JPH05180612A - Displacement sensor - Google Patents

Displacement sensor

Info

Publication number
JPH05180612A
JPH05180612A JP3347497A JP34749791A JPH05180612A JP H05180612 A JPH05180612 A JP H05180612A JP 3347497 A JP3347497 A JP 3347497A JP 34749791 A JP34749791 A JP 34749791A JP H05180612 A JPH05180612 A JP H05180612A
Authority
JP
Japan
Prior art keywords
electrode
displacement
electrode members
capacitance
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3347497A
Other languages
Japanese (ja)
Other versions
JP3022671B2 (en
Inventor
Yoshihide Tonokai
佳英 殿貝
Masaaki Takagi
正明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP3347497A priority Critical patent/JP3022671B2/en
Priority to US07/974,160 priority patent/US5323118A/en
Publication of JPH05180612A publication Critical patent/JPH05180612A/en
Application granted granted Critical
Publication of JP3022671B2 publication Critical patent/JP3022671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To obtain a displacement sensor which shows no hysteresis and no deterioration of the detecting accuracy even when it is used in a relatively wide range of temperatures for a long time, having high durability. CONSTITUTION:This sensor is composed of two electrode plates 1a, 1c arranged in parallel to each other and an intermediate electrode plate 1b. One end of a capacitance member 2 is used as a fixed part, 3, and the other end is a movable part 4. Both ends of each of the electrode plates 1, 1 are hinged at 5 so as to move the movable part 4 in parallel to the fixed part 3. Moreover, an additional capacitance is provided by means of an insulating plate (b) so as to improve the linearity of the detecting output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば物体の傾斜角、
加速度、位置等の変位の検出に用いられる静電容量式の
変位センサに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to, for example, an inclination angle of an object,
The present invention relates to a capacitance type displacement sensor used for detecting displacement such as acceleration and position.

【0002】[0002]

【従来の技術】従来、傾斜角用の変位計には、接触式と
非接触式のものが知られている。
2. Description of the Related Art Conventionally, contact type and non-contact type displacement gauges have been known.

【0003】接触式は、図8で示すように振子60の先
端に取付けたブラシ61を、一定電圧を印加した抵抗体
62に摺接させる構造となっており、このブラシ61に
よって分圧された電圧を検出出力として取出すことによ
り傾斜角を検出するものである。
As shown in FIG. 8, the contact type has a structure in which a brush 61 attached to the tip of a pendulum 60 is brought into sliding contact with a resistor 62 to which a constant voltage is applied, and the voltage is divided by the brush 61. The inclination angle is detected by taking out the voltage as the detection output.

【0004】一方、非接触式は、図9で示すように振子
70の先端に取付けた磁石71を磁気抵抗素子72,7
3に沿わせて非接触で揺動させ、磁気抵抗素子72,7
3の抵抗値変化から差動的に傾斜角を検出するものであ
る。
On the other hand, in the non-contact type, as shown in FIG. 9, a magnet 71 attached to the tip of a pendulum 70 is used as a magnetoresistive element 72, 7.
3 to be rocked in a non-contact manner so that the magnetoresistive elements 72, 7
The tilt angle is differentially detected from the change in the resistance value of No. 3.

【0005】[0005]

【発明が解決しようとする課題】上記接触式変位計にお
いては、ヒステリシスの発生が不可避であり、また抵抗
体やこの抵抗体に摺接するブラシが長年の使用により摩
耗してしまうため、変位量の検出精度や耐久性に問題が
あった。
In the above contact type displacement meter, the occurrence of hysteresis is unavoidable, and the resistance element and the brush sliding on the resistance element are worn out for many years. There was a problem with detection accuracy and durability.

【0006】又、非接触式変位計においては、かかる問
題は発生しないが、磁石の経年変化による磁気特性の劣
化が生じ易く、検出精度や耐久性に問題があり、また磁
気抵抗素子が半導体であるため温度特性が悪く、広い温
度範囲における使用には何らかの温度補償を考慮しなけ
ればならなかった。
Further, in the non-contact type displacement meter, such a problem does not occur, but deterioration of magnetic characteristics due to aging of the magnet is apt to occur, there is a problem in detection accuracy and durability, and the magnetoresistive element is a semiconductor. Therefore, the temperature characteristics were poor, and some kind of temperature compensation had to be taken into consideration for use in a wide temperature range.

【0007】本発明は、このような問題点に鑑み、ヒス
テリシスが発生せず長年の使用及び比較的広い温度範囲
の環境下で使用しても変位量の検出精度の悪化がなく、
耐久性の高い変位センサを提供することをその目的とし
ている。
In view of such a problem, the present invention does not cause hysteresis and does not deteriorate the displacement amount detection accuracy even if it is used for many years or in an environment of a relatively wide temperature range.
It is an object of the present invention to provide a displacement sensor having high durability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく本
発明は、互いに対向して配置された一対の電極部材と、
一対の電極部材間に設けられた一定容量の付加容量手段
と、一対の電極部材の一方に交流電圧を印加する信号源
とを備え、一対の電極部材間の距離もしくは対向面積の
少なくとも一方が測定すべき変位に応じて非線形に変化
するよう測定対象物に取り付けられ、変位の検出結果が
前記一対の電極部材の他方の電位として出力されること
を特徴とする。
In order to achieve the above object, the present invention provides a pair of electrode members arranged to face each other,
At least one of the distance between the pair of electrode members or the facing area is measured by providing a constant capacitance additional capacitance means provided between the pair of electrode members and a signal source for applying an AC voltage to one of the pair of electrode members. It is characterized in that it is attached to the measuring object so as to change non-linearly according to the displacement to be made, and the displacement detection result is output as the other potential of the pair of electrode members.

【0009】ここで、一対の電極部材の各々の一端部が
測定すべき変位方向に可動な第1のヒンジにより測定対
象物と結合され、一対の電極部材の各々の他端部間に雰
囲気に比べて高誘電率の材料を介在させることで付加容
量手段が構成され、付加容量手段の構成部分が変位方向
に可動な第2のヒンジにより一対の電極部材の中間部分
と結合されているとすることが好ましい。
Here, one end of each of the pair of electrode members is coupled to the object to be measured by a first hinge movable in the displacement direction to be measured, and an atmosphere is formed between the other ends of each of the pair of electrode members. In contrast, the additional capacitance means is formed by interposing a material having a high dielectric constant, and the constituent portion of the additional capacitance means is connected to the intermediate portion of the pair of electrode members by the second hinge movable in the displacement direction. Preferably.

【0010】また、本発明は、互いに対向して配置され
た第1および第2の電極部材と、第1および第2の電極
部材間にこれらと対向するように配置された第3の電極
部材と第1および第3の電極部材間と、第2および第3
の電極部材間に設けられた一定容量の付加容量手段と、
第1および第2の電極部材間に交流電圧を印加する信号
源とを備え、第1および第3の電極部材間と第2および
第3の電極部材間の距離もしくは対向面積の少なくとも
一方が測定すべき変位に応じて非線形に変化するよう測
定対象物に取り付けられ、変位の検出結果が第3の電極
部材の電位として出力されることを特徴とする。
Further, according to the present invention, the first and second electrode members are arranged so as to face each other, and the third electrode member is arranged between the first and second electrode members so as to face them. And between the first and third electrode members, and between the second and third electrode members
A constant capacitance additional capacitance means provided between the electrode members of
A signal source for applying an AC voltage between the first and second electrode members, and at least one of the distance or the facing area between the first and third electrode members and between the second and third electrode members is measured. It is characterized in that it is attached to the object to be measured so as to change non-linearly according to the displacement to be made, and the displacement detection result is output as the potential of the third electrode member.

【0011】この場合、第1、第2および第3の電極部
材の各々の一端部が測定すべき変位方向に可動な第1の
ヒンジにより測定対象物と結合され、第1および第2の
電極部材と第3の電極部材の第1のヒンジ結合位置が変
位方向で異なっていることが好ましい。一方で、第1、
第2および第3の電極部材の各々の他端部間に雰囲気に
比べて高誘電率の材料を介在させることで付加容量手段
が構成され、付加容量手段の構成部分が変位方向に可動
な第2のヒンジにより第1、第2および第3の電極部材
の中間部分と結合されていることも好ましい。
In this case, one end of each of the first, second and third electrode members is connected to the object to be measured by the first hinge movable in the displacement direction to be measured, and the first and second electrodes are connected. It is preferable that the first hinge connection position of the member and the third electrode member are different in the displacement direction. On the other hand, the first,
The additional capacitance means is configured by interposing a material having a higher dielectric constant than the atmosphere between the other ends of the second and third electrode members, and the constituent portion of the additional capacitance means is movable in the displacement direction. It is also preferred that it is connected to the intermediate parts of the first, second and third electrode members by means of two hinges.

【0012】[0012]

【作用】測定すべき変位により、例えば平行配置した電
極部材が互に平行状態を保ったまま傾動し、これに伴っ
て電極部材間の距離、対向面積が変化する。その結果、
電極部材間の静電容量が変化するので、ある電極部材に
交流電圧を印加しておけば、他の電極部材の電位により
変位量が検出される。すなわち、静電容量式のセンサを
3枚の電極部材で構成し、中間の電極部材のヒンジをそ
の両側の電極部材のヒンジに対し変位方向と直交方向に
位置をずらして設けておけば、変位に伴うこれら電極部
材の傾動により、中間の電極部材に対する一側の電極部
材の対面距離と他側の電極部材の対面距離とは、一方が
減少すると他方が増加することになる。
By the displacement to be measured, for example, the electrode members arranged in parallel are tilted while maintaining the parallel state with each other, and accordingly, the distance between the electrode members and the facing area are changed. as a result,
Since the capacitance between the electrode members changes, if an AC voltage is applied to a certain electrode member, the displacement amount can be detected by the potential of another electrode member. That is, if the capacitance type sensor is composed of three electrode members, and the hinges of the intermediate electrode members are provided so as to be displaced in the direction orthogonal to the displacement direction with respect to the hinges of the electrode members on both sides thereof, the displacement is Due to the tilting of these electrode members, one of the facing distance of the electrode member on the one side and the facing distance of the electrode member on the other side with respect to the intermediate electrode member decreases when one decreases.

【0013】このことは、中間の電極部材と一側の電極
部材との間の静電容量と中間の電極部材と他側の電極部
材との間の静電容量とが増減することと等価になり、両
側の電極部材を交流電源に接続し、中間の電極部材から
検出出力を取出すことで、これらの変化を差動的に検出
でき、温度補償された正確な検出出力を得ることができ
る。この場合、静電容量の変化は測定すべき変位に対し
て非線形(例えば正弦波状)であるので、付加容量を配
設することにより、線形な出力電圧を検出できる。
This is equivalent to increasing or decreasing the electrostatic capacitance between the intermediate electrode member and the electrode member on one side and the electrostatic capacitance between the intermediate electrode member and the electrode member on the other side. By connecting the electrode members on both sides to an AC power source and extracting the detection output from the intermediate electrode member, these changes can be detected differentially, and an accurate detection output that is temperature-compensated can be obtained. In this case, since the change in capacitance is non-linear (for example, sinusoidal) with respect to the displacement to be measured, the linear output voltage can be detected by disposing the additional capacitance.

【0014】[0014]

【実施例】図1を参照して、本発明の第1の実施例に係
る変位計について説明する。導電性の材質からなる2枚
の電極板1,1を互いに平行に配設して静電容量部材2
が構成されている。両電極板1,1の両端部は、それぞ
れ絶縁板6を挾んだ状態で接着剤等により積層固着され
ている。そして、静電容量部材2の一端を固定部3と
し、他端を可動部4として、固定部3に対し可動部4が
平行に移動できるように各電極板1の両端部にそれぞれ
ヒンジ5,5を設けている。各ヒンジ5は固定部3の下
面、及び可動部4の上面にそれぞれ接するように設けら
れており、これにより、両電極1,1にいわゆる平行リ
ンク機構が構成されている。また、固定部3の上面に電
極板1,1に連なる電極端子7,7が設けられており、
一方が電源端子、他方が出力端子となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A displacement gauge according to a first embodiment of the present invention will be described with reference to FIG. Two electrode plates 1 and 1 made of a conductive material are arranged in parallel with each other to form a capacitance member 2.
Is configured. Both ends of both electrode plates 1 and 1 are laminated and fixed by an adhesive or the like while sandwiching the insulating plate 6. Then, one end of the capacitance member 2 is used as the fixed portion 3 and the other end is used as the movable portion 4, and the hinges 5 and 5 are provided at both ends of each electrode plate 1 so that the movable portion 4 can move in parallel to the fixed portion 3. 5 are provided. The hinges 5 are provided so as to contact the lower surface of the fixed portion 3 and the upper surface of the movable portion 4, respectively, whereby a so-called parallel link mechanism is formed on both electrodes 1, 1. Further, electrode terminals 7, 7 connected to the electrode plates 1, 1 are provided on the upper surface of the fixed portion 3,
One is a power supply terminal and the other is an output terminal.

【0015】以上の構成において、両端部のヒンジ5,
5間における両電極板1,1の間隔及び有効対向面積を
1 及びS1 とし、また、ヒンジ5,5の外側すなわち
静電容量部材2の固定部3及び可動部4における電極板
間隔及び有効対向面積をL0 及びS0 とすると、静電容
量部材2の静電容量Cは、 C=ε0 (S1 /L1 +εS ・S0 /L0 ) で表わされる。ここで、ε0 は真空の誘電率、εS は絶
縁板6の比誘電率である。ここで、固定部3に対して可
動部4が変位して電極板1,1が角度ψだけ傾動する
と、変位後の電極板間隔L1 は、L0 cosψとなり、
静電容量は変位角度ψに対応し上式に従って変化する。
In the above structure, the hinges 5 at both ends are
The distance between the two electrode plates 1 and 1 and the effective facing area between the electrodes 5 are L 1 and S 1, and the electrode plate distances outside the hinges 5 and 5, that is, in the fixed portion 3 and the movable portion 4 of the capacitance member 2 and When the effective facing area is L 0 and S 0 , the capacitance C of the capacitance member 2 is represented by C = ε 0 (S 1 / L 1 + ε S · S 0 / L 0 ). Here, ε 0 is the dielectric constant of vacuum, and ε S is the relative dielectric constant of the insulating plate 6. Here, when the movable part 4 is displaced with respect to the fixed part 3 and the electrode plates 1, 1 are tilted by an angle ψ, the electrode plate interval L 1 after displacement is L 0 cos ψ,
The electrostatic capacitance corresponds to the displacement angle ψ and changes according to the above equation.

【0016】したがって、可動部4がピン(図示せず)
等を介して被測定物の変位に応じて変位するようにして
おけば、静電容量Cの変化により被測定物の変位を測定
できる。また、可動部4に錘9を取付けることにより、
固定部3の重力方向に対する傾斜角も測定できることと
なる。また、比誘電率εs の絶縁板6が介在することに
より形成された付加的な浮遊容量C0 =ε0 ・εs ・S
0 /L0 は、出力電圧の非線形性を改善し、線形な出力
をもたらすように作用する。このような作用は、特に後
述の第2実施例において顕著である。
Therefore, the movable part 4 is a pin (not shown).
By displacing the object to be measured in accordance with the displacement of the object to be measured, the displacement of the object to be measured can be measured by the change in the capacitance C. Further, by attaching the weight 9 to the movable portion 4,
The inclination angle of the fixed portion 3 with respect to the gravity direction can also be measured. Further, an additional stray capacitance C 0 = ε 0 · ε s · S formed by interposing the insulating plate 6 having a relative permittivity ε s.
0 / L 0 acts to improve the non-linearity of the output voltage and provide a linear output. Such an effect is particularly remarkable in the second embodiment described later.

【0017】以下、図2及び図3を参照して本発明を第
2実施例である傾斜角計に適用した場合を説明する。
Hereinafter, the case where the present invention is applied to the inclinometer according to the second embodiment will be described with reference to FIGS. 2 and 3.

【0018】この実施例では、3枚の電極板1a,1
b,1cが相互に平行に配設され、これら電極1a,1
b,1cの両端を上記実施例と同様にそれぞれ絶縁板6
を挾んだ状態で接着剤等により積層固着して、実質的に
2つのコンデンサから成る静電容量部材2が構成されて
いる。この静電容量部材2は、その上端を固定部3と
し、下端を可動部4として構成されており、図2に示す
如く、固定部3に静電容量部材2を被測定物に垂設する
ためのブラケット8が取付けられ、一方で可動部4に錘
9が取付けられている。
In this embodiment, three electrode plates 1a, 1
b, 1c are arranged parallel to each other, and these electrodes 1a, 1c
Both ends of b and 1c are respectively insulated by the insulating plate 6 as in the above embodiment.
The electrostatic capacitance member 2 substantially composed of two capacitors is formed by laminating and fixing the two in a sandwiched state with an adhesive or the like. The electrostatic capacitance member 2 has a fixed portion 3 at its upper end and a movable portion 4 at its lower end. As shown in FIG. 2, the electrostatic capacitance member 2 is vertically hung on the fixed portion 3 to be measured. The bracket 8 is attached to the movable portion 4, while the weight 9 is attached to the movable portion 4.

【0019】また、これら電極板1a,1b,1cによ
り、可動部4を固定部3に対して平行移動させる平行リ
ンク機構が構成されるように各電極板の両端部にはヒン
ジ5が設けられている。この場合、中間の電極板1bの
ヒンジ5の位置は、左右両側の電極板1a,1cのヒン
ジ5の位置に対し、上下方向に所定量hだけずらして設
けられている。これにより、傾動に伴う一方の電極板1
a,1b間の距離と他方の電極板1b,1c間の距離と
は、一方が増加すれば他方が減少し、一方が減少すれば
他方が増加することになる(図3参照)。
Further, hinges 5 are provided at both ends of each electrode plate so that the electrode plates 1a, 1b, 1c constitute a parallel link mechanism for moving the movable portion 4 in parallel with the fixed portion 3. ing. In this case, the position of the hinge 5 of the intermediate electrode plate 1b is provided so as to be vertically displaced by a predetermined amount h from the positions of the hinges 5 of the left and right electrode plates 1a and 1c. Thereby, one of the electrode plates 1 associated with the tilting
Regarding the distance between a and 1b and the distance between the other electrode plates 1b and 1c, if one increases, the other decreases, and if one decreases, the other increases (see FIG. 3).

【0020】各ヒンジ5は、電極板1a,1b,1cに
一体成形した弾性的で屈曲可能な折曲げ部で構成されて
いる。この折曲げ部は、図2に示す長孔や、図3に示す
薄肉部のように部材の一部を加工して屈曲可能に形成す
るようにしても良いし、或いは断面Ω状等の可撓部で構
成しても良い。
Each hinge 5 is composed of an elastic and bendable bent portion integrally formed with the electrode plates 1a, 1b, 1c. This bent portion may be formed by bending a part of the member such as the long hole shown in FIG. 2 or the thin portion shown in FIG. You may comprise a flexible part.

【0021】一方、固定部3に各電極板1a,1b,1
cに連なる電極端子7a,7b,7cを設け、図4に示
すように左右両側の電極板1a,1cを交流電源10に
接続し、中間の電極板1bからの交流出力を増幅器11
とで増幅し、整流器12を介して直流レベルの検出出力
を取出すようにしている。
On the other hand, each electrode plate 1a, 1b, 1 is attached to the fixed portion 3.
Electrode terminals 7a, 7b, 7c connected to c are provided, the electrode plates 1a, 1c on both the left and right sides are connected to an AC power source 10, and the AC output from the intermediate electrode plate 1b is amplified by an amplifier 11 as shown in FIG.
Amplification is performed by and the detection output of the DC level is taken out through the rectifier 12.

【0022】以上の構成において、被測定物が傾いて電
極板1a,1b,1cが錘9の働きにより、例えば図3
に仮想線で示す如く右方に角度ψだけ傾動すると、中間
の電極板1bのヒンジ5の位置の変位量hに起因して、
中間の電極板1bと左側の電極板1aとの距離L1 は、 L1 =(L0 −h・tanψ)cosψ となり、一方、中間の電極板1bと右側の電極板1cと
の距離L2 は、 L2 =(L0 +h・tanψ)cosψ となる。このように、h・tanψが中間の電極板1b
に対する左側電極板1aの距離L1 と右側電極板1cの
距離L2 とで正負逆になるため、電極板1bと電極板1
aとの間の静電容量と、電極板1bと電極板1cとの間
の静電容量とが差動的に変化し、温度変化や誘電率変化
に対する影響が相殺されて、傾斜角に応じた正確な検出
出力が得られるようになる。
In the above structure, the object to be measured is tilted and the electrode plates 1a, 1b, 1c are caused to function by the weight 9 so that, for example, as shown in FIG.
When tilted to the right by an angle ψ as shown by the imaginary line, due to the displacement amount h of the position of the hinge 5 of the intermediate electrode plate 1b,
The distance L 1 between the intermediate electrode plate 1b and the left electrode plate 1a is L 1 = (L 0 −h · tan ψ) cos ψ, while the distance L 2 between the intermediate electrode plate 1b and the right electrode plate 1c. Becomes L 2 = (L 0 + h · tan ψ) cos ψ. In this way, the electrode plate 1b having an intermediate h · tan ψ
To become a sign reversed between the distance L 2 of the distance L 1 and the right electrode plate 1c of the left electrode plate 1a with respect to the electrode plate 1b and the electrode plate 1
The capacitance between a and the capacitance between the electrode plate 1b and the electrode plate 1c are differentially changed, and the influences on the temperature change and the dielectric constant change are canceled out, and the tilt angle is changed according to the inclination angle. The accurate detection output can be obtained.

【0023】ところで、上記の如くヒンジ5を弾性的に
屈曲可能な折曲げ部で構成すると、ヒンジ5に働く弾性
力により、被測定物の傾斜角θと電極板1a,1b,1
cの傾斜角ψは一致しなくなるが、ヒンジ5のばね定数
をK、両端部のヒンジ間距離をLV 、錘9の重量をMと
して、ψとθとの間には、 ψ=sin-1(M/K・LV ・sinθ) の関係式が成立し、ψに応じた検出出力からθを求める
ことができる。
By the way, when the hinge 5 is composed of the bent portion which can be elastically bent as described above, the inclination angle θ of the object to be measured and the electrode plates 1a, 1b, 1 are caused by the elastic force acting on the hinge 5.
Although the inclination angle ψ of c does not match, assuming that the spring constant of the hinge 5 is K, the distance between the hinges at both ends is L V , and the weight of the weight 9 is M, ψ = sin The relational expression of 1 (M / K · L V · sin θ) is established, and θ can be obtained from the detection output corresponding to ψ.

【0024】図5は、3枚の電極板1a,1b,1cの
傾動角ψに対する検出出力の変化特性を示し、各電極板
間の静電容量にヒンジ5の外端側、すなわち固定部3や
可動部4の絶縁板6によって得られる絶縁静電容量(浮
遊容量)が付加されない場合には、A線の如く非線形の
変化特性となるが、両端部のヒンジ5間における各電極
板間の静電容量に所定の浮遊容量を付加することで、B
線のようなほぼ線形の変化特性となる。
FIG. 5 shows the change characteristics of the detection output with respect to the tilting angle ψ of the three electrode plates 1a, 1b, 1c. The capacitance between the electrode plates is the outer end side of the hinge 5, that is, the fixed portion 3. When the insulating capacitance (stray capacitance) obtained by the insulating plate 6 of the movable part 4 is not added, the characteristic changes nonlinearly like the line A, but between the electrode plates between the hinges 5 at both ends. By adding a predetermined stray capacitance to the electrostatic capacitance, B
The change characteristic is almost linear like a line.

【0025】図6、図7は変化特性の実測値を示してい
る。いずれも、浮遊容量としての付加容量を除く零点時
容量は42.5pFである。そして、ヒンジにおけるバ
ネ係数は、図6の例では0.6、図7の例では0.8と
し、±65degの傾斜角センサとして求めた。
6 and 7 show measured values of change characteristics. In each case, the zero point capacitance excluding the additional capacitance as the stray capacitance is 42.5 pF. Then, the spring coefficient in the hinge was set to 0.6 in the example of FIG. 6 and 0.8 in the example of FIG. 7 to obtain a tilt angle sensor of ± 65 deg.

【0026】図6(a)は出力;{C1 /(C1
2 )}の角度(deg)依存性を示し、同図(b)は
その直線性[%FS]を示す。図において、曲線Aは付
加浮遊容量が50pFのとき、曲線Bは付加浮遊容量が
無いとき、曲線E、Fはそれぞれ付加浮遊容量が90p
F、110pFのときである。浮遊容量を付加すること
で、非線形な変化を線形に近づけ得ることが理解でき
る。
FIG. 6A shows the output; {C 1 / (C 1 +
The angle (deg) dependence of C 2 )} is shown, and the same figure (b) shows its linearity [% FS]. In the figure, curve A has an additional stray capacitance of 50 pF, curve B has no additional stray capacitance, and curves E and F each have an additional stray capacitance of 90 pF.
F, 110 pF. It can be understood that the addition of the stray capacitance can make the nonlinear change close to linear.

【0027】図7(a)、(b)についても同様であ
り、曲線Aはポリイミドフィルム(εS =3.5)を用
いることにより付加浮遊容量が50pFのとき、曲線B
はテフロンフィルム(εS =2.2)を用いることによ
り浮遊容量が30pF付加されたときを示す。また、曲
線Cは浮遊容量が15pFと仮定した場合であり、曲線
Dは付加浮遊容量が無い場合である。この場合にも、検
出特性を線形にできることがわかる。
The same applies to FIGS. 7 (a) and 7 (b). The curve A is a curve B when the added stray capacitance is 50 pF by using a polyimide film (ε S = 3.5).
Indicates the case where a stray capacitance of 30 pF was added by using a Teflon film (ε S = 2.2). Curve C is the case where the stray capacitance is assumed to be 15 pF, and curve D is the case where there is no additional stray capacitance. Also in this case, it can be seen that the detection characteristic can be made linear.

【0028】又、ヒンジ5に弾性力を作用させることに
より、電極板を加速度によって可動部に働く力に応じた
角度に傾動させられるようになり、本発明の変位計を加
速度センサとして用いることもできる。また、可動部を
固定部とは相対移動する物体に取り付けることにより、
直線的な位置変位のセンサとして用いることもできる。
Further, by applying an elastic force to the hinge 5, the electrode plate can be tilted at an angle corresponding to the force acting on the movable portion due to acceleration, and the displacement gauge of the present invention can be used as an acceleration sensor. it can. Also, by attaching the movable part to an object that moves relative to the fixed part,
It can also be used as a linear position displacement sensor.

【0029】[0029]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、測定すべき変位により、平行配置した電極部材
が互に平行状態を保ったまま傾動し、これに伴って電極
部材間の静電容量が変化するので、ある電極部材に交流
電圧を印加しておけば、他の電極部材の電位により変位
量が検出される。また、静電容量部材を3枚の電極部材
で構成し、中間の電極部材のヒンジをその両側の電極部
材のヒンジに対し変位と直交方向に位置をずらして設け
ておけば、変位に伴うこれら電極部材の傾動により、中
間の電極部材と一側の電極部材との間の静電容量と中間
の電極部材と他側の電極部材との間の静電容量とが増減
することとなり、両側の電極部材を交流電源に接続し、
中間の電極部材から検出出力を取出すことで、これらの
変化を差動的に検出でき、温度補償された正確な検出出
力を得ることができる。この場合、静電容量の変化は測
定すべき変位に対して非線形(例えば正弦波状)である
ので、付加容量を配設することにより、線形な出力電圧
を検出できる。
As is apparent from the above description, according to the present invention, due to the displacement to be measured, the electrode members arranged in parallel are tilted while maintaining the parallel state with each other. Since the capacitance of the electrode changes, if an AC voltage is applied to a certain electrode member, the displacement amount can be detected by the potential of another electrode member. Further, if the capacitance member is composed of three electrode members and the hinge of the intermediate electrode member is provided so as to be displaced in the direction orthogonal to the displacement with respect to the hinges of the electrode members on both sides thereof, these will not be accompanied by the displacement. Due to the tilting of the electrode member, the electrostatic capacitance between the intermediate electrode member and the electrode member on one side and the electrostatic capacitance between the electrode member on the other side and the electrode member on the other side increase or decrease, and Connect the electrode member to the AC power supply,
By extracting the detection output from the intermediate electrode member, these changes can be differentially detected, and an accurate detection output temperature-compensated can be obtained. In this case, since the change in capacitance is non-linear (for example, sinusoidal) with respect to the displacement to be measured, the linear output voltage can be detected by disposing the additional capacitance.

【0030】また、電極部材間の距離、対向面積の変化
に起因した静電容量の変化により変位を検出するため、
接触式と違いヒステリンスの発生がなく磨耗による耐久
性及び検出精度の悪化はなく、更に従来の非接触式変位
計のように磁石及び磁気抵抗素子等の半導体を使用して
ないため経時変化による検出精度の悪化はなく、広い温
度範囲においても使用できる効果がある。
Further, since the displacement is detected by the change in the capacitance caused by the change in the distance between the electrode members and the facing area,
Unlike the contact type, there is no hysterine generation, there is no deterioration in durability and detection accuracy due to wear, and since it does not use semiconductors such as magnets and magnetoresistive elements like the conventional non-contact type displacement gauge, detection by change over time There is no deterioration in accuracy and there is an effect that it can be used in a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る変位計の側面図であ
る。
FIG. 1 is a side view of a displacement meter according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る変位計の斜視図であ
る。
FIG. 2 is a perspective view of a displacement meter according to a second embodiment of the present invention.

【図3】図2の実施例でヒンジを変えた場合の裁断側面
図である。
FIG. 3 is a side view of cutting when the hinge is changed in the embodiment of FIG.

【図4】図2、図3の実施例に適用される検出回路を示
す回路図である。
FIG. 4 is a circuit diagram showing a detection circuit applied to the embodiments of FIGS.

【図5】検出出力の変化特性図である。FIG. 5 is a change characteristic diagram of detection output.

【図6】検出出力の角度依存性を示す実測図である。FIG. 6 is an actual measurement diagram showing the angle dependence of the detection output.

【図7】検出出力の直線性を示す実測図である。FIG. 7 is an actual measurement diagram showing the linearity of detection output.

【図8】従来の接触式変位計を示す構造図である。FIG. 8 is a structural diagram showing a conventional contact type displacement meter.

【図9】従来の非接触式変位計を示す構造図である。FIG. 9 is a structural diagram showing a conventional non-contact type displacement meter.

【符号の説明】[Explanation of symbols]

1…電極板、2…静電容量部材、3…固定部、4…可動
部、5…ヒンジ、9…錘
DESCRIPTION OF SYMBOLS 1 ... Electrode plate, 2 ... Capacitance member, 3 ... Fixed part, 4 ... Movable part, 5 ... Hinge, 9 ... Weight

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに対向して配置された一対の電極部
材と、前記一対の電極部材間に設けられた一定容量の付
加容量手段と、前記一対の電極部材の一方に交流電圧を
印加する信号源とを備え、前記一対の電極部材間の距離
もしくは対向面積の少なくとも一方が測定すべき変位に
応じて非線形に変化するよう測定対象物に取り付けら
れ、前記変位の検出結果が前記一対の電極部材の他方の
電位として出力されることを特徴とする変位センサ。
1. A pair of electrode members arranged to face each other, an additional capacitance means having a constant capacitance provided between the pair of electrode members, and a signal for applying an AC voltage to one of the pair of electrode members. And a source, the distance between the pair of electrode members, or at least one of the facing areas is attached to a measurement object so as to change non-linearly according to the displacement to be measured, and the detection result of the displacement is the pair of electrode members. The displacement sensor is characterized in that it is output as the other potential of the displacement sensor.
【請求項2】 前記一対の電極部材の各々の一端部が測
定すべき変位方向に可動な第1のヒンジにより前記測定
対象物と結合され、前記一対の電極部材の各々の他端部
間に雰囲気に比べて高誘電率の材料を介在させることで
前記付加容量手段が構成され、前記付加容量手段の構成
部分が前記変位方向に可動な第2のヒンジにより前記一
対の電極部材の中間部分と結合されている請求項1記載
の変位センサ。
2. One end of each of the pair of electrode members is coupled to the measurement object by a first hinge movable in a displacement direction to be measured, and the other end of each of the pair of electrode members is connected. The additional capacitance means is formed by interposing a material having a higher dielectric constant than that of the atmosphere, and the constituent portion of the additional capacitance means is formed by a second hinge movable in the displacement direction and an intermediate portion of the pair of electrode members. The displacement sensor according to claim 1, which is coupled.
【請求項3】 互いに対向して配置された第1および第
2の電極部材と、前記第1および第2の電極部材間にこ
れらと対向するように配置された第3の電極部材と、前
記第1および第3の電極部材間と前記第2および第3の
電極部材間に設けられた一定容量の付加容量手段と、前
記第1および第2の電極部材間に交流電圧を印加する信
号源とを備え、前記第1および第3の電極部材間と前記
第2および第3の電極部材間の距離もしくは対向面積の
少なくとも一方が測定すべき変位に応じて非線形に変化
するよう測定対象物に取り付けられ、前記変位の検出結
果が前記第3の電極部材の電位として出力されることを
特徴とする変位センサ。
3. A first electrode member and a second electrode member which are arranged to face each other, a third electrode member which is arranged between the first electrode member and the second electrode member so as to face them, and A signal source for applying an AC voltage between the first and second electrode members and a constant capacitance additional capacitance means provided between the first and third electrode members and between the second and third electrode members. And a distance between the first and third electrode members and between the second and third electrode members, or at least one of the facing areas, changes non-linearly according to the displacement to be measured. A displacement sensor that is attached and outputs the displacement detection result as the potential of the third electrode member.
【請求項4】 前記第1、第2および第3の電極部材の
各々の一端部が測定すべき変位方向に可動な第1のヒン
ジにより前記測定対象物と結合され、前記第1および第
2の電極部材と前記第3の電極部材の前記第1のヒンジ
結合位置が前記変位方向で異なっている請求項3記載の
変位センサ。
4. One end of each of the first, second and third electrode members is connected to the measurement object by a first hinge movable in a displacement direction to be measured, and the first and second electrodes are connected. 4. The displacement sensor according to claim 3, wherein the first hinge connection position of the third electrode member and the third electrode member differ in the displacement direction.
【請求項5】 前記第1、第2および第3の電極部材の
各々の他端部間に雰囲気に比べて高誘電率の材料を介在
させることで前記付加容量手段が構成され、前記付加容
量手段の構成部分が前記変位方向に可動な第2のヒンジ
により前記第1、第2および第3の電極部材の中間部分
と結合されている請求項4記載の変位センサ。
5. The additional capacitance means is configured by interposing a material having a higher dielectric constant than the atmosphere between the other ends of the first, second and third electrode members, and the additional capacitance is formed. 5. Displacement sensor according to claim 4, wherein the component parts of the means are connected to the intermediate parts of the first, second and third electrode members by means of a second hinge movable in the displacement direction.
JP3347497A 1991-11-12 1991-12-27 Displacement sensor Expired - Lifetime JP3022671B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3347497A JP3022671B2 (en) 1991-12-27 1991-12-27 Displacement sensor
US07/974,160 US5323118A (en) 1991-11-12 1992-11-10 Hinged displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347497A JP3022671B2 (en) 1991-12-27 1991-12-27 Displacement sensor

Publications (2)

Publication Number Publication Date
JPH05180612A true JPH05180612A (en) 1993-07-23
JP3022671B2 JP3022671B2 (en) 2000-03-21

Family

ID=18390627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347497A Expired - Lifetime JP3022671B2 (en) 1991-11-12 1991-12-27 Displacement sensor

Country Status (1)

Country Link
JP (1) JP3022671B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244070A (en) * 2008-03-31 2009-10-22 Alps Electric Co Ltd Physical quantity sensor
CN110986755A (en) * 2019-12-16 2020-04-10 珠海格力电器股份有限公司 Electrical appliance inclination detection structure, method and device, storage medium and electrical appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244070A (en) * 2008-03-31 2009-10-22 Alps Electric Co Ltd Physical quantity sensor
CN110986755A (en) * 2019-12-16 2020-04-10 珠海格力电器股份有限公司 Electrical appliance inclination detection structure, method and device, storage medium and electrical appliance

Also Published As

Publication number Publication date
JP3022671B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US4572006A (en) Load cells
JP2743187B2 (en) Compact force transducer with mechanical motion amplifying means
US5945601A (en) Acceleration sensor with temperature resistor elements
US4924172A (en) Capacitive sensor and electronic circuit for non-contact distance measurement
US6586943B1 (en) Sensor signal processing apparatus
GB2251693A (en) Miniature silicon accelerometer and method
US20140352446A1 (en) Pressure sensor structure
US4433580A (en) Pressure transducer
JPH03210443A (en) Load detector and method for compensating temperature of load detector
US3948102A (en) Trielectrode capacitive pressure transducer
US4944181A (en) Capacitive strain gage having fixed capacitor plates
US4098000A (en) Crack opening displacement gage
US5974880A (en) Capacitance acceleration sensor
JP3022671B2 (en) Displacement sensor
JPH08122362A (en) Capacitive acceleration sensor
JP3010092B2 (en) Displacement gauge
JP2001527652A (en) A pressure sensor that compensates for zero-shift nonlinearity at very low temperatures
US6633172B1 (en) Capacitive measuring sensor and method for operating same
JP3339425B2 (en) Acceleration sensor and acceleration detection device
US5323118A (en) Hinged displacement sensor
US5469632A (en) Capacitive angle sensor employing a vertical cantilever beam
JPS60122336A (en) Transducer
RU2344369C2 (en) Single-plane tilt sensor
JP4114272B2 (en) Displacement sensor
JP3525400B2 (en) Force detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees