JPH0518027B2 - - Google Patents

Info

Publication number
JPH0518027B2
JPH0518027B2 JP61298738A JP29873886A JPH0518027B2 JP H0518027 B2 JPH0518027 B2 JP H0518027B2 JP 61298738 A JP61298738 A JP 61298738A JP 29873886 A JP29873886 A JP 29873886A JP H0518027 B2 JPH0518027 B2 JP H0518027B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
defrosting
outdoor heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61298738A
Other languages
Japanese (ja)
Other versions
JPS63153374A (en
Inventor
Takashi Sano
Noriaki Horiuchi
Masamichi Hanada
Hisanori Suzuki
Kensaku Kokuni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61298738A priority Critical patent/JPS63153374A/en
Publication of JPS63153374A publication Critical patent/JPS63153374A/en
Publication of JPH0518027B2 publication Critical patent/JPH0518027B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空冷ヒートポンプ空気調和機の暖房
運転時の除霜中運転周波数を制御する空気調和機
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner that controls the operating frequency during defrosting during heating operation of an air-cooled heat pump air conditioner.

〔従来の技術〕[Conventional technology]

従来の空気調和機は特開昭59−191851号に記載
のように、除霜終了準備運転期間を設け圧縮機の
能力を降下させて、暖房運転へ復帰させる除霜運
転制御方法となつていた。しかし、上記除霜終了
準備期間の制定方式に具体策が示されておらず、
除霜終了後上記準備期間を設けるのなら除霜運転
時間の延長による快適性の低下を招くし、また除
霜後半の一定時間を基準期間とした場合には、除
霜が完全に終了する前に暖房運転に復帰するとい
う不具合についての配慮がなされていなかつた。
As described in Japanese Patent Application Laid-Open No. 59-191851, conventional air conditioners have a defrosting operation control method in which a preparatory operation period for the end of defrosting is provided, the capacity of the compressor is reduced, and the compressor returns to heating operation. . However, no concrete measures are provided in the method for establishing the preparation period for the end of defrosting.
If the above-mentioned preparation period is provided after defrosting is completed, the defrosting operation time will be extended, resulting in a decrease in comfort. Also, if a certain period in the latter half of defrosting is set as the reference period, it will be necessary to provide the preparatory period before defrosting is completely completed. No consideration was given to the problem of returning to heating operation after a while.

〔発明が解決しようとする問題点〕 上記従来技術は、圧縮機容量を低下する。除霜
終了準備期間の設定方式についての配慮がされて
おらず、本分中に記載の除霜運転中の後半の一定
時間圧縮機容量を低下させた場合には除霜運転時
間の拡大による、室内熱交換器からの冷風吹出し
時間長くなり快適性の低下という問題と除霜終了
準備期間の除霜能力の低下による、除霜が不完全
のまま終了するという問題があつた。
[Problems to be Solved by the Invention] The above prior art reduces compressor capacity. If consideration is not given to the setting method for the preparation period for the end of defrosting, and if the compressor capacity is reduced for a certain period of time during the latter half of the defrosting operation described in this section, the defrosting operation time will be expanded. There was a problem that the cold air blowing time from the indoor heat exchanger became longer, resulting in a decrease in comfort, and a problem that the defrosting was completed incompletely due to a decrease in the defrosting ability during the preparation period for completing the defrosting.

本発明は上記不具合に鑑み案出されたものであ
り、除霜の進行を除霜検知センサの温度信号にて
検出し、検出温度にて圧縮機運転周波数を設定す
る制御盤により、除霜進行とともに温度上昇する
上記センサー部温度に対し周波数を低減すること
により、除霜性能を確保しかつ除霜終了準備期間
を設けることもなく、除霜終了時には圧縮機容量
を低減して、暖房運転に復帰可能とすることに目
的がある。
The present invention was devised in view of the above-mentioned problems, and the progress of defrosting is detected by the temperature signal of the defrost detection sensor, and the progress of defrosting is detected by a control panel that sets the compressor operating frequency based on the detected temperature. By reducing the frequency in response to the sensor temperature, which increases as the temperature rises, defrosting performance is ensured and there is no preparation period for the end of defrosting, and the compressor capacity is reduced at the end of defrosting to allow heating operation. The purpose is to make it possible to return.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的を達成するため、本発明に係る空気
調和機は、制御盤により運転周波数を変更可能な
圧縮機、四方弁、室外交換器、膨張弁及び室内熱
交換器熱交換器を配管により連結し、かつ圧縮機
と四方弁間から、膨張弁と室外熱交換器間へ到る
バイパス回路上に電磁弁を配設して冷凍サイクル
を形成した空気調和機において、室外熱交換器と
膨張弁との間に温度検出器を設け、温度検出器の
温度検出値と外気温度との温度差が設定温度差を
超えた際、運転周波数を最大値に設定するととも
に電磁弁を開いて除霜運転を開始し、室外熱交換
器の入口温度が除霜終了設定温度以下の所定の設
定温度まで上昇した際に運転周波数を低下させ、
室外熱交換器の入口温度と出口温度との温度差を
低減させる制御盤を備えた構成である。
In order to achieve the above object, the air conditioner according to the present invention includes a compressor whose operating frequency can be changed by a control panel, a four-way valve, an outdoor exchanger, an expansion valve, and an indoor heat exchanger that are connected by piping. In an air conditioner in which a refrigeration cycle is formed by installing a solenoid valve on a bypass circuit from between the compressor and the four-way valve to between the expansion valve and the outdoor heat exchanger, the outdoor heat exchanger and the expansion valve A temperature detector is installed between the starts, and when the inlet temperature of the outdoor heat exchanger rises to a predetermined set temperature below the defrosting end set temperature, the operating frequency is lowered,
This configuration includes a control panel that reduces the temperature difference between the inlet temperature and outlet temperature of the outdoor heat exchanger.

〔作用〕[Effect]

除霜運転は、圧縮機出口部から、室外熱交換器
入口へのバイパス回路の電磁弁を開くことによ
り、圧縮機より高温高圧ガス冷媒が室外熱交換器
に送られて実施されるが、一方室内側熱交換器へ
も上記冷媒の一部を送り暖房運転を行つている。
係る除霜冷凍サイクルにおいて、除霜の進行を膨
張弁と室外熱交換器との間の配管上に設けた除霜
センサからの温度信号を制御盤にて検知し、上記
検知温度に対し、温度が低い場合は高回転、温度
が高い場合は低回転の圧縮機運転を行うように運
転周波数を設定する制御盤により、除霜中の圧縮
機容量制御を行う。除霜量により進行状態の異な
る除霜運転状況に対して、周波数を変化させるこ
とにより除霜運転状況の均一化に図ることができ
るので多量の着霜、少量の着霜にかかわらず除霜
終了準備運転を行なわずに除霜時間を短縮し、暖
房運転に移行することが可能となる。
Defrosting operation is performed by opening the solenoid valve of the bypass circuit from the compressor outlet to the outdoor heat exchanger inlet, and high-temperature, high-pressure gas refrigerant is sent from the compressor to the outdoor heat exchanger. A portion of the refrigerant is also sent to the indoor heat exchanger for heating operation.
In such a defrosting refrigeration cycle, the progress of defrosting is detected by a control panel from a temperature signal from a defrosting sensor installed on the piping between the expansion valve and the outdoor heat exchanger, and the temperature The compressor capacity is controlled during defrosting by a control panel that sets the operating frequency so that the compressor operates at high rotation speeds when the temperature is low and at low rotation speeds when the temperature is high. The defrosting operation progresses differently depending on the amount of defrost, but by changing the frequency it is possible to equalize the defrosting operation status, so defrosting is completed regardless of whether there is a large amount of frost or a small amount of frost. It becomes possible to shorten the defrosting time and shift to heating operation without performing preparatory operation.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明す
る。第1図は圧縮機1、四方弁2、室外熱交換器
3、膨張弁4、室内熱交換器5を配管により順次
連結して構成される冷凍サイクルを示すが、上記
圧縮機1の吐出側と、室外熱交換器3から四方弁
4の間へ到るバイパス回路上に電磁弁6を配設し
ている。また上記圧縮機1は制御盤8により、運
転周波数を可変制御されている。本冷凍サイクル
における暖房運転は、圧縮機1にて圧縮された冷
媒ガスが四方弁2を通り室内側熱交換器5へ流
れ、暖房運転を行い液冷媒となり、膨張弁4にて
減圧膨張し、室外熱交換器3で吸熱蒸発し、四方
弁2を介し圧縮機1へ再び吸入をされることによ
つているが、外気温度が低下し、上記室外熱交換
器3へ着霜が生じるという暖房能力の著しい低下
が生じ、除霜運転を行う必要が生じる。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a refrigeration cycle constructed by sequentially connecting a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5 through piping. A solenoid valve 6 is disposed on a bypass circuit extending from the outdoor heat exchanger 3 to the four-way valve 4. Further, the operating frequency of the compressor 1 is variably controlled by a control panel 8. In the heating operation in this refrigeration cycle, the refrigerant gas compressed by the compressor 1 flows through the four-way valve 2 to the indoor heat exchanger 5, performs the heating operation, becomes liquid refrigerant, and is depressurized and expanded in the expansion valve 4. This is due to the fact that the outdoor heat exchanger 3 absorbs heat and evaporates, and the air is sucked into the compressor 1 again through the four-way valve 2, but the outside air temperature decreases and frost forms on the outdoor heat exchanger 3. A significant decrease in capacity occurs, and it becomes necessary to perform defrosting operation.

除霜運転は一定時間後外気検出温度センサー
(図示せず)た、暖房運転時の膨張弁出口部に設
けた除霜検知センサー7との温度の差が、設定の
温度差以上の場合に実施される。除霜時の運転は
まず圧縮機1の運転周波数を制御盤8にて最大値
に設定し、上記電磁弁6を開き、バイパス回路を
通じて高圧高圧ガス冷媒を室外熱交換器3に流
す。また上記ガス冷媒の一部を内熱交換器5に流
すことにより室内熱交換器5にて暖房運転を行
い、膨張弁4にて膨張し、上記バイパス回路から
流入した冷媒と混合し、室外熱交換器3に流入
し、室外熱交換器3にて凝縮して、除霜を行い圧
縮機1に再び吸入される。
Defrosting operation is performed after a certain period of time when the temperature difference between the outside air detection temperature sensor (not shown) and the defrosting detection sensor 7 installed at the expansion valve outlet during heating operation is greater than or equal to the set temperature difference. be done. During defrosting operation, first, the operating frequency of the compressor 1 is set to the maximum value on the control panel 8, the solenoid valve 6 is opened, and the high-pressure high-pressure gas refrigerant is allowed to flow into the outdoor heat exchanger 3 through the bypass circuit. In addition, by flowing a part of the gas refrigerant to the internal heat exchanger 5, the indoor heat exchanger 5 performs heating operation, expands in the expansion valve 4, mixes with the refrigerant flowing from the bypass circuit, and heats the outdoor heat. It flows into the exchanger 3, is condensed in the outdoor heat exchanger 3, is defrosted, and is sucked into the compressor 1 again.

第2図に除霜運転中常に最高周波数にて運転し
ている場合のタイムチヤートを示す。除霜運転時
圧縮機は常時最大の周波数にて運転を行つている
為に、除霜検知センサー7の取付部である室外熱
交入口温度TEiは、除霜進行とともに上昇してい
く。一方室外熱交出口部温度TEoは、着霜の状
態が通常の場合には比較的TEiに追従し、上昇し
ていくが、着霜大の場合はTEiの上昇より遅れて
上昇していく為に、除霜終了設定温度TEisetに
なつても、室外熱交換器3の出口部温度TEoは
霜を完全に解凍できる迄に達しないで暖房に復帰
することがあつた。この為に上記TEiを除霜セン
サー7により検知し、制御盤8にて検知した温度
信号に対する圧縮機1の運転周波数を設定する。
設定値はTEiが低い場合は周波数高く、除霜の進
行とともにTEiが上昇するに従い、上記周波数が
低下するように、TEiが高い場合は周波数を低く
行う。第3図に上記制御のタイムチヤートを示す
が、除霜運転の進行と共に熱交換器入口温度TEi
が上昇し、除霜終了設定温度以下のある設定温度
TEi1迄達すると、制御盤8が圧縮機1の運転周
波数を低下させ、冷凍サイクル中の冷媒循環量が
低下する。この為圧縮機入口の吸入圧力は増加
し、室外交換器出口温度TEoは上昇する。一方
TEiは循環量の低下による除霜能力の低下により
その上昇は一時的に抑制され、TEiとTEoの温度
差が縮減される。更に除霜が進行しTEiがTEi2
迄上昇すると、上記と同様に周波数の低下を図
り、TEiset迄に達する間にTEiとTEoの温度差
を減少すべく周波数の制御を行い、室外熱交換器
3全体の除霜を均一に行うことが可能となる。
Figure 2 shows a time chart when the defrosting operation is always performed at the highest frequency. Since the compressor always operates at the maximum frequency during defrosting operation, the outdoor heat exchanger inlet temperature TEi, which is the mounting part of the defrosting detection sensor 7, increases as defrosting progresses. On the other hand, the outdoor heat exchanger outlet temperature TEo relatively follows TEi and rises when the frost condition is normal, but when the frost is heavy, it rises later than the rise of TEi. In addition, even when the defrosting end temperature TEiset was reached, the temperature TEo at the outlet of the outdoor heat exchanger 3 did not reach a level where the frost could be completely thawed, and heating was resumed. For this purpose, the defrosting sensor 7 detects the above TEi, and the control panel 8 sets the operating frequency of the compressor 1 in response to the detected temperature signal.
The set value is such that when TEi is low, the frequency is high, and as TEi increases with the progress of defrosting, the frequency is decreased, and when TEi is high, the frequency is decreased. Figure 3 shows a time chart of the above control. As the defrosting operation progresses, the heat exchanger inlet temperature TEi
rises and the set temperature is below the defrosting end set temperature.
When the temperature reaches TEi1, the control panel 8 lowers the operating frequency of the compressor 1, and the amount of refrigerant circulated in the refrigeration cycle decreases. Therefore, the suction pressure at the compressor inlet increases, and the outdoor exchanger outlet temperature TEo increases. on the other hand
The increase in TEi is temporarily suppressed due to the decrease in defrosting ability due to the decrease in the amount of circulation, and the temperature difference between TEi and TEo is reduced. As defrosting progresses further, TEi becomes TEi2.
When the temperature rises to this level, the frequency is lowered in the same manner as above, and the frequency is controlled to reduce the temperature difference between TEi and TEo while the temperature reaches TEiset, thereby uniformly defrosting the entire outdoor heat exchanger 3. becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、除霜終了準備期間を設定する
ことなく、運転周波数を低下できるため除霜から
暖房への復帰時間を遅延する必要がなく、除霜時
間を短縮でき快適性の向上を図れる。室外熱交換
器の入口側温度が除霜終了設定圧度以下のある設
定温度まで上昇した際、除霜中の圧縮機運転周波
数を低下し制御するため、高速運転を除霜中常時
行うことにより、室外熱交換器全体の霜を均一に
除去できる。更に高速運転を常時行う除霜では冷
媒循環量と共に圧縮機中の油をサイクル系統中に
放出し易く、保有量の減少を免れないが、周波数
の制御により、保有量の確保が可能となり、圧縮
機の信頼性を向上できる。
According to the present invention, since the operating frequency can be lowered without setting a defrosting end preparation period, there is no need to delay the time to return to heating from defrosting, and the defrosting time can be shortened and comfort can be improved. . When the temperature on the inlet side of the outdoor heat exchanger rises to a certain set temperature below the defrosting end pressure, the compressor operating frequency during defrosting is lowered and controlled by constantly running at high speed during defrosting. , frost can be removed uniformly from the entire outdoor heat exchanger. Furthermore, when defrosting is performed constantly at high speeds, oil in the compressor is likely to be released into the cycle system along with the amount of refrigerant being circulated, which inevitably reduces the retained amount. The reliability of the machine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のサイクル系統図、
第2図は除霜中常時高速運転時の室外熱交換機出
入口温度のタイムチヤート図、第3図は除霜中圧
縮機運転を行つた場合のタイムチヤート図であ
る。 1……圧縮機、2……四方弁、3……室外熱交
換器、4……四方弁、5……室内熱交換器、6…
…電磁弁、7……除霜検知センサ、8……制御
盤、 ……暖房中の冷媒流れ、 ……除霜中の冷
媒の流れ、 ……信号の流れ、実線……着霜が通
常のタイムチヤート、 ……1点鎖線……着霜が
大なる時のタイムチヤート。
FIG. 1 is a cycle system diagram of an embodiment of the present invention.
FIG. 2 is a time chart of the temperature at the inlet and outlet of the outdoor heat exchanger during constant high-speed operation during defrosting, and FIG. 3 is a time chart when the compressor is operated during defrosting. 1... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 4... Four-way valve, 5... Indoor heat exchanger, 6...
...Solenoid valve, 7...Defrost detection sensor, 8...Control panel, ...Refrigerant flow during heating, ...Refrigerant flow during defrost, ...Signal flow, solid line...When frost formation is normal Time chart...One-dot chain line...Time chart when frost buildup is severe.

Claims (1)

【特許請求の範囲】[Claims] 1 制御盤により運転周波数を変更可能な圧縮
機、四方弁、室外熱交換器、膨張弁及び室内熱交
換器熱交換器を配管により連結し、かつ前記圧縮
機と前記四方弁間から、前記膨張弁と前記室外熱
交換器間へ到るバイパス回路上に電磁弁を配設し
て冷凍サイクルを形成した空気調和機において、
前記室外熱交換器と前記膨張弁との間に温度検出
器を設け、該温度検出器の温度検出値と外気温度
との温度差が設定温度差を超えた際、前記運転周
波数を最大値に設定するとともに前記電磁弁を開
いて除霜運転を開始し、前記室外熱交換器の入口
側温度が所霜終了設定温度以下の所定の設定温度
まで上昇した際に前記運転周波数を低下させ、前
記室外交換器の入口温度と出口温度との温度差を
低減させる前記制御盤を備えたことを特徴とする
空気調和機。
1 A compressor whose operating frequency can be changed by a control panel, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping, and the expansion is connected between the compressor and the four-way valve. In an air conditioner in which a refrigeration cycle is formed by disposing a solenoid valve on a bypass circuit leading between the valve and the outdoor heat exchanger,
A temperature detector is provided between the outdoor heat exchanger and the expansion valve, and when the temperature difference between the temperature detection value of the temperature detector and the outside air temperature exceeds a set temperature difference, the operating frequency is set to a maximum value. At the same time, the solenoid valve is opened to start defrosting operation, and when the temperature on the inlet side of the outdoor heat exchanger rises to a predetermined set temperature that is equal to or lower than the frost end set temperature, the operating frequency is lowered, and the An air conditioner comprising the control panel that reduces the temperature difference between the inlet temperature and the outlet temperature of the outdoor exchanger.
JP61298738A 1986-12-17 1986-12-17 Air conditioner Granted JPS63153374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298738A JPS63153374A (en) 1986-12-17 1986-12-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298738A JPS63153374A (en) 1986-12-17 1986-12-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPS63153374A JPS63153374A (en) 1988-06-25
JPH0518027B2 true JPH0518027B2 (en) 1993-03-10

Family

ID=17863617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298738A Granted JPS63153374A (en) 1986-12-17 1986-12-17 Air conditioner

Country Status (1)

Country Link
JP (1) JPS63153374A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537022C2 (en) * 2012-12-21 2014-12-09 Fläkt Woods AB Process and apparatus for defrosting an evaporator wide air handling unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101736A (en) * 1984-10-23 1986-05-20 Mitsubishi Heavy Ind Ltd Defrosting control device of air conditioner
JPS61268958A (en) * 1985-05-24 1986-11-28 松下電器産業株式会社 Defrostation controller for air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159772U (en) * 1985-03-26 1986-10-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101736A (en) * 1984-10-23 1986-05-20 Mitsubishi Heavy Ind Ltd Defrosting control device of air conditioner
JPS61268958A (en) * 1985-05-24 1986-11-28 松下電器産業株式会社 Defrostation controller for air conditioner

Also Published As

Publication number Publication date
JPS63153374A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
US4901534A (en) Defrosting control of air-conditioning apparatus
JP4654828B2 (en) Air conditioner
JPH0529830B2 (en)
JP2003240391A (en) Air conditioner
JPH0534582B2 (en)
JP3843331B2 (en) Heat pump type air conditioner and outdoor unit
JP3004676B2 (en) Refrigeration cycle device
JPH0518027B2 (en)
JPH1038387A (en) Operation controller of air conditioner
JP2000018777A (en) Cooler/heater
JP2910849B1 (en) Air conditioner defrost control device
JP4315714B2 (en) Air conditioning system and control method of air conditioning system
JPH022064B2 (en)
JPH07305903A (en) Controller for freezer
JP7295318B1 (en) air conditioner
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH0732868A (en) Air conditioner for bus
JP3337264B2 (en) Air conditioner defroster
JPH0347161Y2 (en)
KR19980030491A (en) Control method of heating operation of inverter multi air conditioner
JPS63161342A (en) Electrical expansion valve control device for air conditioner
JPH0120604Y2 (en)
JPS6315021A (en) Defrosting method of air conditioner
JPH04251144A (en) Operation control device of air conditioner
JPH062979A (en) Air conditioner