記2数を上位と下位
に分割し、それぞれについて下位からの桁上げがない場
合と桁上げがある場合での、加減算の結果が零か否かを
示す零信号と桁上げの有無を示す桁上げ信号を求め、前
記下位の下位からの桁上げ信号のない場合の桁上げ信号
がない場合は、前記上位の下位からの桁上げがない場合
の零信号と下位の下位からの桁上げ信号がない場合の零
信号の論理積を前記2数の加減算結果の下位からの桁上
げがない場合の零信号とし、前記上位の下位からの桁上
げがない場合の桁上げ信号を前記2数の加減算結果の下
位から桁上げ信号がない場合の桁上げ信号とし、前記下
位の下位からの桁上げ信号がある場合の桁上げ信号がな
い場合は、前記上位の下位からの桁上げがない場合の零
信号と下位の下位からの桁上げ信号がある場合の零信号
の論理積を前記2数の加減算結果の下位からの桁上げが
ある場合の零信号とし、前記上位の下位からの桁上げが
ない場合の桁上げ信号を前記2数の加減算結果の下位か
ら桁上げ信号がある場合の桁上げ信号とし、前記下位の
下位からの桁上げ信号がない場合の桁上げ信号がある場
合は、前記上位の下位からの桁上げがある場合の零信号
と前記下位の下位から桁上げ信号がない場合の零信号の
論理積を前記2数の加減算結果の下位から桁上げがない
場合の零信号とし、前記上位の下位からの桁上げがある
場合の桁上げ信号を前記2数の加減算結果の下位からの
桁上げ信号がない場合の桁上げ信号とし、前記下位の下
位からの桁上げ信号がある場合の桁上げ信号がある場合
は、前記上位の下位からの桁上げがある場合の零信号と
前記下位の下位から桁上げ信号がある場合の零信号の論
理積を前記2数の加減算結果の下位から桁上げがある場
合の零信号とし、前記上位の下位からの桁上げがある場
合の桁上げ信号を前記2数の加減算結果の下位からの桁
上げ信号がある場合の桁上げ信号とすることを特徴とす
る零検出回路。
1. A zero detection circuit for detecting whether an addition / subtraction result of two numbers of an arbitrary bit is zero or not, wherein the two numbers are divided into high order and low order, and there is no carry from the lower order and carry respectively. When there is a carry signal, the zero signal indicating whether the result of addition and subtraction is zero and the carry signal indicating the presence of carry are obtained, and there is no carry signal when there is no carry signal from the lower order. Is a logical product of the zero signal when there is no carry from the lower order of the upper order and the zero signal when there is no carry signal from the lower order of the lower order, and when there is no carry from the lower order of the addition / subtraction result of the two numbers. And the carry signal when there is no carry from the above lower order carry signal when there is no carry signal from the lower order of the addition / subtraction result of the two numbers, and carry from the above lower order If there is a signal and there is no carry signal, the above The logical product of the zero signal when there is no carry from the lower order and the zero signal when there is a carry signal from the lower order is the zero signal when there is a carry from the lower order in the addition / subtraction result of the two numbers. , The carry signal when there is no carry from the higher order lower order is the carry signal when there is a carry signal from the lower order of the addition / subtraction result of the two numbers, and when there is no carry signal from the lower order lower order When there is a carry signal, the logical product of the zero signal when there is a carry signal from the higher order lower order and the zero signal when there is no carry signal from the lower order lower order is the lower order of the addition / subtraction result of the two numbers. Is a zero signal when there is no carry, and the carry signal when there is a carry from the higher order lower order is the carry signal when there is no carry signal from the lower order of the addition / subtraction result of the two numbers. Digits when there is a carry signal from the lower order If there is a carry signal, the logical product of the zero signal when there is a carry from the higher order lower order and the zero signal when there is a carry signal from the lower order lower order is carried out from the lower order of the addition / subtraction result of the two numbers. When there is a carry, the carry signal when there is a carry from the higher order lower order is used as a carry signal when there is a carry signal from the lower order of the addition / subtraction result of the two numbers. Zero detection circuit.
【請求項2】任意ビットの2数の加減算結果が零か否か
を検出する零検出回路において、前記2数を上位と下位
に分割し、それぞれについて下位からの桁上げがない場
合と桁上げがある場合での、加減算の結果が零か否かを
示す零信号と桁上げの有無を示す桁上げ信号を求め、前
記下位の下位からの桁上げ信号のない場合の桁上げ信号
がない場合は、前記上位の下位からの桁上げがない場合
の零信号と下位の下位からの桁上げ信号がない場合の零
信号の論理積を前記2数の加減算結果の下位からの桁上
げがない場合の零信号とし、前記上位の下位からの桁上
げがない場合の桁上げ信号を前記2数の加減算結果の下
位から桁上げ信号がない場合の桁上げ信号とし、前記下
位の下位からの桁上げ信号がある場合の桁上げ信号がな
い場合は、前記上位の下位からの桁上げがある場合の零
信号と下位の下位からの桁上げ信号がある場合の零信号
の論理積を前記2数の加減算結果の下位からの桁上げが
ある場合の零信号とし、前記下位の下位からの桁上げ信
号がない場合の桁上げ信号がある場合は、前記上位の下
位からの桁上げがある場合の零信号と前記下位の下位か
ら桁上げ信号がない場合の零信号の論理積を前記2数の
加減算結果の下位から桁上げがない場合の零信号とし、
前記2数の加減算結果の下位からの桁上げ信号がない場
合の桁上げ信号を論理1とし、前記下位の下位からの桁
上げ信号がある場合の桁上げ信号がある場合は、前記上
位の下位からの桁上げがある場合の零信号と前記下位の
下位から桁上げ信号がある場合の零信号の論理積を前記
2数の加減算結果の下位から桁上げがある場合の零信号
とすることを特徴とする零検出回路。
2. A zero detection circuit for detecting whether or not the result of addition or subtraction of two numbers of arbitrary bits is zero. The two numbers are divided into high order and low order, and there is no carry from the lower order and carry respectively. When there is a carry signal, the zero signal indicating whether the result of addition and subtraction is zero and the carry signal indicating the presence of carry are obtained, and there is no carry signal when there is no carry signal from the lower order. Is a logical product of the zero signal when there is no carry from the lower order of the upper order and the zero signal when there is no carry signal from the lower order of the lower order, and when there is no carry from the lower order of the addition / subtraction result of the two numbers. And the carry signal when there is no carry from the above lower order carry signal when there is no carry signal from the lower order of the addition / subtraction result of the two numbers, and carry from the above lower order If there is a signal and there is no carry signal, the above The logical product of the zero signal when there is a carry from the lower order and the zero signal when there is a carry signal from the lower order is the zero signal when there is a carry from the lower order in the addition / subtraction result of the two numbers. , A zero signal when there is a carry signal when there is no carry signal from the lower order lower, and a zero signal when there is no carry signal from the higher order lower order and a zero signal when there is no carry signal from the lower order lower order. The logical product of the signals is a zero signal when there is no carry from the lower order of the addition / subtraction result of the two numbers,
If there is no carry signal from the lower order of the addition / subtraction result of the two numbers, the carry signal is set to logic 1. If there is a carry signal from the lower order lower order, if there is a carry signal, the higher order lower order And the zero signal when there is a carry signal from the lower order and the zero signal when there is a carry signal from the lower order lower order is defined as the zero signal when there is a carry from the lower order of the addition / subtraction result of the two numbers. Characteristic zero detection circuit.
【請求項3】前記任意ビットの2数を上位と下位に分割
したそれぞれの零信号を求めることを特徴とする請求項
1または2記載の零検出回路。
3. The zero detecting circuit according to claim 1, wherein each zero signal is obtained by dividing the number of two of the arbitrary bit into upper and lower.
【請求項4】1ビットの2数の排他的反転論理和を下位
からの桁上げがない場合の零信号とし、前記2数の排他
的論理和を下位からの桁上げがある場合の零信号とし、
前記2数の一方を桁上げ信号とすることにより、1ビッ
トの加減算の結果が零か否かを検出することを特徴とす
る1ビット零検出回路。
4. A 1-bit two-bit exclusive inversion OR is used as a zero signal when there is no carry from the lower order, and an exclusive OR of the two numbers is a zero signal when there is a carry from the lower order. age,
A 1-bit zero detection circuit, wherein one of the two numbers is used as a carry signal to detect whether or not the result of 1-bit addition / subtraction is zero.
【請求項5】1ビットの2数の加減算の結果が零か否か
を検出する零検出回路において、加算の時は前記2数の
排他的反転論理和を下位からの桁上げがない場合の零信
号とし、前記2数の排他的論理和を下位からの桁上げが
ある場合の零信号とし、前記2数の一方を桁上げ信号と
し、減算の時は前記2数の排他的反転論理和を零信号と
し、桁上げ信号を桁上げ無しとすることを特徴とする1
ビット零検出回路。
5. A zero detection circuit for detecting whether or not the result of addition / subtraction of two 1-bit numbers is zero, in the case of addition, when the exclusive inversion OR of the two numbers is not carried from the lower order. As a zero signal, the exclusive OR of the two numbers is used as a zero signal when there is a carry from the lower order, one of the two numbers is used as a carry signal, and the exclusive OR of the two numbers is used for subtraction. Is a zero signal and the carry signal is no carry 1
Bit zero detection circuit.
JP34590591A 1991-12-27 1991-12-27 Zero detection circuit Expired - Lifetime JP3335653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34590591A JP3335653B2 (en) 1991-12-27 1991-12-27 Zero detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34590591A JP3335653B2 (en) 1991-12-27 1991-12-27 Zero detection circuit

Publications (2)

Publication Number Publication Date
JPH05181643A true JPH05181643A (en) 1993-07-23
JP3335653B2 JP3335653B2 (en) 2002-10-21

Family

ID=18379791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34590591A Expired - Lifetime JP3335653B2 (en) 1991-12-27 1991-12-27 Zero detection circuit

Country Status (1)

Country Link
JP (1) JP3335653B2 (en)

Also Published As

Publication number Publication date
JP3335653B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US4707800A (en) Adder/substractor for variable length numbers
US5373459A (en) Floating point processor with high speed rounding circuit
US9146707B2 (en) Generating a fast 3x multiplicand term for radix-8 booth multiplication
JPH02259826A (en) Apparatus and method for converting format of floating point data in miroprocessor
JPH0480815A (en) Absolute value computing circuit
US11762633B2 (en) Circuit and method for binary flag determination
JP2627581B2 (en) Electronic circuit for generating error detection codes in digital signals
US20210109708A1 (en) Device and method for binary flag determination
JPH04350724A (en) Shift extent detecting circuit
JPH05181643A (en) Zero detecting circuit
JPH09114641A (en) Apparatus and method for decision of most significant digit
GB1171266A (en) Arithmetic and Logic Circuits, e.g. for use in Computing
US3829672A (en) Serial binary square root apparatus
KR970022803A (en) Normalization circuit device of floating point arithmetic unit
EP0328779A2 (en) Apparatus for branch prediction for computer instructions
US7444366B2 (en) Faster shift value calculation using modified carry-lookahead adder
US3728687A (en) Vector compare computing system
KR0175358B1 (en) Status Flag Detection Circuit of Computer for High Speed
JPH0367328A (en) Floating point arithmetic unit
JP2653134B2 (en) Arithmetic processing unit
JPH0553759A (en) Fixed decimal point arithmetic unit
KR100265358B1 (en) Speedy shift apparatus
SU435523A1 (en) DEVICE DEVELOPMENT
JPH0573271A (en) Divider circuit
KR200326695Y1 (en) Digital processor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120802

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120802