JPH0518006B2 - - Google Patents
Info
- Publication number
- JPH0518006B2 JPH0518006B2 JP59066075A JP6607584A JPH0518006B2 JP H0518006 B2 JPH0518006 B2 JP H0518006B2 JP 59066075 A JP59066075 A JP 59066075A JP 6607584 A JP6607584 A JP 6607584A JP H0518006 B2 JPH0518006 B2 JP H0518006B2
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- pulse
- combustors
- combustor
- tail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 76
- 239000000446 fuel Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000002912 waste gas Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 239000002737 fuel gas Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 241000145637 Lepturus Species 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/02—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in parallel arrangement
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は工業用、業務用もしくは家庭用の給湯
機や温風機等の熱源として利用されるパルス燃焼
装置。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pulse combustion device that is used as a heat source for industrial, commercial, or domestic water heaters, hot air fans, and the like.
従来例の構成とその問題点
パルス燃焼器は熱交換効率が高く、また送風機
の助けがなくとも、自力で強制給排気燃焼ができ
る等、省エネルギ機器の熱源器として有用なもの
である。しかしながら、騒音が大きいことや燃焼
量の可変幅の狭いことなどが実用上の問題であつ
た。Conventional configurations and their problems Pulse combustors have high heat exchange efficiency and can perform forced air supply and exhaust combustion on their own without the aid of a blower, making them useful as heat sources for energy-saving equipment. However, there were practical problems such as large noise and narrow variable range of combustion amount.
これらの問題を解決するために、熱出力の小さ
いパルス燃焼器を複数台並設して、これらの運転
を制御して燃焼量の可変幅を広げるとともに騒音
の低減を図る試みがなされて来た。しかしそれぞ
れのパルス周波数が少しずつ異なるために、唸り
音が発生するという新たな問題が生じて来た。 In order to solve these problems, attempts have been made to install multiple pulse combustors with low heat output in parallel and control their operation to widen the variable range of combustion amount and reduce noise. . However, since each pulse frequency is slightly different, a new problem has arisen: whirring noise.
同じレベルの騒音でも唸りを伴なう騒音は、い
つそう煩しいもので、その解決が望まれている。 Even at the same level of noise, noise accompanied by a growl can be extremely annoying, and a solution to this problem is desired.
発明の目的
本発明は、複数台のパルス燃焼器の燃焼状態を
同期させることによつて、同一のパルス周波数で
燃焼せしめ、唸り音の発生を防止し、低騒音のパ
ルス燃焼装置を提供することを目的とする。Purpose of the Invention The present invention provides a low-noise pulse combustion device that synchronizes the combustion states of a plurality of pulse combustors to cause combustion to occur at the same pulse frequency, thereby preventing the generation of humming noise. With the goal.
発明の構成
本発明は入力の総和が所要の入力になるよう
に、所要入力を等分割した入力のパルス燃焼器を
複数台、並設し、それら複数台のパルス燃焼器の
テイルパイプ間を相互に連通することによつて、
それらパルス燃焼器の作動状態を相互に干渉せし
め、パルス燃焼周波数を同期させるパルス燃焼装
置である。Structure of the Invention The present invention includes a plurality of pulse combustors whose inputs are equally divided so that the sum of the inputs becomes the required input, and the tail pipes of the plurality of pulse combustors are mutually connected. By communicating with
This is a pulse combustion device that allows the operating states of these pulse combustors to interfere with each other and synchronizes the pulse combustion frequency.
実施例の説明
図は2台のパルス燃焼器を並設した本発明の一
実施例のパルス燃焼装置を示すものである。1は
第1のパルス燃焼器を2は第2のパルス燃焼器を
示している。3,4は燃焼室、5,6はテイルパ
イプ、7,8は排気クツシヨンチヤンバ、9,1
0はガスデイストリビユータ、11,12は空気
通路、13,14は点火プラグ、15,16は空
気バルブ、17,18はガスバルブ19は空気ク
ツシヨンチヤンバ、20は缶体、21は水、2
2,23は排気パイプ、24は燃焼用空気、2
5,26は燃料ガス、27,28は燃焼廃ガス、
29は連通管、30は連通流れを示す。DESCRIPTION OF THE EMBODIMENTS The figure shows a pulse combustion apparatus according to an embodiment of the present invention in which two pulse combustors are arranged in parallel. 1 indicates a first pulse combustor, and 2 indicates a second pulse combustor. 3 and 4 are combustion chambers, 5 and 6 are tail pipes, 7 and 8 are exhaust cushion chambers, 9 and 1
0 is a gas distributor, 11 and 12 are air passages, 13 and 14 are spark plugs, 15 and 16 are air valves, 17 and 18 are gas valves 19 is an air cushion chamber, 20 is a can body, 21 is water, 2
2 and 23 are exhaust pipes, 24 is combustion air, 2
5 and 26 are fuel gas, 27 and 28 are combustion waste gas,
29 is a communicating pipe, and 30 is a communicating flow.
次に動作について説明する。燃焼ガス25,2
6はガスバルブ17,18を通り、多数のノズル
孔が穿たれたデイストリビユータ9,10より燃
焼室3,4に供給される。 Next, the operation will be explained. Combustion gas 25,2
The gas 6 passes through gas valves 17 and 18 and is supplied to the combustion chambers 3 and 4 from distributors 9 and 10 having a large number of nozzle holes.
燃焼用空気24は送風機(図示せず)より供給
され、空気クツシヨンチヨンバ19、空気バルブ
15,16、空気通路11,12を通つて、燃焼
室3,4に供給される。燃焼室3,4に供給され
た燃料ガス及び燃焼用空気は混合されて、混合気
となり、点火プラグ13,14からの放電により
爆発燃焼する。爆発により燃焼室3,4内の圧力
は上昇し空気バルブ15,16及びガスバルブ1
7,18は閉じ、燃料ガス25,26および燃焼
用空気24の供給は止まる。高温の燃焼廃ガス2
7,28は細いテイルパルプ5,6を通過しなが
ら水21に熱交換し、温度を下げながら排気クツ
シヨンチヤンバ7,8に流入する。燃焼廃ガス2
7,28はさらに、排気パイプ22,23を通つ
て器外に排出される。 Combustion air 24 is supplied from a blower (not shown) and is supplied to the combustion chambers 3 and 4 through an air cushion chamber 19, air valves 15 and 16, and air passages 11 and 12. The fuel gas and combustion air supplied to the combustion chambers 3 and 4 are mixed to form an air-fuel mixture, which explodes and burns due to discharge from the spark plugs 13 and 14. Due to the explosion, the pressure inside the combustion chambers 3 and 4 increases, causing air valves 15 and 16 and gas valve 1 to rise.
7 and 18 are closed, and the supply of fuel gases 25 and 26 and combustion air 24 is stopped. High temperature combustion waste gas 2
7 and 28 exchange heat with water 21 while passing through thin tail pulps 5 and 6, and flow into exhaust cushion chambers 7 and 8 while lowering the temperature. Combustion waste gas 2
7 and 28 are further discharged outside the vessel through exhaust pipes 22 and 23.
燃焼廃ガス27,28がテイルパイプ5,6を
通過すると燃焼室3,4内の圧力は負圧となり、
空気バルブ15,16、ガスバルブ17,18は
開き、燃焼用空気24、燃料ガス25,26が燃
焼室内3,4に吸引される。その時、燃焼室内の
高温の燃焼廃ガスが燃焼用空気、燃焼ガスとの混
合気を爆発させる。そして、次々に同様の爆発を
繰り返しパルス燃焼状態となる。パルス燃焼状態
になると送風機や点火プラグ13,14を停止し
ても自動的にパルス燃焼は継続される。 When the combustion waste gases 27 and 28 pass through the tail pipes 5 and 6, the pressure inside the combustion chambers 3 and 4 becomes negative pressure,
The air valves 15, 16 and the gas valves 17, 18 are opened, and combustion air 24 and fuel gas 25, 26 are sucked into the combustion chambers 3, 4. At that time, the high-temperature combustion waste gas in the combustion chamber causes the mixture with combustion air and combustion gas to explode. Then, similar explosions occur one after another, resulting in a pulse combustion state. Once the pulse combustion state is reached, the pulse combustion is automatically continued even if the blower and spark plugs 13 and 14 are stopped.
パルス燃焼器1,2は同一の仕様で作つたもの
であるが、部品の製作上の寸法差や、組立て上の
寸法差によつて、燃焼量ならびにパルス周波数に
差を生じる。その結果、相互干渉によるパルス周
波数の同期機能を設けずに、2つのパルス燃焼器
を燃焼させるとその燃焼騒音は唸り音を伴ない、
非常に煩わしいものになつてしまう。 Although the pulse combustors 1 and 2 are made with the same specifications, differences in combustion amount and pulse frequency occur due to dimensional differences in manufacturing and assembly of parts. As a result, when two pulse combustors are burned without providing a pulse frequency synchronization function due to mutual interference, the combustion noise is accompanied by a whirring sound.
It becomes extremely annoying.
今、第1のパルス燃焼器1の方が第2のパルス
燃焼器2よりも燃焼量が多くパルス周波数が大き
いものとして説明する。したがつて、混合気が爆
発して燃焼室3内に発生する圧力は燃焼室4内に
発生する圧力よりも大きい。そのため排出工程が
テイルパイプ5内を伝播する速度がテイパイプ6
内を伝播して行く速度よりも速く、伝搬時間も早
い。それがためにテイルパイプ5と6の連通管2
9で連通されている部位の燃焼廃ガス27の流速
は燃焼廃ガス28の流速よりも速くなる。速い流
れ27のエジエクター効果によつて燃焼廃ガス2
8の一部は連通管29を通つて速通流れ30とな
つて矢印の方向にパルス燃焼器1側に吸い出され
る。その結果、燃焼室4内の燃焼廃ガスの排出量
が多くなり発生する負圧の程度が大きくなるとと
もに排出時間が短かくなる。燃焼室3,4内の負
圧の程度が進み吸入工程に入ると、当初は燃焼室
3内の負圧の方が大きいためパルス燃焼器1の方
が早く吸入工程に入りテイルパルプ5内の流れは
逆流し、燃焼廃ガス27の一部は第1図中の矢印
とは反対方向の流れとなり燃焼室3側に流れる。
吸入工程が進むにつれてこの逆流する燃焼廃ガス
27の強い流れのエジエクター効果によつて、逆
流する燃焼廃ガス28の一部は再び連通管29を
通つてパルス燃焼器1の方へ吸入される。その結
果、燃焼室4の負圧によつてテイルパイプ6から
燃焼室4へ逆流する燃焼廃ガス28の量が減り、
それに変わつてガスパルプ18、空気バルブ16
を通つて燃焼室4に流入する混合気の量が増える
ことになる。したがつてパルス燃焼器2の燃焼量
が増加するとともにパルス周波数も増加し、2台
のパルス燃焼器は同期して同じパルス周波数で燃
えることになり、唸なり音は発生しなくなる。 The description will now be made assuming that the first pulse combustor 1 has a larger combustion amount and a higher pulse frequency than the second pulse combustor 2. Therefore, the pressure generated in the combustion chamber 3 when the air-fuel mixture explodes is greater than the pressure generated in the combustion chamber 4. Therefore, the speed at which the discharge process propagates inside the tail pipe 5 is
It is faster than the speed at which it propagates inside, and the propagation time is also faster. For that reason, the connecting pipe 2 of the tail pipes 5 and 6
The flow velocity of the combustion waste gas 27 in the portions communicated by 9 becomes faster than the flow velocity of the combustion waste gas 28. Combustion waste gas 2 due to the effluent effect of the fast flow 27
A part of the combustor 8 passes through the communication pipe 29, becomes a rapid flow 30, and is sucked out toward the pulse combustor 1 in the direction of the arrow. As a result, the amount of combustion waste gas discharged from the combustion chamber 4 increases, the degree of negative pressure generated increases, and the discharge time becomes shorter. When the degree of negative pressure in the combustion chambers 3 and 4 increases and the suction process begins, the pulse combustor 1 enters the suction process earlier because the negative pressure in the combustion chamber 3 is initially larger. The flow is reversed, and part of the combustion waste gas 27 flows in the opposite direction to the arrow in FIG. 1 and flows toward the combustion chamber 3.
As the intake process progresses, a part of the counter-flowing combustion waste gas 28 is sucked into the pulse combustor 1 again through the communication pipe 29 due to the effluent effect of the strong flow of this counter-flowing combustion waste gas 27 . As a result, the amount of combustion waste gas 28 flowing back from the tail pipe 6 to the combustion chamber 4 due to the negative pressure in the combustion chamber 4 is reduced.
Instead, there are 18 gas pulps and 16 air valves.
The amount of air-fuel mixture flowing into the combustion chamber 4 through the combustion chamber 4 increases. Therefore, as the combustion amount of the pulse combustor 2 increases, the pulse frequency also increases, and the two pulse combustors burn in synchronization with the same pulse frequency, so that no humming noise is generated.
ところで、連通管29の断面積は大きい程、同
期作用が大きくなるように考えられるが、パルス
燃焼器1のパルス燃焼器2に及ぼす助成力が大き
くなりすぎて、パルス燃焼器2の本来の動作周期
が一気に乱される結果になり、運転開始時の着火
性が悪くなつたり、燃焼の不安定さを生じる結果
になる。燃焼器2が不調になると逆にその影響が
燃焼器1に及び燃焼が不安定になつたり失火した
りする。連通管29の断面積をテイルパイプ5,
6の断面積のおおむね1/3以下にすることによつ
て、同期力が適度な大きさになり、この問題は解
決された。一方、連通管29の断面積が小さくな
りすぎると同期力が弱くなり、再び不規則に唸な
り音が発生してくる。連通管29の断面積をテイ
ルパイプ5,6の断面積のおおむね1/20以下にす
ることによつてこの問題も解決することができ
た。したがつて、連通管29の断面積をテイパイ
プ5,6の断面積の1/3〜1/20にすることによつ
てパルス燃焼の良好な同期力とっ良好な着火性能
と安定した燃焼性能を提供することができる。 By the way, it is thought that the larger the cross-sectional area of the communication pipe 29, the greater the synchronization effect, but the assisting force exerted on the pulse combustor 2 by the pulse combustor 1 becomes too large, and the original operation of the pulse combustor 2 is interrupted. As a result, the cycle is suddenly disturbed, resulting in poor ignition performance at the start of operation and unstable combustion. When the combustor 2 becomes malfunctioning, the effect is conversely exerted on the combustor 1, causing combustion to become unstable or a misfire to occur. The cross-sectional area of the communication pipe 29 is defined as the tail pipe 5,
By making the cross-sectional area approximately 1/3 or less of the cross-sectional area of No. 6, the synchronizing force becomes appropriate and this problem is solved. On the other hand, if the cross-sectional area of the communication tube 29 becomes too small, the synchronizing force will become weak, and the whirring noise will again occur irregularly. This problem could also be solved by making the cross-sectional area of the communicating pipe 29 approximately 1/20 or less of the cross-sectional area of the tail pipes 5 and 6. Therefore, by setting the cross-sectional area of the communicating pipe 29 to 1/3 to 1/20 of the cross-sectional area of the tie pipes 5 and 6, good synchronizing force for pulse combustion, good ignition performance, and stable combustion performance can be achieved. can be provided.
次に複数台のパルス燃焼器を並設、連焼させる
ことによつて、有益な特徴を有するパルス燃焼装
置の最大の欠点である騒音を低減できる理由を説
明する。 Next, we will explain why noise, which is the biggest drawback of a pulse combustion device that has beneficial features, can be reduced by arranging a plurality of pulse combustors in parallel and firing them consecutively.
今、燃焼量5万Kcal/Hのパルス燃焼器が必
要であるとして、これを一台のパルス燃焼器で作
ると、燃焼騒音は約114dB(A)の大きさになる。
2.5万Kcal/Hの燃焼器の2台で5万Kcal/Hの
能力にするものとすると、2.5万Kcal/Hの能力
の燃焼器一台の騒音は約108dB(A)で2台を同時に
燃やすと111dB(A)の大きさになり、5万Kcal/
H一台の時よりも3dB小さくなることが期待でき
る。実際に2.5万Kcal/Hの燃焼器2台を燃やす
と、騒音は約109dB(A)になり、5万Kcal/H一
台の燃焼器よりも5dBの低減効果が得らるた。こ
の2dBの低減効果の増加は2台の燃焼器に分割し
並設構造にすることによつて燃焼器構成体の壁面
強度が増すことにより壁面からの放射音が減るな
どの効果が付加したものと考えられる。 Now, assuming that a pulse combustor with a combustion rate of 50,000 Kcal/H is required, if this is made with one pulse combustor, the combustion noise will be approximately 114 dB(A).
Assuming that two combustors with a capacity of 25,000 Kcal/H have a capacity of 50,000 Kcal/H, the noise of one combustor with a capacity of 25,000 Kcal/H is approximately 108 dB(A), and the noise of two combustors at the same time is approximately 108 dB(A). When burned, it becomes 111dB(A) and 50,000Kcal/
It can be expected to be 3 dB lower than when using only one H. Actually, when two 25,000 Kcal/H combustors are used, the noise level is approximately 109 dB(A), which is a 5 dB reduction effect compared to one 50,000 Kcal/H combustor. This 2dB increase in reduction effect is due to the additional effect of reducing the sound radiated from the wall by increasing the wall strength of the combustor structure by dividing the combustor into two combustors and installing them side by side. it is conceivable that.
さらに1万Kcal/Hの能力の燃焼器を5台並
設する場合について考えると、1万Kcal/Hの
燃焼器一台の騒音は100dB(A)になるので、5台を
連焼されると107dB(A)になり、7dBの低減効果が
期待できる。分割枚を多くすればする程、低減効
果が大きくなるが、コスト高になり、コストに対
する相対効果から考えると実質的には2〜3台に
分割するのが良いようである。 Furthermore, if we consider the case where five combustors with a capacity of 10,000 Kcal/H are installed in parallel, the noise of one 10,000 Kcal/H combustor will be 100 dB(A), so five combustors will be fired in succession. and 107dB(A), so a reduction effect of 7dB can be expected. The more divided sheets there are, the greater the reduction effect will be, but the cost will be higher, and considering the relative effect on cost, it seems actually better to divide into 2 or 3 pieces.
発明の効果
以上の実施例の説明から明らかなように本発明
のパルス燃焼装置は、並設した複数個のテイルパ
イプ相互を連通管で連通することによつて、燃焼
量の多い燃焼器が燃焼量の少ない燃焼器に及ぼず
干渉作用の過大になること、過小になることを防
止し、適切な干渉影響力に調節し、複数の燃焼器
の燃焼音をほぼ同一にするとともに、燃焼周波数
を同期させ、一致させることができるものであ
る。その結果、複数のパルス燃焼器の燃焼器間の
干渉現象である『うなり音』を消去し、一定振幅
の燃焼音にすることができるので、低騒音化を可
能とし、また省エネルギーを実現できる。Effects of the Invention As is clear from the description of the embodiments above, the pulse combustion device of the present invention has a plurality of tail pipes arranged in parallel communicating with each other through a communication pipe, so that the combustor with a large amount of combustion This prevents the interference effect from becoming too large or too small even in combustors with small volumes, adjusts the interference force to an appropriate level, makes the combustion sound of multiple combustors almost the same, and reduces the combustion frequency. It is something that can be synchronized and matched. As a result, it is possible to eliminate the "whining sound" which is an interference phenomenon between the combustors of a plurality of pulse combustors, and to make the combustion sound with a constant amplitude, making it possible to reduce noise and achieve energy savings.
図は本発明の一実施例のパルス燃焼装置の要部
構成図である。
3,4……燃焼室、5,6……テイルパイプ、
27,28……燃焼廃ガス、29…連通管、30
……連通流れ。
The figure is a block diagram of the main parts of a pulse combustion device according to an embodiment of the present invention. 3, 4... Combustion chamber, 5, 6... Tail pipe,
27, 28... Combustion waste gas, 29... Communication pipe, 30
...A continuous flow.
Claims (1)
給手段並びに空気供給手段と、燃焼室の下流部に
連接するテイルパイプと、テイルパイプの下流部
に連接する緩衝室で構成されるパルス燃焼器を複
数個並設すると共に、それら複数個のテイルパイ
プ相互を連通管で連通させてなるパルス燃焼装
置。 2 連通管の断面積をテイルパイプの断面積の1/
3〜1/20にしたことを特徴とする特許請求の範囲
第1項記載のパルス燃焼装置。[Scope of Claims] 1. A combustion chamber, a fuel supply means and an air supply means connected to the upstream part of the combustion chamber, a tail pipe connected to the downstream part of the combustion chamber, and a buffer chamber connected to the downstream part of the tail pipe. A pulse combustion device includes a plurality of pulse combustors arranged in parallel, and the tail pipes of the plurality of tail pipes are communicated with each other through a communication pipe. 2 Set the cross-sectional area of the communication pipe to 1/1 of the cross-sectional area of the tail pipe.
2. The pulse combustion apparatus according to claim 1, wherein the pulse combustion apparatus has a combustion rate of 3 to 1/20.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6607584A JPS60211211A (en) | 1984-04-03 | 1984-04-03 | Pulse burner |
US06/718,452 US4639208A (en) | 1984-04-03 | 1985-04-01 | Pulse combustion apparatus with a plurality of pulse burners |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6607584A JPS60211211A (en) | 1984-04-03 | 1984-04-03 | Pulse burner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60211211A JPS60211211A (en) | 1985-10-23 |
JPH0518006B2 true JPH0518006B2 (en) | 1993-03-10 |
Family
ID=13305362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6607584A Granted JPS60211211A (en) | 1984-04-03 | 1984-04-03 | Pulse burner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60211211A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582522A (en) * | 1981-06-27 | 1983-01-08 | Paloma Ind Ltd | Explosive combustion device |
-
1984
- 1984-04-03 JP JP6607584A patent/JPS60211211A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582522A (en) * | 1981-06-27 | 1983-01-08 | Paloma Ind Ltd | Explosive combustion device |
Also Published As
Publication number | Publication date |
---|---|
JPS60211211A (en) | 1985-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4639208A (en) | Pulse combustion apparatus with a plurality of pulse burners | |
CN108800205B (en) | Swirl afterburning/stamping combustion chamber | |
CN101881238B (en) | Air-breathing pulse detonation engine and detonation method thereof | |
US2705867A (en) | Engine having a rotor with a plurality of circumferentially-spaced combustion chambers | |
CN104033248A (en) | Ground gas turbine utilizing pulse detonation combustion | |
CN108869095A (en) | Boundary suction control method for stabilizing and self-sustaining supersonic detonation | |
CN101344249B (en) | Valveless gas fluctuation combustor | |
JPH01306705A (en) | Pulse burner | |
CN201696166U (en) | Aspirated impulse knocking engine | |
US3091224A (en) | Device for intermittent combustion | |
CN103438451B (en) | Tuning valveless fuel gas pulse combustor | |
JPH0518006B2 (en) | ||
US5052917A (en) | Double-combustor type pulsating combustion apparatus | |
US4968244A (en) | Pulse combustor | |
CN2890657Y (en) | Heat storage type pulse burning nozzle | |
JPH0617723B2 (en) | Pulse combustion device | |
JPH0517447B2 (en) | ||
RU2009350C1 (en) | Method of operating gas-turbine engine and gas-turbine engine | |
US4976604A (en) | Pulse combustion apparatus | |
JPH0615255Y2 (en) | Water heater | |
JPH0428966B2 (en) | ||
JPS6149914A (en) | Pulse combustion device | |
JPS60232404A (en) | Pulsating combustion apparatus | |
JPH0544910A (en) | Pulse combustion device | |
JPS62123208A (en) | Low nox duct burner for additional heating |