JPH05180594A - Heat transfer tube inner surface cleaning device for heat exchanger - Google Patents

Heat transfer tube inner surface cleaning device for heat exchanger

Info

Publication number
JPH05180594A
JPH05180594A JP3344392A JP34439291A JPH05180594A JP H05180594 A JPH05180594 A JP H05180594A JP 3344392 A JP3344392 A JP 3344392A JP 34439291 A JP34439291 A JP 34439291A JP H05180594 A JPH05180594 A JP H05180594A
Authority
JP
Japan
Prior art keywords
heat transfer
cleaning
transfer tube
cleaning medium
medium supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3344392A
Other languages
Japanese (ja)
Inventor
Koji Ishibashi
光司 石橋
Tokunori Matsushima
徳紀 松嶋
Shozo Nakamura
昭三 中村
Katsumoto Otake
克基 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3344392A priority Critical patent/JPH05180594A/en
Publication of JPH05180594A publication Critical patent/JPH05180594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a heat transfer tube inner surface cleaning device for a heat exchanger in which scale, slime adhered to the inner surface of the tube are removed without decreasing an efficiency of a plant even if chemicals are not poured in a coolant system and adherence thereof is prevented. CONSTITUTION:Cleaning medium 10 of a low temperature is poured by a cleaning medium supply unit 8, a cleaning medium supply controller 11 and a tube inner dirt sensor 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換器における伝熱管
の内面洗浄システムに係り、特に、発電プラントにおけ
る復水器などの多管式熱交換器の伝熱管内面に付着する
スライムやスケールなどを清掃し、除去すると共に、付
着を防止する伝熱管内面洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for cleaning the inner surface of a heat transfer tube in a heat exchanger, and more particularly to slime and scale attached to the inner surface of the heat transfer tube of a multi-tube heat exchanger such as a condenser in a power plant. The present invention relates to a heat transfer tube inner surface cleaning device that cleans and removes and prevents adhesion.

【0002】[0002]

【従来の技術】従来から、冷却器として用いられる熱交
換器の伝熱管では、水垢や錆などのスケールの生成や水
温の上昇によリバクテリア,藻,菌類が増殖し、これら
に塵埃などが混入してきて、軟泥状になったスライムな
どが生成する。これらが管内の壁面に付着すると熱交換
能力の低下,伝熱管腐食孔の生成などの障害が起こる。
特に、復水器などの場合、伝熱性能の低下に伴い、蒸気
タービンの効率が低下し、発電機の出力が下がることに
より膨大な損失となる。これらの対策として、現状では
化学薬品による洗浄剤を用いてスケールやスライムを除
去しているが、洗浄後の廃液は水質汚濁の公害問題とな
るので、中和処理などが必要であった。特に、海水を用
いる熱交換器の場合、冷却水量が多量であるため、薬品
の流出がない場合であっても海洋の生態系が変わるとの
心配から薬品を用いない方法がとられつつある。薬品を
用いない洗浄方法として、冷却水中にスポンジボールを
投入浮遊させることで伝熱管内を貫流させながら洗浄す
ることも行なわれているが、スポンジボールの損耗測
定,補充のための運転管理が煩わしいという欠点があっ
た。また、特開昭59−10381 号公報に見られるように、
冷却水中に樹脂粒子を混入,循環させる方法は初期のス
ライム生成やスケール付着には十分な洗浄効果を示す。
しかし、ある程度成長したスライムやスケールに対して
は粒子の壁面への衝突が弱まり、洗浄効果が急に低下す
る恐れがある。また、樹脂粒子を海洋に流出することに
なるので、環境問題上、粒子回収設備を設置しなければ
ならず、コスト面及び、管理面で問題がある。
2. Description of the Related Art Conventionally, in a heat transfer tube of a heat exchanger used as a cooler, scales such as scales and rust are generated and bacterium, algae, and fungi are proliferated due to increase of water temperature, and dust and the like are accumulated in these. When it is mixed, slime that has turned into a soft mud is produced. If these adhere to the inner wall surface of the pipe, the heat exchange capacity will deteriorate and heat transfer pipe corrosion holes will be generated.
In particular, in the case of a condenser or the like, the efficiency of the steam turbine decreases with the decrease in heat transfer performance, and the output of the generator decreases, resulting in a huge loss. As measures against these, at present, scales and slimes are removed by using a cleaning agent made of chemicals, but since the waste liquid after cleaning becomes a pollution problem of water pollution, neutralization treatment etc. was necessary. In particular, in the case of a heat exchanger using seawater, since a large amount of cooling water is used, a method without using chemicals is being taken from the fear that the marine ecosystem will be changed even if there is no outflow of chemicals. As a cleaning method that does not use chemicals, sponge balls are put into and suspended in cooling water to clean the sponge balls while flowing through the heat transfer tube, but the sponge ball wear measurement and operation management for replenishment are troublesome. There was a drawback. In addition, as seen in Japanese Patent Laid-Open No. 59-10381,
The method of mixing and circulating resin particles in cooling water has sufficient cleaning effect for initial slime formation and scale adhesion.
However, the slime or scale that has grown to some extent weakens the collision of the particles with the wall surface, and the cleaning effect may suddenly decrease. Further, since the resin particles will flow out into the ocean, it is necessary to install a particle recovery facility due to environmental problems, which causes problems in terms of cost and management.

【0003】さらに、特開昭61−25498 号公報のよう
に、伝熱管入口端で気体を気泡状に液体中に放し、か
つ、この気液混合流に超音波を発信する方法が提案され
ているが、超音波発信部などの設置に多額の費用を必要
とする。この時、気液二相流のみで洗浄しようとすれ
ば、気泡流では洗浄効果に限界が出て、汚れの激しい場
所やスライムの発生,成長の活発な夏期には十分な性能
を得ることが難しいなどの欠点があった。さらには、特
開昭59−30000 号公報に見られるように、水,砂,空気
の三相流を用いて伝熱管を洗浄しようとする装置が提案
されている。これは、洗浄効果が非常に大きいと思われ
るが、局部的に洗浄が激しく行なわれ、伝熱管を部分的
に損傷させる可能性がある。しかも、運転中に洗浄を行
うことができないため、プラント効率を低下させること
なく洗浄する点についての考慮がなされていなかった。
Further, as disclosed in Japanese Patent Laid-Open No. 61-25498, a method has been proposed in which a gas is released into a liquid in the form of bubbles at the inlet end of a heat transfer tube and ultrasonic waves are transmitted to this gas-liquid mixed flow. However, it requires a large amount of money to install the ultrasonic wave transmitter. At this time, if it is attempted to clean only by the gas-liquid two-phase flow, the cleaning effect will be limited by the bubbly flow, and sufficient performance can be obtained in a heavily polluted place, generation of slime, and active summer. There were drawbacks such as difficulty. Further, as disclosed in Japanese Patent Laid-Open No. 59-30000, there has been proposed a device for cleaning a heat transfer tube by using a three-phase flow of water, sand and air. Although it seems that the cleaning effect is very large, the cleaning is locally performed violently, which may partially damage the heat transfer tube. Moreover, since cleaning cannot be performed during operation, no consideration has been given to cleaning without lowering plant efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、多数
の伝熱管を、夫々、確実で効果的に、かつ、熱交換器の
運転を損なうことなく洗浄することができ、しかも、熱
交換器の性能向上を図ると共に、自然環境への影響がな
いような洗浄システムを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to clean a large number of heat transfer tubes in a reliable and effective manner and without impairing the operation of the heat exchanger, and yet to perform heat exchange. It is intended to improve the performance of the container and provide a cleaning system that does not affect the natural environment.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、伝熱管内を液体が流れる多管式熱交換器
において、伝熱管内を流れる液体中に、その液体よりも
低温の洗浄媒体を定期的に流下させ、管内付着物の除
去、及び塵埃やバクテリアなどの付着の防止を行なうよ
うにした。また、熱交換器の冷却水入口側水室内伝熱管
入口端に洗浄媒体供給装置を配置し、洗浄媒体供給装置
を移動させることにより、投入した低温の洗浄媒体を多
数の伝熱管に均一に行き渡るようにした。
In order to achieve the above object, the present invention is a multi-tube heat exchanger in which a liquid flows in a heat transfer tube, and the temperature of the liquid flowing in the heat transfer tube is lower than that of the liquid. The cleaning medium was allowed to flow down periodically to remove deposits in the pipe and prevent dust and bacteria from depositing. Further, the cleaning medium supply device is arranged at the inlet of the heat transfer pipe on the cooling water inlet side of the heat exchanger, and the cleaning medium supply device is moved so that the input low temperature cleaning medium is evenly distributed over many heat transfer pipes. I did it.

【0006】さらに、洗浄を効果的に行なうため、本発
明は、制御装置を設け、最適な洗浄をするために、管内
の汚れ状態に応じて洗浄時期を判断し、洗浄時間や洗浄
間隔等を制御するようにし、自動運転を可能にした。
Further, in order to perform the cleaning effectively, the present invention is provided with a control device, and in order to perform the optimum cleaning, the cleaning time is determined according to the dirty state in the pipe, and the cleaning time, the cleaning interval, etc. are determined. It was controlled and automatic operation was enabled.

【0007】[0007]

【作用】本発明の方法は薬品を用いないので、海洋の水
質汚濁等の公害問題とはならない。しかも、管内付着物
の除去、及び汚泥やバクテリアなどの付着防止のため、
熱交換器の冷却水入口側水室内伝熱管入口端に可動式の
洗浄媒体供給装置を配置することにより、多数の伝熱管
に冷却水よりも低温の洗浄媒体が均等に流入し、狭い場
所や流れの遅い場所でも均一で確実な洗浄が行なえるた
め、局部的な洗浄のしすぎによる伝熱管損傷を防ぐこと
ができ、洗浄効果を大幅に向上させることが出来る。ま
た、低温の粒子を用いているので、冷却水のみの場合よ
りも蒸気の凝縮を促進させるため、復水効率も向上す
る。さらに、本発明は、管内の汚れ状態に応じて、洗浄
媒体の投入時期を判断し、投入時間や投入間隔を制御で
きるので、常に、最適な伝熱管内面を保つことが可能と
なる。つまり、伝熱管内付着物の除去、又は付着の防止
を効果的に行なうものである。さらに、自然環境の保護
はもとより、洗浄後、排水と共に海洋に流出させること
ができる洗浄媒体を用いているので、洗浄媒体の回収や
循環系統等の設備を設ける必要がないため、取扱いが容
易である。また、伝熱管内の汚れ具合により洗浄媒体の
投入時期を検知することにより、自動運転が可能となり
管理面での煩わしさがなく、しかも、プラントを停止す
ることなく稼働中に洗浄を行うことができるので、総合
的な洗浄装置のコスト低減、及びプラント効率向上を可
能とする。
Since the method of the present invention does not use chemicals, it does not cause pollution problems such as water pollution of the ocean. Moreover, in order to remove the deposits in the pipe and prevent the attachment of sludge and bacteria,
By arranging a movable cleaning medium supply device at the inlet of the heat transfer tube on the cooling water inlet side of the heat exchanger, the cleaning medium at a temperature lower than that of the cooling water flows evenly into a large number of heat transfer tubes. Since uniform and reliable cleaning can be performed even in a place where the flow is slow, damage to the heat transfer tube due to excessive local cleaning can be prevented, and the cleaning effect can be greatly improved. Further, since the particles of low temperature are used, the condensation of steam is promoted as compared with the case of using only cooling water, so that the condensing efficiency is also improved. Further, according to the present invention, it is possible to determine the charging time of the cleaning medium and control the charging time and the charging interval according to the contamination state in the tube, so that it is possible to always maintain the optimum inner surface of the heat transfer tube. That is, it is possible to effectively remove or prevent the adhered matter in the heat transfer tube. In addition to protecting the natural environment, a cleaning medium that can be drained to the ocean after cleaning is used.Therefore, there is no need to collect cleaning media or install equipment such as a circulation system. is there. Also, by detecting the timing of introducing the cleaning medium based on how dirty the heat transfer tubes are, it is possible to perform automatic operation without the hassle of management, and to perform cleaning during operation without shutting down the plant. Therefore, it is possible to reduce the cost of the overall cleaning device and improve the plant efficiency.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1を用いて説明
する。図1は本発明を発電プラントの復水器へ適用した
系統図である。復水器本体1の内部には管板2によって
多数の伝熱管3が支持されていて、伝熱管3の入口側で
本体1に連設されている冷却水4の入口側水室5に導か
れた冷却水4が伝熱管3の内部を通って、伝熱管3の出
口側で本体1に連設されている出口側水室6に至るよう
にしてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a system diagram in which the present invention is applied to a condenser of a power plant. A large number of heat transfer tubes 3 are supported by a tube plate 2 inside the condenser main body 1, and are guided to an inlet side water chamber 5 of cooling water 4 which is connected to the main body 1 at the inlet side of the heat transfer tubes 3. The cooled cooling water 4 passes through the inside of the heat transfer tube 3 and reaches the outlet side water chamber 6 connected to the main body 1 at the outlet side of the heat transfer tube 3.

【0009】一方、復水器本体1の上部の蒸気入口7か
ら流入した蒸気8は、伝熱管3内の冷却水4と熱交換し
て凝縮され、復水9となって本体下部の復水出口10か
ら排水されるように構成されている。また、本体1に
は、入口側水室5に設けられた洗浄媒体供給装置11に
は洗浄媒体噴出口12が設置されており、洗浄媒体噴出
口12が開くことにより、洗浄媒体供給装置11から洗
浄媒体13が投入され、伝熱管3の内部を通って出口側
水室6に至るようになっている。ここで、洗浄媒体13
には比重が水より大きい粒子が適しており、粒子の温度
は伝熱管内に付着する海生生物等が生息しにくい温度が
望ましく、5℃以下が良い。この様に、低温の粒子13
を投入することにより伝熱管3の吸熱効果が向上し、蒸
気の凝縮を促進させることになるので、復水器の性能を
向上させる上で望ましい。また、粒子13は伝熱管3内
を通過することが可能な大きさで、特にφ1〜φ3mmの
ものが、取扱い及び伝熱管3内において粒子13が壁面
へ衝突することによる洗浄効果の面から良い。
On the other hand, the steam 8 flowing in from the steam inlet 7 in the upper part of the condenser body 1 is heat-condensed with the cooling water 4 in the heat transfer tube 3 to be condensed, and becomes condensed water 9 in the lower part of the body. It is configured to be drained from the outlet 10. Further, in the main body 1, the cleaning medium supply device 11 provided in the inlet-side water chamber 5 is provided with the cleaning medium ejection port 12, and when the cleaning medium ejection port 12 is opened, the cleaning medium supply device 11 The cleaning medium 13 is introduced into the outlet side water chamber 6 through the inside of the heat transfer tube 3. Here, the cleaning medium 13
For this purpose, particles having a specific gravity larger than water are suitable, and the temperature of the particles is preferably a temperature at which marine organisms and the like attached to the heat transfer tubes are less likely to inhabit, and 5 ° C. or lower is preferable. Thus, low temperature particles 13
Is added to improve the endothermic effect of the heat transfer tube 3 and accelerate the condensation of steam, which is desirable for improving the performance of the condenser. Further, the particles 13 have a size that allows them to pass through the heat transfer tube 3, and particularly those having a diameter of 1 mm to 3 mm are preferable in terms of handling and cleaning effects due to the particles 13 colliding with the wall surface in the heat transfer tube 3. ..

【0010】次に図2を用いて洗浄媒体供給制御装置1
4の説明をする。洗浄媒体供給制御装置14は、洗浄媒
体供給装置11の移動及び洗浄媒体噴出口12の開閉を
制御するもので、Iの位置では、管巣15のない中心付
近の洗浄媒体噴出口12を閉じ、洗浄媒体供給装置11
が下降するに連れ、IIの位置では、管巣15のある両端
のみを開、III の位置では管巣15のない両端付近を閉
とする。このように、洗浄媒体供給装置11の移動に伴
う管巣15の有無に応じて洗浄媒体噴出口12の開閉を
制御しているので、洗浄媒体13を無駄なく効率的に投
入することが出来る。また、洗浄媒体供給制御装置14
を設けることにより、洗浄媒体13を各伝熱管に均一に
行き渡るようにしているため、局部的に洗浄を激しく行
ない、伝熱管を部分的に損傷させることもない。更に、
伝熱管3内面の汚れ具合を検知し、洗浄媒体13を投入
する時期を判断する管内汚れ検知装置16を設けること
により、洗浄時間及び洗浄媒体13の投入間隔を制御す
ることができる。これは、伝熱管3内面に付着したスラ
イム等の影響による伝熱性能の低下に伴い、洗浄開始か
ら終了までを自動化するものであり、管内汚れ検知装置
16で伝熱管3内の汚れ具合を検知することにより、洗
浄媒体供給制御装置14と連動して、洗浄媒体供給装置
11及び洗浄媒体噴出口12を起動させることになる。
このように、本発明の復水器は、洗浄媒体供給装置11
と洗浄媒体供給制御装置14により、低温の粒子13を
投入し、図3のように伝熱管3内を粒子13及び冷却水
4の固液二相流を用いて洗浄しているので、管内の液体
の乱れが強いため、粒子13が壁面に衝突するエネルギ
を大きくし、スライム等の管内付着物17が生成しにく
い環境を作る。このため、洗浄効果の大きなシステムと
することが可能になる。また、洗浄媒体供給装置11を
可動式とすることにより、伝熱管3へ粒子13が均一に
混入し、確実な洗浄が行なえるため、局部的な過洗浄に
よる伝熱管3の損傷を防ぐことができ、より安全な洗浄
となるので、常に最適な伝熱管内面を保つことが可能と
なる。また、管内汚れ検知装置16にて伝熱管3内の汚
れ具合を検知することにより、洗浄媒体13の投入時期
を判断し、投入時間や投入間隔等を制御できるため、自
動運転が可能になる。
Next, the cleaning medium supply controller 1 will be described with reference to FIG.
4 will be explained. The cleaning medium supply control device 14 controls the movement of the cleaning medium supply device 11 and the opening / closing of the cleaning medium ejection port 12. At the position I, the cleaning medium ejection port 12 near the center without the tube nest 15 is closed. Cleaning medium supply device 11
As is lowered, at the position II, only both ends with the tube nest 15 are opened, and at the position III, near both ends without the tube nest 15 are closed. In this way, since the opening / closing of the cleaning medium ejection port 12 is controlled according to the presence or absence of the tube nest 15 associated with the movement of the cleaning medium supply device 11, the cleaning medium 13 can be efficiently introduced without waste. Further, the cleaning medium supply control device 14
Since the cleaning medium 13 is evenly distributed to each heat transfer tube by providing the above, the cleaning is locally performed violently and the heat transfer tube is not partially damaged. Furthermore,
By providing the in-pipe dirt detection device 16 that detects the degree of dirt on the inner surface of the heat transfer tube 3 and determines when to insert the cleaning medium 13, the cleaning time and the interval at which the cleaning medium 13 is charged can be controlled. This is to automate the process from the start to the end of cleaning as the heat transfer performance deteriorates due to the effect of slime adhering to the inner surface of the heat transfer tube 3, and the fouling inside the heat transfer tube 3 is detected by the fouling detection device 16 inside the tube. By doing so, the cleaning medium supply device 11 and the cleaning medium ejection port 12 are activated in cooperation with the cleaning medium supply control device 14.
As described above, the condenser of the present invention includes the cleaning medium supply device 11
The low temperature particles 13 are charged by the cleaning medium supply controller 14 and the inside of the heat transfer tube 3 is cleaned using the solid-liquid two-phase flow of the particles 13 and the cooling water 4 as shown in FIG. Since the turbulence of the liquid is strong, the energy with which the particles 13 collide with the wall surface is increased, creating an environment in which in-tube deposits 17 such as slime are less likely to be generated. Therefore, it is possible to obtain a system having a large cleaning effect. Further, by making the cleaning medium supply device 11 movable, the particles 13 are uniformly mixed into the heat transfer tube 3 and reliable cleaning can be performed, so damage to the heat transfer tube 3 due to local overcleaning can be prevented. Since it is possible to perform safer cleaning, it is possible to always maintain the optimum inner surface of the heat transfer tube. Further, by detecting the degree of fouling in the heat transfer tube 3 by the fouling detection device 16 in the tube, it is possible to determine the loading time of the cleaning medium 13 and control the loading time, loading interval, etc., so that automatic operation becomes possible.

【0011】次に図4で本発明の他の実施例について説
明する。伝熱管3内を流れる冷却水4と接触することに
より気体18を発生する効果のある低温の洗浄粒子13
を投入した場合、管内流れが、粒子13と気体18及び
冷却水4の固気液三相流となる。このため、管内流れを
乱し粒子13と気体18が管内壁面に衝突する密度を高
めることから、スライム等の管内付着物17を取り除
き、付着を防止することが出来る。ここで、洗浄粒子1
3には、ドライアイスが低温であることと気体18を発
生する点で望ましい。さらに、ドライアイスは時間の経
過と共に気化するため、洗浄後は排水と共に海洋へ流出
させることができることから、回収のための設備も必要
なく、コスト面で大幅な低減となる。また、発生した気
体18は既設の空気抽出口19から水室空気抜ポンプ2
0により抽出されるため、運転上の問題はない。
Next, another embodiment of the present invention will be described with reference to FIG. Cleaning particles 13 at a low temperature, which has an effect of generating a gas 18 by coming into contact with the cooling water 4 flowing in the heat transfer tube 3.
When is charged, the flow in the pipe becomes a solid-gas three-phase flow of the particles 13, the gas 18, and the cooling water 4. Therefore, the flow in the pipe is disturbed and the density of the particles 13 and the gas 18 colliding with the inner wall surface of the pipe is increased, so that the adhered substance 17 in the pipe such as slime can be removed to prevent the adherence. Here, cleaning particles 1
3 is desirable in that dry ice has a low temperature and that gas 18 is generated. Furthermore, since dry ice vaporizes with the passage of time, it can be discharged to the ocean together with drainage after cleaning, so there is no need for a facility for recovery, resulting in a significant cost reduction. Further, the generated gas 18 is discharged from the existing air extraction port 19 to the water chamber air vent pump 2
Since it is extracted by 0, there is no operational problem.

【0012】[0012]

【発明の効果】本発明によれば、冷却水よりも低温の粒
子を投入して伝熱管内の洗浄を行なっているので、通常
の運転時よりも冷却水温度が下がり、復水効率を向上さ
せることが出来る。また、可動式の粒子供給装置を設置
しているため、多数の伝熱管に均一に且つ定期的に粒子
を投入することが出来る。更に、制御装置を設けること
により、伝熱管管巣の有無に応じて粒子噴出口を開閉し
ているので、局所的な過洗浄により伝熱管を損傷させる
こともない。また、伝熱管内の汚れを検知することによ
り、洗浄時期を判断し、粒子の投入時間や投入間隔を制
御できるため、自動運転が可能になる。また、伝熱管内
を通過可能な大きさで冷却水と接触すると気体を発生
し、時間の経過と共に融解する作用を有する低温の粒子
を投入することにより、管内流れを固気液三相流とす
る。これにより、粒子が伝熱管内面と衝突する密度が高
まり、洗浄効果が向上するため最適な洗浄が可能にな
る。更に、時間の経過と共に粒子は融解するので、自然
環境への影響もなく、且つ洗浄後の粒子の回収も必要な
いため理想的な洗浄システムを確立することが出来る。
EFFECTS OF THE INVENTION According to the present invention, since the heat transfer tubes are cleaned by introducing particles having a temperature lower than that of the cooling water, the temperature of the cooling water is lower than that during normal operation and the condensing efficiency is improved. It can be done. Further, since the movable type particle supply device is installed, it is possible to uniformly and periodically add particles to a large number of heat transfer tubes. Further, since the particle ejection port is opened and closed depending on the presence or absence of the tube nest of the heat transfer tube by providing the control device, the heat transfer tube is not damaged by local overwashing. Further, by detecting the dirt in the heat transfer tube, it is possible to judge the cleaning time and control the particle charging time and particle charging interval, which enables automatic operation. In addition, by introducing low-temperature particles that generate gas when contacting cooling water with a size that can pass through the heat transfer tube and that melts over time, the tube flow becomes a solid-gas liquid three-phase flow. To do. As a result, the density at which the particles collide with the inner surface of the heat transfer tube is increased, and the cleaning effect is improved, which enables optimum cleaning. Further, since the particles melt with the passage of time, there is no effect on the natural environment and there is no need to recover the particles after cleaning, so that an ideal cleaning system can be established.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】粒子供給制御装置の説明図。FIG. 2 is an explanatory diagram of a particle supply control device.

【図3】伝熱管内流れ状況の説明図。FIG. 3 is an explanatory diagram of a flow situation in the heat transfer tube.

【図4】気体を発生する粒子を用いた場合の伝熱管内流
れ状況の説明図。
FIG. 4 is an explanatory diagram of a flow state in a heat transfer tube when particles that generate gas are used.

【符号の説明】[Explanation of symbols]

1…復水器本体、2…管板、3…伝熱管、5…入口側水
室、6…出口側水室、7…蒸気入口、10…復水出口、
11…洗浄媒体供給装置、12…洗浄媒体噴出口、14
…洗浄媒体供給制御装置、16…管内汚れ検知装置、1
9…空気抽出口、20…水室空気抜ポンプ。
1 ... Condenser body, 2 ... Tube plate, 3 ... Heat transfer tube, 5 ... Inlet side water chamber, 6 ... Outlet side water chamber, 7 ... Steam inlet, 10 ... Condensate outlet,
11 ... Cleaning medium supply device, 12 ... Cleaning medium ejection port, 14
... cleaning medium supply control device, 16 ... contamination detection device for pipe, 1
9 ... Air extraction port, 20 ... Water chamber air vent pump.

フロントページの続き (72)発明者 大嶽 克基 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front Page Continuation (72) Inventor Katsuki Otaki 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】伝熱管内を液体が流れる多管式熱交換器に
おいて、前記伝熱管の入口端に洗浄媒体供給装置を設
け、前記伝熱管内を流れる液体よりも低温の洗浄媒体を
投入することを特徴とする熱交換器における伝熱管内面
洗浄装置。
1. In a multi-tube heat exchanger in which a liquid flows in a heat transfer tube, a cleaning medium supply device is provided at an inlet end of the heat transfer tube, and a cleaning medium having a temperature lower than that of the liquid flowing in the heat transfer tube is introduced. An inner surface cleaning device for heat transfer tubes in a heat exchanger, which is characterized in that:
【請求項2】請求項1において、前記洗浄媒体供給装置
を可動式とし、前記洗浄媒体の投入口を開くと共に前記
洗浄媒体供給装置を移動させて、前記低温の洗浄媒体を
前記伝熱管内に均一に、且つ定期的に流入させる制御装
置を設けた熱交換器における伝熱管内面洗浄装置。
2. The cleaning medium supply device according to claim 1, wherein the cleaning medium supply device is movable, the inlet for the cleaning medium is opened, and the cleaning medium supply device is moved to transfer the low-temperature cleaning medium into the heat transfer tube. A heat transfer tube inner surface cleaning device in a heat exchanger provided with a control device for uniformly and periodically flowing in.
【請求項3】請求項1において、前記伝熱管内の汚れ具
合を検知する装置を設けることにより、前記伝熱管内の
洗浄時期を判断し、それに伴い、前記洗浄媒体供給装置
を起動させ、前記低温の洗浄媒体を投入する熱交換器に
おける伝熱管内面洗浄装置。
3. The apparatus according to claim 1, wherein a device for detecting the degree of contamination in the heat transfer tube is provided to determine the cleaning time in the heat transfer tube, and accordingly, the cleaning medium supply device is activated, A heat transfer tube inner surface cleaning device for a heat exchanger that inputs a low-temperature cleaning medium.
【請求項4】請求項1において、前記伝熱管内を通過す
ることが可能な大きさの前記低温の洗浄媒体を投入する
熱交換器における伝熱管内面洗浄装置。
4. The heat transfer pipe inner surface cleaning device according to claim 1, wherein the heat transfer pipe inner surface has a size capable of passing through the heat transfer pipe and is charged with the low temperature cleaning medium.
【請求項5】請求項1において、前記洗浄媒体供給装置
より、前記伝熱管内を流れる液体と接触することにより
気体を発生する効果のある低温の洗浄粒子を投入し、前
記伝熱管内の流れを固気液三相流とした熱交換器におけ
る伝熱管内面洗浄装置。
5. The flow in the heat transfer tube as claimed in claim 1, wherein low temperature cleaning particles having an effect of generating gas by contacting with a liquid flowing in the heat transfer tube are charged from the cleaning medium supply device. An inner surface cleaning device for heat transfer tubes in a heat exchanger with solid-liquid three-phase flow.
【請求項6】請求項1において、前記伝熱管内を洗浄
後、流れる液体と接触することにより融解する作用のあ
る低温の粒子を投入する熱交換器における伝熱管内面洗
浄方法。
6. The method of cleaning a heat transfer tube inner surface in a heat exchanger according to claim 1, wherein after cleaning the inside of the heat transfer tube, low temperature particles having a function of melting by contact with a flowing liquid are charged.
JP3344392A 1991-12-26 1991-12-26 Heat transfer tube inner surface cleaning device for heat exchanger Pending JPH05180594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344392A JPH05180594A (en) 1991-12-26 1991-12-26 Heat transfer tube inner surface cleaning device for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344392A JPH05180594A (en) 1991-12-26 1991-12-26 Heat transfer tube inner surface cleaning device for heat exchanger

Publications (1)

Publication Number Publication Date
JPH05180594A true JPH05180594A (en) 1993-07-23

Family

ID=18368897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344392A Pending JPH05180594A (en) 1991-12-26 1991-12-26 Heat transfer tube inner surface cleaning device for heat exchanger

Country Status (1)

Country Link
JP (1) JPH05180594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008056A1 (en) * 2002-07-10 2004-01-22 Oki Shin Ichiro Cleaning system and cleaning device for heat exchanger
CN108592690A (en) * 2018-07-30 2018-09-28 张会珍 A kind of online automatic desludging shell-and-tube heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008056A1 (en) * 2002-07-10 2004-01-22 Oki Shin Ichiro Cleaning system and cleaning device for heat exchanger
CN108592690A (en) * 2018-07-30 2018-09-28 张会珍 A kind of online automatic desludging shell-and-tube heat exchanger
CN108592690B (en) * 2018-07-30 2024-02-09 张会珍 Online automatic descaling shell-and-tube heat exchanger

Similar Documents

Publication Publication Date Title
US4860821A (en) Process for cleaning tube type heat exchangers
US5647428A (en) Recovery of tube cleaners
JP3706505B2 (en) Heat exchanger and method for removing scale in heat exchange pipe
CN103322728A (en) Energy improvement system of blockage-preventing descaling crude sewage heat pump
CN207142874U (en) A kind of compound dipping cavitation turbulent flow purging system
CN210242548U (en) Descaling heat exchanger
JPH05180594A (en) Heat transfer tube inner surface cleaning device for heat exchanger
CN104874571B (en) System for cleaning high-intensity magnetic separator coils
CN105733692B (en) Semi-water gas dedusting and cooling device and process
CN102353299B (en) Device and method for restraining and eliminating dirt of recycled water plate heat exchanger on line
CN210533166U (en) Thermal power plant natural draft cooling tower with last cleaning function
CN208254297U (en) A kind of My heat recovery system of sewage
JPH04187999A (en) Method and device for washing inner surface of heat transfer pipe for heat exchanger
KR100345458B1 (en) Waste Water Evaporation Concentration Plant having function washing
CN206970319U (en) A kind of temporary hardness boiler feed water corrosion-mitigation scale-inhibition water treatment system
JPH07159059A (en) Heat exchanger device
JPH0370995A (en) Cleaning of inner surface of heat transfer tube in heat exchanger
CN205603329U (en) Novel supersound wave drag dirt device
JPH0979795A (en) Washing system for heat recovery device
JP2945640B2 (en) Cooling tube cleaning device
JPH04191A (en) Method for cleaning inner surface of heat transfer tube of heat exchanger
CN104930908A (en) Comprehensive anti-scaling system for mine cooling engineering
JPH09159393A (en) Method of promoting peeling off of deposit on inside wall of tube of heat exchanger
JP3009136B2 (en) Tube cleaning equipment for heat exchangers such as condensers
CN213357204U (en) High-efficient type sewage treatment device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090514

LAPS Cancellation because of no payment of annual fees