JPH05180546A - Refrigerant sensor - Google Patents

Refrigerant sensor

Info

Publication number
JPH05180546A
JPH05180546A JP35755291A JP35755291A JPH05180546A JP H05180546 A JPH05180546 A JP H05180546A JP 35755291 A JP35755291 A JP 35755291A JP 35755291 A JP35755291 A JP 35755291A JP H05180546 A JPH05180546 A JP H05180546A
Authority
JP
Japan
Prior art keywords
refrigerant
self
sensor
chamber
heating type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35755291A
Other languages
Japanese (ja)
Inventor
Susumu Kurihara
将 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP35755291A priority Critical patent/JPH05180546A/en
Publication of JPH05180546A publication Critical patent/JPH05180546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To detect in an early time the tendency of decrease of the amount of filling of a refrigerant in a refrigerant sensor. CONSTITUTION:A refrigerant sensor 21 is comprised of a sensor body 22 including a refrigerant flow passage part 22A, a drawing part 22C, and a refrigerant chamber 25 formed on the upper side, and of a self-heating thermistor 26 disposed in the refrigerant chamber 25 of the sensor 22. In the case where a refrigerant F is of a proper amount of filling, a fluid level of the refrigerant F fills up the inside of the refrigerant flow passage part 22A and rises up to the inside of the refrigerant chamber 25 through the drawing part 22C to hereby dip the self-heating thermistor 26. In contrast, in the case where the refrigerant F tends to be decreased in the amount of filling, the fluid level of the refrigerant F in the refrigerant chamber 25 is lowered and hence the self-heating thermistor 26 is exposed. The fluid level of the refrigerant F is detected by cooling action of the self-heating thermistor 26 due to the refrigerant F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用冷房装
置等に用いて好適な冷媒センサに関し、特に、冷媒の充
填量を高精度に検出できるようにした冷媒センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant sensor suitable for use in, for example, an air conditioner for automobiles, and more particularly to a refrigerant sensor capable of detecting the filling amount of the refrigerant with high accuracy.

【0002】[0002]

【従来の技術】一般に、空調装置には冷房サイクル内に
冷媒の充填量が適正であるか否かを判定する冷媒センサ
が設けられている。そして、本発明者は先に実開平3-27
576 号(以下、「従来技術」という)に、冷房サイクル
を構成する凝縮器と蒸発器との間の流路に冷媒の淀み部
を設け、該淀み部内に自己発熱型の感温素子を設けた冷
媒センサを提案している。
2. Description of the Related Art Generally, an air conditioner is provided with a refrigerant sensor for determining whether or not the amount of refrigerant filled is appropriate in a cooling cycle. Then, the present inventor first found that
No. 576 (hereinafter referred to as "conventional technology") is provided with a stagnation part of the refrigerant in the flow path between the condenser and the evaporator that constitutes the cooling cycle, and a self-heating type temperature sensing element is provided in the stagnation part. A refrigerant sensor is proposed.

【0003】ここで、図2および図3に従来技術による
冷媒センサを用いた空調装置を示し説明する。
Here, an air conditioner using a refrigerant sensor according to the prior art is shown in FIGS. 2 and 3 and described.

【0004】図中、1は冷房サイクルを示し、該冷房サ
イクル1はアンモニア,フロンガス等の冷媒Fが循環す
る循環流路を形成した配管2と、該配管2の途中に冷媒
Fの循環方向(図中、矢示A方向)に沿って順次設けら
れたコンプレッサ3,凝縮器4および蒸発器5とから構
成され、該蒸発器5はその吸熱面が運転室(図示せず)
内へと臨むようになる。一方、コンプレッサ3はエンジ
ン6と電磁クラッチ7を介して接続され、該エンジン6
の回転をコンプレッサ3に伝達するようになっている。
そして、冷媒Fはコンプレッサ3によって圧縮された
後、凝縮器4,蒸発器5を通る間に、順次、高圧気体→
高圧液体→低圧気体と相転移すると共に、該蒸発器5に
おいては液体から気体に相転移するときに、運転室から
熱を奪って該運転室内を冷房する。
In the figure, reference numeral 1 denotes a cooling cycle. The cooling cycle 1 has a pipe 2 which forms a circulation flow path for circulating a refrigerant F such as ammonia and chlorofluorocarbon, and a circulation direction of the refrigerant F in the middle of the pipe 2 ( It is composed of a compressor 3, a condenser 4 and an evaporator 5, which are sequentially provided along the direction of the arrow A in the figure), and the heat absorbing surface of the evaporator 5 is a driver's cab (not shown).
You will come inward. On the other hand, the compressor 3 is connected to the engine 6 via the electromagnetic clutch 7, and the engine 6
Is transmitted to the compressor 3.
Then, the refrigerant F is compressed by the compressor 3 and then, while passing through the condenser 4 and the evaporator 5, the high pressure gas is sequentially →
At the time of phase transition from high-pressure liquid to low-pressure gas, and at the time of phase transition from liquid to gas in the evaporator 5, heat is taken from the cab to cool the cab.

【0005】ここで、コンプレッサ3はエンジン6と電
磁クラッチ7を介して連結され、該電磁クラッチ7はエ
ンジン6の回転をコンプレッサ3に伝達するものであ
る。そして、該電磁クラッチ7は、例えばエアコンスイ
ッチ(図示せず)の投入により連結され、エンジン6の
回転をコンプレッサ3に伝え、該コンプレッサ3を駆動
する。
The compressor 3 is connected to the engine 6 via an electromagnetic clutch 7, and the electromagnetic clutch 7 transmits the rotation of the engine 6 to the compressor 3. The electromagnetic clutch 7 is connected by, for example, turning on an air conditioner switch (not shown), transmits the rotation of the engine 6 to the compressor 3, and drives the compressor 3.

【0006】8は凝縮器4と蒸発器5との間に位置して
配管2の途中に設けられ、液体状態となった冷媒Fを一
時的に貯えるレシーバタンクを示し、該レシーバタンク
8には覗窓8Aが設けられ、該覗窓8Aで冷媒Fの液化
状態を目視できるようになっている。
A receiver tank 8 is provided between the condenser 4 and the evaporator 5 and is provided in the middle of the pipe 2 for temporarily storing the refrigerant F in a liquid state. A viewing window 8A is provided so that the liquefied state of the refrigerant F can be visually checked through the viewing window 8A.

【0007】9はレシーバタンク8と蒸発器5との間に
位置して配管2の途中に設けられた膨張弁を示し、該膨
張弁9は減圧弁等によって構成され、レシーバタンク8
から液相状態となって導出されてくる冷媒Fを所定圧ま
で減圧させて矢示A方向に流通させる。そして、該膨張
弁9で減圧された冷媒Fは蒸発器5内を流通する間に蒸
発し、気相状態となってコンプレッサ3により再び圧縮
される。
Reference numeral 9 denotes an expansion valve which is provided between the receiver tank 8 and the evaporator 5 and which is provided in the middle of the pipe 2. The expansion valve 9 is constituted by a pressure reducing valve or the like.
Refrigerant F, which is discharged in a liquid phase state from, is depressurized to a predetermined pressure and circulated in the direction of arrow A. The refrigerant F decompressed by the expansion valve 9 evaporates while flowing through the evaporator 5, becomes a gas phase state, and is compressed again by the compressor 3.

【0008】10はレシーバタンク8と膨張弁9との間
に位置し、配管2の途中に設けられた冷媒センサを示
し、該冷媒センサ10は図3に示すように、冷媒センサ
10の外形を形成する本体ケーシング11と、該本体ケ
ーシング11内に設けられた後述の自己発熱型サーミス
タ12とから構成されている。
Reference numeral 10 denotes a refrigerant sensor which is located between the receiver tank 8 and the expansion valve 9 and is provided in the middle of the pipe 2. The refrigerant sensor 10 has an outer shape as shown in FIG. It is composed of a main body casing 11 to be formed and a self-heating type thermistor 12 which will be described later and is provided in the main body casing 11.

【0009】ここで、本体ケーシング11は配管2の一
部をなす筒状の冷媒通路部11Aと、該冷媒通路部11
Aの途中に位置し、下向きに突出した有底筒状の淀み部
11Bとから構成され、該冷媒通路部11Aの両開口部
は配管2に接続され、淀み部11Bには、冷媒通路部1
1A内を矢示A方向に流通する冷媒Fに淀み作用を与
え、この冷媒Fを一時的に収容するようになっている。
Here, the main body casing 11 has a cylindrical refrigerant passage portion 11A forming a part of the pipe 2 and the refrigerant passage portion 11
It is composed of a bottomed cylindrical stagnation portion 11B which is located in the middle of A and projects downward. Both openings of the refrigerant passage portion 11A are connected to the pipe 2 and the stagnation portion 11B includes the refrigerant passage portion 1A.
A stagnation effect is given to the refrigerant F flowing in 1A in the direction of the arrow A, and the refrigerant F is temporarily accommodated.

【0010】12は淀み部11Bの底部側に配設された
自己発熱型の感温素子としての自己発熱型サーミスタを
示し、該自己発熱型サーミスタ12は図3に示すように
電源としてのバッテリ13からの給電により、所定温度
に感温され、淀み部12B内の冷媒Fで常時冷却される
ようになっている。そして、該自己発熱型サーミスタ1
2は淀み部12B内の冷媒Fが液相状態であるか、気相
状態であるかによって冷却量が変化するから、その自己
発熱温度が変化し、この温度変化を抵抗値変化として検
出するようになる。
Reference numeral 12 denotes a self-heating type thermistor as a self-heating type temperature sensitive element disposed on the bottom side of the stagnation portion 11B. The self-heating type thermistor 12 is a battery 13 as a power source as shown in FIG. The temperature is sensed at a predetermined temperature by the power supply from, and is constantly cooled by the refrigerant F in the stagnation portion 12B. Then, the self-heating type thermistor 1
2 indicates that the cooling amount changes depending on whether the refrigerant F in the stagnation part 12B is in the liquid phase state or the gas phase state, so that the self-heating temperature changes, and this temperature change is detected as a resistance value change. become.

【0011】14はバッテリ13に対し自己発熱型サー
ミスタ12と直列に接続された報知装置を示し、該報知
装置14はランプ15を備え、自己発熱型サーミスタ1
2の抵抗値が大きいときにはランプ15を消灯させ、抵
抗値が小さくなったときにはランプ15を点灯させるよ
うになっている。
Reference numeral 14 denotes an informing device connected in series with the battery 13 and the self-heating type thermistor 12. The informing device 14 includes a lamp 15, and the self-heating type thermistor 1 is provided.
When the resistance value of 2 is large, the lamp 15 is turned off, and when the resistance value is small, the lamp 15 is turned on.

【0012】このように構成される冷媒センサ10にお
いては、本体ケーシング11の冷媒通路部11A内を矢
示A方向に流通する冷媒Fの冷媒洩れまたはコンプレッ
サ3の故障等により、気相状態となったときに、前記自
己発熱型サーミスタ12の自己発熱温度が上昇し、抵抗
値が小さくなって報知装置14へとバッテリ13から流
れる電流を増加させることができ、これによってランプ
15を自動的に点灯させ、冷房能力が低下したことを運
転者に報知する。
In the refrigerant sensor 10 having the above-described structure, the refrigerant is in a gas phase state due to refrigerant leakage of the refrigerant F flowing in the direction of arrow A in the refrigerant passage portion 11A of the main body casing 11 or failure of the compressor 3. At this time, the self-heating temperature of the self-heating type thermistor 12 rises, the resistance value becomes small, and the current flowing from the battery 13 to the notification device 14 can be increased, whereby the lamp 15 is automatically turned on. The driver is informed that the cooling capacity has decreased.

【0013】また、自己発熱型サーミスタ12を淀み部
11Bに設けているから、冷媒Fの流速の影響を受けず
に、冷媒Fの液相状態と気相状態とを確実に判別するこ
とができ、配管2中の冷媒状態を正確に検出することが
できる。
Further, since the self-heating type thermistor 12 is provided in the stagnation part 11B, the liquid phase state and the gas phase state of the refrigerant F can be surely discriminated without being affected by the flow velocity of the refrigerant F. Therefore, the refrigerant state in the pipe 2 can be accurately detected.

【0014】[0014]

【発明が解決しようとする課題】ところで、上述した従
来技術による冷媒センサにおいては、本体ケーシング1
1の淀み部11Bに自己発熱型サーミスタ12を設ける
ことにより、配管2中の冷媒状態を検出するもので、淀
み部11B内の冷媒Fが完全に気相状態になったこと、
即ち配管2(冷房サイクル1)内の冷媒Fが完全な気相
状態になったことを検出するものである。この結果、従
来技術によるものでは、冷房サイクル1内の冷媒Fの量
が実質的に不足していても、完全な不足状態となった場
合以外には冷媒不足を検出することができない。従っ
て、実質的な冷媒Fの不足傾向を早期に検出することが
できないという問題がある。
By the way, in the above-mentioned conventional refrigerant sensor, the main body casing 1 is used.
By providing the self-heating type thermistor 12 in the stagnation portion 11B of No. 1, the refrigerant state in the pipe 2 is detected, and the refrigerant F in the stagnation portion 11B is completely in the vapor phase state,
That is, it is detected that the refrigerant F in the pipe 2 (cooling cycle 1) is in a complete vapor phase state. As a result, according to the conventional technique, even if the amount of the refrigerant F in the cooling cycle 1 is substantially insufficient, the refrigerant shortage cannot be detected except in the case of the complete shortage. Therefore, there is a problem that the substantial tendency of the shortage of the refrigerant F cannot be detected early.

【0015】また、上記問題に関連して、自己発熱型サ
ーミスタ12からの抵抗値の変化で冷媒Fが気相状態で
あることを検出するときには、既に冷房サイクル1内に
は殆ど冷媒Fがなくなった状態であるから、コンプレッ
サ3の焼き付き等の事故が発生し易いという問題があ
る。
Further, in connection with the above problem, when it is detected that the refrigerant F is in the vapor phase state due to the change in the resistance value from the self-heating type thermistor 12, almost no refrigerant F is already present in the cooling cycle 1. Since it is in the open state, there is a problem that an accident such as seizure of the compressor 3 is likely to occur.

【0016】本発明は上述した従来技術による冷媒セン
サの問題に鑑みなされたもので、本発明は早期に冷媒不
足を検出することのできるようにした冷媒センサを提供
することを目的としている。
The present invention has been made in view of the above-mentioned problems of the refrigerant sensor according to the prior art, and an object of the present invention is to provide a refrigerant sensor capable of detecting a refrigerant shortage at an early stage.

【0017】[0017]

【課題を解決するための手段】上述した課題を解決する
ために本発明が採用する構成は、冷媒が流通する冷媒流
路部を有したセンサ本体と、該センサ本体の冷媒流路部
よりも上側に配設され、該冷媒流路部内と連通する冷媒
室と、該冷媒室内に設けられ、該冷媒室内の冷媒が液相
状態であるか否かを検出する感温素子とからなる。
In order to solve the above-mentioned problems, the structure adopted by the present invention is a sensor main body having a refrigerant flow passage through which a refrigerant flows, It comprises a refrigerant chamber which is arranged on the upper side and communicates with the inside of the refrigerant flow path portion, and a temperature sensitive element which is provided in the refrigerant chamber and detects whether or not the refrigerant in the refrigerant chamber is in a liquid phase state.

【0018】[0018]

【作用】上記構成により、冷媒充填量が適正な場合に
は、冷媒の液面が冷媒室に達し、冷媒充填量が減少した
場合には、液面が冷媒室より下降するから、この液面の
位置に基づき感温素子によって冷媒洩れを早期に検出す
ることができる。
With the above structure, when the refrigerant charge amount is appropriate, the liquid level of the refrigerant reaches the refrigerant chamber, and when the refrigerant charge amount decreases, the liquid level drops from the refrigerant chamber. Based on the position of, the temperature sensitive element can detect the refrigerant leakage at an early stage.

【0019】[0019]

【実施例】以下、本発明の実施例を図1に基づいて説明
する。なお、実施例では前述した図2なしい図3による
従来技術と同一の構成要素に同一の符号を付し、その説
明を省略するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In the embodiments, the same components as those of the conventional technique shown in FIG. 2 or FIG. 3 described above are designated by the same reference numerals, and the description thereof will be omitted.

【0020】図中、21は本実施例による冷媒センサを
示し、該冷媒センサ21は従来技術の冷媒センサ10に
替えてレシーバタンク8と膨張弁9との間に配設されて
いる。
In the figure, reference numeral 21 denotes a refrigerant sensor according to this embodiment, which is arranged between the receiver tank 8 and the expansion valve 9 in place of the refrigerant sensor 10 of the prior art.

【0021】22は冷媒センサ21の外形を構成し、直
方体状に形成されたセンサ本体22を示し、該センサ本
体22は図中左側面から右側面に貫通するように設けら
れ、両端内周側にめねじ部22A1 ,22A1 を有する
冷媒流路部22Aと、該冷媒流路部22Aの上側に位置
して形成され、開口部内周面にめねじ部22B1 を有す
る大径穴22Bと、該大径穴22Bの底部22B2 と前
記冷媒流路部22Aとを連通するように形成された小径
の絞り部22Cとから大略構成されている。
Reference numeral 22 denotes an outer shape of the refrigerant sensor 21, and indicates a sensor body 22 formed in a rectangular parallelepiped shape. The sensor body 22 is provided so as to penetrate from the left side surface to the right side surface in the drawing, and both ends are on the inner peripheral side. A refrigerant flow path portion 22A having internal thread portions 22A1 and 22A1, a large diameter hole 22B formed on the upper side of the refrigerant flow path portion 22A and having an internal thread portion 22B1 on the inner peripheral surface of the opening, and the large diameter hole 22B. It is generally composed of a bottom portion 22B2 of the diameter hole 22B and a small-diameter throttle portion 22C formed so as to communicate the refrigerant flow passage portion 22A.

【0022】そして、冷媒流路部22Aの各めねじ部2
2A1 には配管2が螺着され、冷房サイクル1内の冷媒
Fを該冷媒流路部22A内に流通させる。
Then, each female screw portion 2 of the refrigerant flow passage portion 22A.
A pipe 2 is screwed to 2A1 to allow the refrigerant F in the cooling cycle 1 to flow in the refrigerant flow passage portion 22A.

【0023】23は前記大径穴22Bを施蓋する蓋体を
示し、該蓋体23は円柱状に形成され、その上端側外周
面にはおねじ部23Aが形成され、下端側外周面には環
状のOリング溝23Bが形成されている。また、蓋体2
3には径方向に離間する2個のリード線挿通穴23C,
23Cが穿設されている。そして、Oリング溝23B内
にOリング24を介挿して前記大径穴22Bに螺着され
る。
Reference numeral 23 denotes a lid body for covering the large-diameter hole 22B. The lid body 23 is formed in a cylindrical shape, a male screw portion 23A is formed on the outer peripheral surface on the upper end side, and an outer peripheral surface on the lower end side is formed. An annular O-ring groove 23B is formed. Also, the lid 2
3 has two lead wire insertion holes 23C, which are separated in the radial direction,
23C is drilled. Then, the O-ring 24 is inserted into the O-ring groove 23B and screwed into the large diameter hole 22B.

【0024】25は蓋体23と大径穴22Bの底部22
B2 との間に形成された冷媒室を示し、該冷媒室25
は、蓋体23のおねじ部23Aをセンサ本体22のめね
じ部22B1 に螺着することにより形成され、前記絞り
部22Cを介して冷媒流路部22Aと連通するようにな
っている。
Reference numeral 25 denotes a lid 23 and a bottom portion 22 of the large diameter hole 22B.
B2 shows a refrigerant chamber formed between B2 and
Is formed by screwing the male thread portion 23A of the lid body 23 onto the female thread portion 22B1 of the sensor body 22, and communicates with the refrigerant flow passage portion 22A through the throttle portion 22C.

【0025】26は冷媒室25内に配設された感温素子
としての自己発熱型サーミスタを示し、該自己発熱型サ
ーミスタ26はリード線26A,26Aを前記蓋体23
の各リード線挿通穴23C内に段付円板状のシール部材
27,27を介して挿入することにより蓋体23に取り
付けられ、前記各リード線26Aは冷媒センサ21の外
部に導出し、外部に設けられた従来技術で述べた報知装
置14に接続されている。そして、自己発熱型サーミス
タ26は大径穴22Bの底部22B2 から所定寸法高さ
Hだけ上方に離間して冷媒室25内に位置決めされてい
る。
Reference numeral 26 denotes a self-heating type thermistor as a temperature sensing element disposed in the refrigerant chamber 25. The self-heating type thermistor 26 has lead wires 26A and 26A connected to the lid 23.
The lead wires 26A are attached to the lid 23 by inserting the lead wire insertion holes 23C into the lead wire insertion holes 23C via the stepped disc-shaped seal members 27, 27, and the lead wires 26A are led out to the outside of the refrigerant sensor 21, Connected to the notification device 14 described in the related art. The self-heating type thermistor 26 is positioned in the refrigerant chamber 25 at a predetermined height H from the bottom 22B2 of the large diameter hole 22B.

【0026】ここで、自己発熱型サーミスタ26は各リ
ード線26Aを介して電流を流すと自ら発熱し、高温と
なって抵抗値が低下し、このとき外部から冷却を行なう
と自己発熱型サーミスタ26は温度が下がって抵抗値が
上昇するという特性を示すようになっている。
Here, the self-heating type thermistor 26 heats itself when an electric current is passed through each lead wire 26A and becomes high in temperature to lower the resistance value. Has a characteristic that the temperature decreases and the resistance increases.

【0027】本実施例による冷媒センサ21は以上の如
く構成されるが、次に冷媒センサ21の冷媒充填量の検
出動作について説明する。
The refrigerant sensor 21 according to this embodiment is constructed as described above. Next, the operation of detecting the refrigerant filling amount of the refrigerant sensor 21 will be described.

【0028】空調装置を駆動することによりコンプレッ
サ3が作動すると、レシーバタンク8と膨張弁9の間で
冷媒Fが液相状態となり、冷媒Fが冷房サイクル1内に
適正量充填されている場合には、該冷媒Fの液面は冷媒
流路部22A内を満たし絞り部22Cを介して冷媒室2
5内の上面側まで上昇する。
When the compressor 3 is operated by driving the air conditioner, the refrigerant F enters the liquid phase between the receiver tank 8 and the expansion valve 9, and when the refrigerant F is filled in the cooling cycle 1 in an appropriate amount. The liquid level of the refrigerant F fills the inside of the refrigerant flow path portion 22A and the refrigerant chamber 2 passes through the throttle portion 22C.
It goes up to the upper surface side in 5.

【0029】このとき、自己発熱型サーミスタ26は液
化状態にある冷媒Fに浸漬されるため、冷媒Fによる冷
却作用が大きく、自己発熱型サーミスタ26の抵抗値は
大きくなり、ランプ15を消灯させる。
At this time, since the self-heating type thermistor 26 is immersed in the refrigerant F in the liquefied state, the cooling action of the refrigerant F is large, and the resistance value of the self-heating type thermistor 26 becomes large, so that the lamp 15 is turned off.

【0030】一方、冷媒洩れ等により冷房サイクル1内
の冷媒Fが減少すると、冷媒室25内の冷媒Fの液面が
低下し、自己発熱型サーミスタ26が冷媒Fの液面から
露出するようになる。そして、気相状態の冷媒Fは液相
状態の冷媒Fに比べて冷却作用が小さいため、自己発熱
型サーミスタ26は温度が上昇し、抵抗値が小さくな
り、報知装置14のランプ15が点灯し、運転者に冷媒
Fが減少傾向にあることを報知する。
On the other hand, when the refrigerant F in the cooling cycle 1 decreases due to refrigerant leakage or the like, the liquid level of the refrigerant F in the refrigerant chamber 25 lowers so that the self-heating type thermistor 26 is exposed from the liquid surface of the refrigerant F. Become. Since the refrigerant F in the vapor phase has a smaller cooling effect than the refrigerant F in the liquid phase, the temperature of the self-heating type thermistor 26 rises, the resistance value becomes small, and the lamp 15 of the alarm device 14 lights up. Informs the driver that the refrigerant F is decreasing.

【0031】かくして、自己発熱型サーミスタ26は、
冷媒流路部22A,絞り部22Cを介して冷媒室25内
の流入する冷媒Fの液面が該自己発熱型サーミスタ26
を浸漬するか否かを検出することができるから、冷媒F
の微妙な減少を高精度で検出することができる。
Thus, the self-heating type thermistor 26 is
The liquid level of the refrigerant F flowing into the refrigerant chamber 25 through the refrigerant flow path portion 22A and the throttle portion 22C is such that the self-heating type thermistor 26.
Since it is possible to detect whether or not the refrigerant is immersed, the refrigerant F
It is possible to detect a subtle decrease in the value with high accuracy.

【0032】そして、運転者は報知装置14のランプ1
5の消灯,点灯をもって冷媒Fの充填状態を知ることが
できる。
Then, the driver selects the lamp 1 of the notification device 14.
It is possible to know the filling state of the refrigerant F by turning off and turning on 5.

【0033】従って、従来技術の冷媒センサにおいて早
期に検知することができなかった冷媒Fの減少傾向を早
期に検知することができるから、コンプレッサ3の無負
荷運転を確実に防止することができ、該コンプレッサ3
の焼き付き等を防止し、該コンプレッサ3の保護を効果
的に図ることができる。
Therefore, since the decreasing tendency of the refrigerant F, which cannot be detected early by the conventional refrigerant sensor, can be detected early, the no-load operation of the compressor 3 can be surely prevented. The compressor 3
It is possible to prevent the seizure and the like of the compressor and effectively protect the compressor 3.

【0034】また、自己発熱型サーミスタ26は、冷媒
室25内に所定寸法高さHの位置に設けられるものであ
り、この高さHは冷媒センサ21の配置関係および冷房
サイクル1の配管2の取り回し関係等に応じて適宜に設
定することができるから、冷媒不足の検出感度の調整に
自由度を与えることができる。
The self-heating type thermistor 26 is provided in the refrigerant chamber 25 at a position of a predetermined height H. The height H depends on the arrangement of the refrigerant sensor 21 and the piping 2 of the cooling cycle 1. Since the setting can be appropriately made according to the handling relation and the like, it is possible to give a degree of freedom to the adjustment of the detection sensitivity of the refrigerant shortage.

【0035】なお、前記実施例では、冷媒Fの減少傾向
を報知装置14のランプ15の点灯により行なうように
したが、コントロールユニット等に接続してプログラム
によりコンプレッサ3を停止させたり、報知装置をブザ
ー,音声合成等により構成し、ブザー音,音声等で報知
を行なうようにしてもよい。
In the above embodiment, the decrease tendency of the refrigerant F is performed by turning on the lamp 15 of the notification device 14, but the compressor 3 is stopped by a program connected to a control unit or the like, or the notification device is activated. It may be configured by a buzzer, voice synthesis, or the like, and notification may be given by a buzzer sound, voice, or the like.

【0036】[0036]

【発明の効果】以上詳述した如く、本発明によれば、冷
媒が流通する冷媒流路部を有したセンサ本体と、該セン
サ本体の冷媒流路部よりも上側に配設され、該冷媒流路
部内と連通する冷媒室と、該冷媒室内に設けられ、該冷
媒室内の冷媒が液相状態であるか否かを検出する感温素
子とから構成したから、冷媒が液相状態のときの液面の
高さから冷媒量が減少傾向にあるか否かを早期に検出す
ることができ、検出精度を向上できると共に、コンプレ
ッサの焼き付き等の故障を確実に防止することができ
る。
As described above in detail, according to the present invention, the sensor main body having the refrigerant flow passage through which the refrigerant flows, and the sensor main body disposed above the refrigerant flow passage, When the refrigerant is in the liquid phase state, it is composed of a refrigerant chamber communicating with the inside of the flow path section, and a temperature sensing element that is provided in the refrigerant chamber and detects whether the refrigerant in the refrigerant chamber is in the liquid phase state. Whether or not the amount of the refrigerant tends to decrease can be detected early from the height of the liquid surface, the detection accuracy can be improved, and a failure such as seizure of the compressor can be reliably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による冷媒センサの縦断面図で
ある。
FIG. 1 is a vertical sectional view of a refrigerant sensor according to an embodiment of the present invention.

【図2】従来技術による空調装置を示す回路図である。FIG. 2 is a circuit diagram showing an air conditioner according to the related art.

【図3】従来技術による冷媒センサの縦断面図である。FIG. 3 is a vertical cross-sectional view of a refrigerant sensor according to the related art.

【符号の説明】[Explanation of symbols]

21 冷媒センサ 22 センサ本体 22A 冷媒流路部 22B 大径穴 22C 絞り部 23 蓋体 25 冷媒室 26 自己発熱型サーミスタ(感温素子) F 冷媒 H 所定寸法高さ 21 Refrigerant Sensor 22 Sensor Main Body 22A Refrigerant Flow Path 22B Large Diameter Hole 22C Throttle 23 Lid 25 Refrigerant Chamber 26 Self-heating Type Thermistor (Temperature Sensing Element) F Refrigerant H Specified Height

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒が流通する冷媒流路部を有したセン
サ本体と、該センサ本体の冷媒流路部よりも上側に配設
され、該冷媒流路部内と連通する冷媒室と、該冷媒室内
に設けられ、該冷媒室内の冷媒が液相状態であるか否か
を検出する感温素子とから構成してなる冷媒センサ。
1. A sensor main body having a refrigerant flow passage through which a refrigerant flows, a refrigerant chamber arranged above the refrigerant flow passage of the sensor main body and communicating with the inside of the refrigerant flow passage, and the refrigerant. A refrigerant sensor provided in a room, comprising a temperature sensitive element for detecting whether or not the refrigerant in the refrigerant room is in a liquid phase state.
JP35755291A 1991-12-26 1991-12-26 Refrigerant sensor Pending JPH05180546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35755291A JPH05180546A (en) 1991-12-26 1991-12-26 Refrigerant sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35755291A JPH05180546A (en) 1991-12-26 1991-12-26 Refrigerant sensor

Publications (1)

Publication Number Publication Date
JPH05180546A true JPH05180546A (en) 1993-07-23

Family

ID=18454712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35755291A Pending JPH05180546A (en) 1991-12-26 1991-12-26 Refrigerant sensor

Country Status (1)

Country Link
JP (1) JPH05180546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398516A (en) * 1992-03-31 1995-03-21 Unisia Jecs Corporation Method and apparatus for detecting an insufficiency of refrigerant in an airconditioning apparatus
JPH08100970A (en) * 1994-09-30 1996-04-16 Toshiba Corp Refrigerating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428050A (en) * 1977-08-03 1979-03-02 Nippon Denso Co Ltd Refrigerator with means for sensing failure of coolant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428050A (en) * 1977-08-03 1979-03-02 Nippon Denso Co Ltd Refrigerator with means for sensing failure of coolant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398516A (en) * 1992-03-31 1995-03-21 Unisia Jecs Corporation Method and apparatus for detecting an insufficiency of refrigerant in an airconditioning apparatus
JPH08100970A (en) * 1994-09-30 1996-04-16 Toshiba Corp Refrigerating device

Similar Documents

Publication Publication Date Title
US4167858A (en) Refrigerant deficiency detecting apparatus
US5228304A (en) Refrigerant loss detector and alarm
US5402112A (en) Liquid level and temperature monitoring apparatus
US5197298A (en) Sensor and control system for an automotive air conditioning system
US4614087A (en) Apparatus for alarming abnormal coolant in space cooling cycle
US6779355B2 (en) Refrigeration device
WO1993020393A1 (en) Refrigerant shortage detecting method and apparatus for air-conditioners
JPH05180546A (en) Refrigerant sensor
CN86100821A (en) The fender guard of compressor
JP2686874B2 (en) Refrigerant sensor
JP2869904B2 (en) Refrigeration cycle control device
JPH0566484U (en) Refrigerant sensor
JPH0566483U (en) Refrigerant sensor
JPH05223413A (en) Air conditioner
JP2530258B2 (en) Air conditioner
KR870001252Y1 (en) Liquid separator for use in a refrigerating air conditioning apparatus
JPH0583673U (en) Air conditioner
JPH03199873A (en) Air conditioner
JPH086211Y2 (en) Refrigerant condition detector
JPH0413632Y2 (en)
JP2884736B2 (en) Refrigerant charge detection device
JP3032230B2 (en) Gas-liquid ratio detector
JP3287895B2 (en) refrigerator
JPS6050266B2 (en) Refrigerant leak detection device
JPS6330931Y2 (en)