JPH0517839B2 - - Google Patents

Info

Publication number
JPH0517839B2
JPH0517839B2 JP18464485A JP18464485A JPH0517839B2 JP H0517839 B2 JPH0517839 B2 JP H0517839B2 JP 18464485 A JP18464485 A JP 18464485A JP 18464485 A JP18464485 A JP 18464485A JP H0517839 B2 JPH0517839 B2 JP H0517839B2
Authority
JP
Japan
Prior art keywords
sugar
temperature
crystallization
crystal
crystal nuclei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18464485A
Other languages
Japanese (ja)
Other versions
JPS6244200A (en
Inventor
Mitsutoshi Hirasawa
Koji Kawasaki
Yoshinori Hoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOCHU SEITO KK
Original Assignee
ITOCHU SEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOCHU SEITO KK filed Critical ITOCHU SEITO KK
Priority to JP18464485A priority Critical patent/JPS6244200A/en
Publication of JPS6244200A publication Critical patent/JPS6244200A/en
Publication of JPH0517839B2 publication Critical patent/JPH0517839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、粒径10〜40μm程度の蔗糖単一結晶
よりなるフオンダント状白下から粒径100〜200μ
m程度の蔗糖単一結晶よりなる白下まで、用途に
応じて製造しうる蔗糖連続結晶化方法及びその装
置に関するものである。 〔従来の技術〕 従来より、精製蔗糖液から蔗糖結晶を析出させ
て各種精製糖製品を製造する技術は、用途に応じ
て種々の方法が確立されている。 例えば、フオンダントとして食品産業に広く使
用されている粒径40μm以下の微細な単一結晶よ
りなる固形分約90重量%の白下(この白下は適当
な方法で乾燥または分密することにより固形化し
て利用することも可能である。)は、固形分当り
約8重量%の水アメを含む蔗糖溶液を濃度約90重
量%に濃縮した後、適宜冷却・撹拌を行い、瞬時
に多量の結晶核を発生させ、育晶して母液の脱糖
を行うことにより製造している。 上記フオンダント状白下の製造を工業的に行う
方法は次の通りである。 先ず、固形分当り4〜8重量%の水アメを含む
蔗糖溶液を調製し、濃縮缶に導入して大気圧で濃
縮し、濃度88〜90重量%、温度118〜120℃の高温
濃縮糖液とする。次いで、この糖液を横置型のス
クリユーミキサー等に導入し、急速冷却して多量
の結晶核を発生させ、撹拌・混合しながら順送り
の過程で脱糖し、安定化したフオンダント状白下
を製造している。この場合、急速冷却は、一般的
には、冷媒による強制冷却を必要とする。 あるいは、最も広く使用されている精製糖は、
100〜600μmの単一結晶よりなる白下を製造し、
この白下を遠心分離機で分蜜した結晶を乾燥して
製品としているが、ここで使用される白下は、精
製糖液または1〜数回繰り返し煎糖し分蜜された
分蜜糖液を真空結晶缶に導入し、濃縮、起晶、育
晶、脱糖の段階を経て排出する煎糖操作によつて
製造されている。 この煎糖操作は、通常次のように行われる。 先ず、固形分濃度60〜68重量%の糖液を蒸気熱
交換器を備えた真空結晶缶に導入し、真空下で加
熱蒸発して、温度50〜55℃、濃度72〜74重量%に
濃縮する。次いで、加熱を停止するか又は緩やか
な加熱条件の下で起晶を行う。 起晶操作は、最終製品粒径に対応する数量の結
晶を発生させる操作であり、所定の数量の結晶を
含むフオンダント状スラリーを缶内に導入する方
法及びやや高めの過飽和状態に於いて粉糖を投入
し衝撃によつて所要量の結晶核を発生させる方法
等がある。 起晶後の結晶核または微細な結晶粒子は、缶内
糖液に対して僅かな量であり、その表面積も少な
いので、過飽和状態にある母液中には新たに結晶
核を発生する虞れがある。このため、缶内に水を
導入して過飽和度を調整しながら結晶を成長さ
せ、母液の脱糖を行い白下の状態を安定化する。 次いで、育晶操作に入る。この育晶操作は、缶
内に糖液を導入し、蒸気加熱により蒸発させなが
ら母液の過飽和度を1.2程度に保ち、結晶を成長
させ、所定の結晶粒径に達したら糖液の供給を止
め、母液中の蔗糖分をできるだけ結晶に移行させ
る脱糖操作を経て排出するというものである。こ
の場合、育晶中に新たに発生した微細結晶は、適
宜缶内に水を導入して溶解し、起晶工程で発生さ
せた結晶のみを育晶しなければならない。 さらに、無定形糖の製造方法としては、開放型
缶で高温度(120〜130℃)で濃度90重量%以上に
濃縮し、冷却、撹拌して固形化する方法が行われ
ている。ブラジルでは、大気圧で濃度93〜94重量
%に濃縮した濃縮液(この濃縮液は沸点上昇によ
り126℃以上の高温となつている。)を、ピーター
クリスタライザー(撹拌助晶機)に送り込み、温
度の低下とともに結晶を発生させ、その結晶エネ
ルギーの放出によつて残留水分を蒸発させ固形化
するという方法も行われている。あるいは、特公
昭55−9200号公報が特開昭57−122759号公報に
は、大気圧下で結晶化領域まで濃縮された過飽和
糖液に対して高速剪断撹拌を行い、結晶核を発生
させフオンダントサイズの微細結晶を得るという
方法が開示されている。 〔発明が解決しようとする問題点〕 しかしながら、いずれにしても従来の方法で
は、それぞれエネルギーコスト、高温処理、設備
費、操作性等に改善すべき問題が多い。 例えば、フオンダント状白下の製造において、
濃縮糖液の温度は、自然結晶の発生を防ぐため、
飽和点以下に保たなければならない。また、濃度
が高いため沸点上昇も高く、約120℃の高温処理
となる。結晶化にあたつては、この高温糖液を強
制冷却するための熱交換装置とチリングユニツト
の設備費とランニングコストの負担が大きい。濃
度70重量%の糖液を濃縮してフオンダント状白下
を製造する際の顕熱損失は投入熱量の20%にも達
する。 一方、精製糖白下の製造においては、真空結晶
缶によつて起晶工程で発生した結晶数を規定して
所要の結晶粒径まで育晶するため、供給糖液は真
空蒸発温度で飽和点以下の濃度とし(約68重量%
以下とするのが一般的である。)、さらに煎糖の各
段階で新たに発生する微細結晶を防止するため、
適宜水を導入して過飽和度の調整をしなければな
らない。この水量は最も煎糖の容易な上白糖煎糖
の場合でも、白下量の6〜10重量%にも達し、投
入熱量の14〜20%に相当する。また、真空結晶缶
の操作は、濃縮、起晶、育晶、脱糖の段階的操作
である。したがつて、その操作は複雑で熟練を要
し、一般的に回分操作が行われている。自動制御
も繁雑な制御機構となり、精緻な調節を要する。
さらには、効率的な煎糖を行う結晶缶は、缶内の
白下循環のための撹拌機を備え、白下1m3当り3
〜4m2の伝熱面積をもつた熱交換器を備える大型
設備が必要となり、付属機器を含めて設備費が大
きい。 あるいは、無定形糖の製造においては、糖液を
90重量%以上の高濃度に濃縮するため、糖液を飽
和点以下に保持する必要があり、120℃以上の高
温で濃縮しなければならない。蔗糖液の着色度
は、加熱温度と加熱時間の増加によつて進行し、
製品の品質を低下させる。特に、転化糖及び非糖
分含有量の多い場合は顕著となる。したがつて、
できるだけ短時間で処理する装置が必要になり、
純糖率の低い糖液の処理は問題を生ずる。 そこで本発明は、このような実情に鑑みて提案
されたものであつて、熱効率を向上せしめ、低温
短時間処理が可能で品質の優れた白下を連続的に
製造することができ、さらにフオンダントサイズ
(粒径40μm以下)からソフトシユガーサイズ
(粒径100〜200μm)まで、用途に応じて各種平
均粒径を有する白下を製造することが可能な蔗糖
連続結晶化方法及びその装置を提供することを目
的とする。 〔問題点を解決するための手段〕 かかる目的を達成するために、本発明の蔗糖連
続結晶化方法は、予め飽和温度以上の温度で固形
物濃度80〜86重量%に濃縮した蔗糖溶液を、急激
に減圧して自己蒸発による濃度上昇と温度低下を
惹起せしめ、瞬間的に過飽和状態として結晶核を
発生させた後、前記結晶核を含む蔗糖溶液中に新
たな結晶核が自然発生するのを抑制するために、
保温または徐冷しながら結晶を成長させることを
特徴とするものである。さらに本発明の蔗糖連続
結晶化装置は、上部に蒸発室を有し、蔗糖溶液を
急激に減圧して結晶核を発生させるとともに、発
生した結晶核が充分流動・混合されるように撹拌
機を備えた晶出ゾーンと、この晶出ゾーンの下方
に連続し、流体の上下混流を抑制し結晶核と蔗糖
溶液とを絶えず穏やかに混合接触させるための撹
拌・順送り機構と、上下方向に段階的に適温を保
ち結晶の成長速度と微細結晶の発生を調節するた
めの熱交換器とを備えた育晶ゾーンとからなり、
上記育晶ゾーンの底部に検出装置を備えたことを
特徴とするものである。 すなわち、本発明においては、先ず、材料糖液
をその飽和点以下に保つ温度をもつて出来るだけ
短時間で濃縮し、直ちに所定の真空度まで減圧し
た真空缶に供給する。 すると、真空缶内に供給された糖液は、上記真
空度での沸点温度(=この真空度に対応した水の
蒸発温度に糖液の濃度に対応する沸点上昇分を加
えた温度。)まで急速に冷却され、同時に供給糖
液温度と冷却された糖液の温度差に相当する蒸発
が起こり、糖液濃度は上昇する。 この急激な濃度上昇と温度低下によつて、糖液
は瞬間的に高い過飽和状態となり、結晶核を発生
する。結晶核の発生速度は、純糖率により変化す
るが、純蔗糖溶液の場合、過飽和度1.5以上にな
ると急激に増加する。 したがつて、この過飽和度の設定が、白下中の
結晶粒度を決める第1の要因となる。すなわち、
供給糖液の温度、濃度及び缶内真空度(=缶内糖
液温度)の設定によつて決まる。 発生した結晶核は、高過飽和母液に接触して急
速に成長し、微細結晶となつて下部の育晶ゾーン
に移行する。結晶と母液の混合流体は、時間の経
過とともに母液の蔗糖分を結晶側に析出させ、次
第に結晶は成長し、母液は増糖されその過飽和度
を下げる。母液の過飽和度が1.2以下となると、
新たな結晶核の発生度合は減少し、白下状態は安
定する。白下の下降流は、できるだけ完全なピス
トン流であつて、結晶と母液は絶えず流動・混和
状態になければならない。 上述の方法に従い、純糖率の高いフオンダント
サイズの白下を製造する場合には、晶出ゾーンに
おいて、2.5〜3.0に達する高過飽和度をもつて大
量の結晶核を発生させる。すなわち、供給糖液を
温度90〜110℃、濃度82〜84重量%とし、缶内真
空度60mmHg前後(糖液温度50〜60℃)で操作す
ると、自己蒸発によつて濃度86〜90重量%に濃縮
され、過飽和度は2.0〜3.0に達し、生成する白下
の濃度は86〜90に達する。この場合、初期段階に
おける全結晶表面積は大きく、母液の脱糖は急速
に進行し、偽晶(育晶の途中で新たに発生する微
細結晶)の発生も少なく、比較的速い流速をもつ
て操作することができる。また、この条件では特
に必要がなければ育晶中に加熱又は冷却は行わな
いが、白下取り扱い上、例えば粘度を低下させる
ために、排出前に加温することも可能である。 結晶粒径の比較的大きい白下(粒径100〜200μ
m)を製造する場合は、晶出ゾーンにおける過飽
和度を下げて、結晶核の発生量を調節しなければ
ならない。純蔗糖液の場合は、晶出ゾーンにおい
て2.0〜2.5の過飽和度をもつて適量の核を発生さ
せる。このとき、比較的低い過飽和度であるた
め、結晶核の発生が遅い場合には、シヨツクシー
デイングによつて核の発生を促すこともできる。 ところで、この場合には、晶出ゾーンで発生す
る全結晶表面積は少ないので、晶出ゾーンで発生
した結晶核への母液の蔗糖分移行速度は遅く、し
たがつてある程度の偽晶の発生は避けられない。
偽晶の発生は、育晶ゾーンを移行して母液の過飽
和度が下がるにしたがつて減少するから、この初
期段階で発生する偽晶も所要の結晶数となるよう
に晶出条件を設定すればよい。但し、この偽晶の
発生状態、発生量、発生時期によつて白下中の結
晶粒度分布が決定される。したがつて、このよう
な方法で白下を製造する場合には、白下の結晶粒
径を大きくするほど粒度分布の標準偏差値は大き
くなる。精製糖の製造には、上記白下は100〜
200μmの平均粒径とするのが品質上適当である。 比較的結晶粒度の大きい白下を製造する場合
は、育晶ゾーンの温度勾配をプログラミングする
ことによつて偽晶の発生を減少し、粒度分布を整
えることも可能である。例えば、純糖率の高い糖
液の場合、供給糖液温度100℃、濃度84重量%、
缶内真空度130mmHgで晶出操作を行えば、缶内糖
液は温度64℃、濃度88重量%、過飽和度2.5とな
つて結晶核が発生する。育晶ゾーンの上部の温度
は64℃を保ち、過飽和度1.2以下となる位置から
温度を下げて結晶を成長させ、過飽和度1.1〜1.2
を保つて育晶すれば、濃度88重量%、平均粒径
100〜150μmの安定した白下となつて底部より排
出される。 本発明において、晶出ゾーンの温度を高くする
(真空度を下げる)ことは、排出温度との差に相
当する顕熱損失を生じ、極端な場合には本発明の
特徴の一つである省エネルギー効果を失うことに
なる。したがつて、供給糖液の濃度は86重量%以
下に抑えることが好ましい。また、供給糖液の濃
度が80重量%未満では、得られる白下の濃度が低
くなりすぎる。本発明の方法では、供給糖液の濃
度は80〜86重量%の範囲とすることが好ましく、
82〜84重量%とするのがより好ましい。 本発明を実施するための装置は、糖液濃縮缶、
結晶化装置、白下排出装置で構成される。糖液濃
縮缶は、短時間で蒸発が完了するワンパス方式の
ものが好ましく、特にその機種を限定するもので
はないが、蒸発蒸気再圧縮型を採用すれば蒸気エ
ネルギーが不要な連続結晶化システムとなる。ま
た、白下の排出は、そのチクソトロピー性によ
り、できるだけ排出完了まで撹拌・混合状態にお
くことが望ましいが、結晶化装置の液高が充分で
排出口における真空度が160mmHg以下となるよう
な装置であれば、白下用ポンプで排出することが
できる。糖液の装置内滞溜時間は、排出速度で調
節する。 〔作用〕 飽和温度以上の温度で固形物濃度80〜86重量%
に濃縮した蔗糖溶液を急激に減圧すると、自己蒸
発による濃度上昇と温度低下によつて瞬間的に過
飽和状態となり、結晶核が発生する。このとき、
真空度を選定することにより発生する結晶核の数
を調節することができる。 次いで、保温または徐冷して新たな結晶核の自
然発生を抑制して育晶すると、上記発生する結晶
核の数や供給した蔗糖の濃度に応じて、フオンダ
ントサイズから市販のソフトシユガーサイズま
で、種々の粒径を有する白下が生成する。 〔実施例〕 蔗糖連続結晶化装置例 以下、本発明を適用した蔗糖連続結晶化装置の
一例について、図面を参照しながら説明する。 本発明の連続結晶化装置は、第1図に示すよう
に、竪型円筒状の結晶缶として構成され、最上部
に大径な蒸発室1を有し、この蒸発室1下部の晶
出ゾーン2と、晶出ゾーン2の下方に連続する育
晶ゾーン3とからなる。 上記蒸発室1は、排気口4から図示しないコン
デンサを介して真空ポンプにより脱気され、真空
度が調節されている。また、この蒸発室1は、供
給される糖液の急激な減圧による自己蒸発蒸気の
円滑な排出と飛沫同伴を防止できる容量を有す
る。 上記晶出ゾーン2には、濃縮糖液供給口20か
ら供給される糖液を混合・撹拌するための撹拌機
5が設置されている。この晶出ゾーン2に供給さ
れる糖液は、急速な自己蒸発のために激しく上下
に流動しているので、上記撹拌機5の回転は低速
であつても支障はない。 一方、育晶ゾーン3には、流体の上下混合を防
止し、円滑な下向流を得るための複数(この実施
例では5段)のスクリユー型撹拌翼6が設置さ
れ、さらにこれら各スクリユー型撹拌翼6の間に
は、中心部と外周部の撹拌混合を行う湾曲型撹拌
翼7が複数(この実施例では4段)設置されてい
る。最下段のスクリユー型撹拌翼6は、チクソト
ロピー流体の粘度を最も低い状態に保ちながら、
円滑な排出を行う役割を果たす。 上記各撹拌翼6,7は、絶えず流動接触状態を
保ち、上下方向の乱流を起きさない程度の低速回
転とし、0〜20回転/分程度の可変速モータ駆動
とするのが望ましい。本実施例においては、晶出
ゾーン2の撹拌機5と育晶ゾーン3の撹拌翼6,
7とは、同一のシヤフト8に取りつけられ、最上
部に設けた撹拌機用電動機9により回転駆動され
るようになつている。 晶出ゾーン2と育晶ゾーン3の外周囲には、熱
交換器である保温ジヤケツト10が装着されてい
る。この保温ジヤケツト10は、上部区分ジヤケ
ツト10a、中間部区分ジヤケツト10b、下部
区分ジヤケツト10cに3分割され、各区分ジヤ
ケツト10a,10b,10c内の流路がワンパ
ス流通となるような構造で、それぞれ保温水の入
口ノズル11及び出口ノズル12を有する。ここ
で、晶出温度を保持する場合には、各区分ジヤケ
ツト10a,10b,10cに送り込む保温水の
温度は同一温度でよいが、生成する白下の粒径が
大きい場合には、晶出温度が比較的高く、初期段
階では一定時間晶出温度を保持するか、又は温度
降下勾配を穏やかなものとするために、上部区分
ジヤケツト10aの保温水温度を調整する。ま
た、白下濃度が高く、粘度が高い場合には、下部
区分ジヤケツト10cの保温水温度を高くする。 また、上記育晶ゾーン3の底部は、逆円錐型と
し、その最下部に排出口13を設ける。したがつ
て、生成した白下は、上記育晶ゾーン3の最下部
のスクリユー型撹拌翼6によつて、この排出口1
3から送り出される。 排出機構としては、図示の如く、真空ミキサー
14を2基備え、圧縮空気によつて交互に連続排
出を行うもの等が考えられるが、これに限定され
るものではなく、例えば排出口13の真空度が
160mmHg以下であれば、直接高粘度スラリーポン
プでも排出可能である。 上述の連続結晶化装置の塔高は、装置容量、製
造条件等によつて決まるが、標準的には、液高/
塔径=2.0〜5.0程度とするのが適当である。な
お、ここで、液高は糖液の液面の高さであり、塔
径は晶出ゾーン2及び育晶ゾーン3における装置
の内径である。 このように構成される連続結晶化装置の濃縮糖
液供給口20から濃縮缶により所定の濃度まで濃
縮された糖液を定量供給すると、この糖液は晶出
ゾーン2において急激に減圧され、自己蒸発と温
度低下を起こし、過飽和状態となつて結晶核が発
生する。上記自己蒸発による蒸気は、圧力を緩和
するための蒸発室1を経て、外部に排出される。 そして、結晶核が発生すると、上記自己蒸発は
次第におさまり、次にスクリユー型撹拌翼6や湾
曲型撹拌翼7によつて育晶ゾーン3へと移行して
いく。この糖液中の結晶核は、この育晶ゾーン3
を次第に下方に移行するにつれ成長し、所定の粒
径の白下となつて最下部の排出口13から真空ミ
キサー14によつて排出される。上記育晶ゾーン
3においては、その外周囲が保温ジヤケツト10
で覆われて所定の温度勾配が形成されているの
で、上記糖液中に新たな微細結晶が発生すること
はない。 以上、本発明を適用した蔗糖連続結晶化装置の
一例について説明したが、次に、この第1図に示
す連続結晶化装置を使用して各種白下を製造した
実験例について説明する。 実験例 1 精製糖液を濃縮して温度90℃、濃度84重量%と
し、この濃縮糖液を、真空度40mmHgに設定され
た連続結晶化装置に供給した。 晶出温度48℃、装置内滞溜時間20分、上部区分
ジヤケツト10a及び中間部区分ジヤケツト10
bの温度50℃、下部区分ジヤケツト10cの温度
60℃とし、生成する白下粘度を下げて排出した。 排出された白下は、非常に微細な結晶よりなる
手ざわりの良いクリーム状のフオンダントで、密
閉容器内で18℃、1ケ月蔵置後も固化することな
く、表面に僅かな蜜層を生じたのみで、製造時の
状態と殆ど変化は見られなかつた。 使用した精製糖液及び得られた白下のブリツク
スBx、純糖率、還元糖率、灰分、色価、結晶粒
径を調べた。なお、ブリツクスBxは、糖液及び
白下を二倍希釈して溶解し、20℃でシユガーレフ
ラクトメータで測定した。また、純糖率は糖度/
Bxとし、色価(AI)は試料をBx50±0.2、PH7
に調整後、分光光度計により420nmの吸光度を
測定して次式より求めた。 色価(AI)=1000×(−logT420on)/l×C ここで、lは使用したセルの長さ、CはBxか
ら求めた材料の糖濃度(g/ml)である。結晶粒
径は顕微鏡下でマイクロメータで測定した。還元
糖及び灰分はBx当りの値である。結果を第1表
に示す。
[Industrial Field of Application] The present invention is applicable to powders with a particle size of 100 to 200 μm, ranging from a sucrose single crystal with a particle size of about 10 to 40 μm.
The present invention relates to a continuous sucrose crystallization method and an apparatus therefor, which can produce crystals of sucrose consisting of a single crystal of about 1.0 m in size, depending on the intended use. [Prior Art] Conventionally, various methods have been established for manufacturing various refined sugar products by precipitating sucrose crystals from purified sucrose liquid, depending on the purpose. For example, Shiroshita, which has a solid content of about 90% by weight and consists of fine single crystals with a particle size of 40 μm or less, which is widely used in the food industry as a foundation (this Shiroshita can be solidified by drying or densifying it by an appropriate method) ) can be used by concentrating a sucrose solution containing about 8% starch syrup based on the solid content to a concentration of about 90% by weight, cooling and stirring as appropriate, and instantly producing a large amount of crystals. It is produced by generating nuclei, growing crystals, and desugarizing the mother liquor. The method for industrially producing the above-mentioned foundation powder is as follows. First, a sucrose solution containing 4-8% by weight starch syrup based on solid content is prepared, introduced into a concentrator and concentrated at atmospheric pressure to obtain a high-temperature concentrated sugar solution with a concentration of 88-90% by weight and a temperature of 118-120°C. shall be. Next, this sugar solution is introduced into a horizontal screw mixer, etc., and is rapidly cooled to generate a large amount of crystal nuclei, which is desugarized in the process of sequential feeding while stirring and mixing, and stabilized foundation-like whites are produced. Manufactured. In this case, rapid cooling generally requires forced cooling with a refrigerant. Alternatively, the most widely used refined sugar is
We produce Shiroshita consisting of a single crystal of 100 to 600 μm,
The product is made by drying the crystals that are separated from this Shiroshita using a centrifuge, but the Shiroshita used here is either a refined sugar solution or a refined sugar solution that has been repeatedly decanted one to several times and separated into honeydew. It is produced by a decoction operation in which sugar is introduced into a vacuum crystallizer and discharged after the stages of concentration, crystallization, crystal growth, and desaccharification. This sugar brewing operation is usually performed as follows. First, a sugar solution with a solid content concentration of 60 to 68% by weight is introduced into a vacuum crystallizer equipped with a steam heat exchanger, and heated and evaporated under vacuum to concentrate to a temperature of 50 to 55℃ and a concentration of 72 to 74% by weight. do. Next, heating is stopped or crystallization is performed under gentle heating conditions. Crystallization is an operation that generates crystals in an amount corresponding to the particle size of the final product, and involves introducing a foundation-like slurry containing a predetermined amount of crystals into a can, and adding powdered sugar to a slightly higher supersaturated state. There is a method in which the required amount of crystal nuclei is generated by the impact of injecting the crystal. The amount of crystal nuclei or fine crystal particles after crystallization is small compared to the sugar solution in the can, and their surface area is small, so there is a risk that new crystal nuclei will be generated in the supersaturated mother liquor. be. For this reason, water is introduced into the can to grow crystals while adjusting the degree of supersaturation, and the mother liquor is desaccharified to stabilize the white state. Next, start the crystal growth operation. This crystal growth operation involves introducing a sugar solution into a can, evaporating it by steam heating while maintaining the supersaturation degree of the mother liquor at around 1.2, growing crystals, and stopping the supply of sugar solution when a predetermined crystal grain size is reached. , the sucrose content in the mother liquor is discharged through a desaccharification operation that transfers as much of it as possible to crystals. In this case, fine crystals newly generated during crystal growth must be dissolved by appropriately introducing water into the can, and only the crystals generated during the crystal growth process must be grown. Furthermore, as a method for producing amorphous sugar, a method is used in which the sugar is concentrated in an open can at high temperature (120 to 130°C) to a concentration of 90% by weight or more, and then solidified by cooling and stirring. In Brazil, a concentrated liquid concentrated to a concentration of 93 to 94% by weight at atmospheric pressure (this concentrated liquid has a high temperature of 126°C or more due to an increase in the boiling point) is sent to a Peter crystallizer (stirring crystal assistant). There is also a method in which crystals are generated as the temperature decreases, and residual moisture is evaporated and solidified by the release of crystal energy. Alternatively, Japanese Patent Publication No. 55-9200 and Japanese Patent Application Laid-open No. 57-122759 disclose that high-speed shear stirring is performed on a supersaturated sugar solution that has been concentrated to the crystallization region under atmospheric pressure to generate crystal nuclei. A method of obtaining fine crystals of Danto size is disclosed. [Problems to be Solved by the Invention] However, in any case, the conventional methods have many problems that need to be improved, such as energy cost, high temperature treatment, equipment cost, and operability. For example, in the production of fondant-like white shavings,
The temperature of the concentrated sugar solution is adjusted to prevent the formation of natural crystals.
Must be kept below the saturation point. Additionally, because of its high concentration, the boiling point rises high, resulting in high-temperature treatment of approximately 120°C. During crystallization, equipment costs and running costs for heat exchange equipment and chilling units for forced cooling of this high-temperature sugar solution are large. Sensible heat loss when concentrating a sugar solution with a concentration of 70% by weight to produce fondant-like Shiroshita amounts to as much as 20% of the input heat. On the other hand, in the production of refined sugar Shiroshita, the number of crystals generated in the crystallization process is regulated using a vacuum crystallizer and the crystals are grown to the required crystal grain size, so the supplied sugar solution reaches the saturation point at the vacuum evaporation temperature. The following concentration (approximately 68% by weight)
The following is common. ), and to prevent new microcrystals from forming at each stage of roasting sugar.
The degree of supersaturation must be adjusted by introducing water as appropriate. Even in the case of caster sugar, which is the easiest to boil, this amount of water reaches 6 to 10% by weight of the amount of white sugar, and corresponds to 14 to 20% of the input heat. Further, the operation of the vacuum crystallizer is a stepwise operation of concentration, crystallization, crystal growth, and desugarization. Therefore, the operation is complicated and requires skill, and batch operations are generally performed. Automatic control is also a complicated control mechanism and requires precise adjustment.
Furthermore, the crystallized can for efficient roasting sugar is equipped with a stirrer to circulate the white sugar inside the can, and the crystallized sugar can is
Large-scale equipment equipped with a heat exchanger with a heat transfer area of ~4 m 2 is required, and the equipment cost including accessory equipment is high. Alternatively, in the production of amorphous sugar, sugar solution is
In order to concentrate to a high concentration of 90% by weight or more, the sugar solution must be kept below the saturation point and must be concentrated at a high temperature of 120°C or higher. The degree of coloration of the sucrose solution progresses as the heating temperature and heating time increase.
Decrease the quality of the product. This is particularly noticeable when the invert sugar and non-sugar contents are high. Therefore,
There is a need for equipment that can process in the shortest possible time.
Processing sugar solutions with a low percentage of pure sugar poses problems. The present invention was proposed in view of these circumstances, and it improves thermal efficiency, enables short-time processing at low temperatures, and allows continuous production of high-quality white undercoats. We have developed a continuous sucrose crystallization method and equipment that can produce white sucrose with various average particle sizes depending on the application, from Dant size (particle size of 40 μm or less) to soft sugar size (particle size of 100 to 200 μm). The purpose is to provide. [Means for Solving the Problems] In order to achieve the above object, the sucrose continuous crystallization method of the present invention is such that a sucrose solution that has been concentrated in advance to a solid concentration of 80 to 86% by weight at a temperature higher than the saturation temperature, After rapidly reducing the pressure to cause an increase in concentration and a decrease in temperature due to self-evaporation, and instantaneously creating a supersaturated state and generating crystal nuclei, new crystal nuclei are naturally generated in the sucrose solution containing the crystal nuclei. In order to suppress
It is characterized by growing crystals while being kept warm or slowly cooled. Furthermore, the continuous sucrose crystallization apparatus of the present invention has an evaporation chamber in the upper part, which rapidly reduces the pressure of the sucrose solution to generate crystal nuclei, and also uses a stirrer to ensure that the generated crystal nuclei are sufficiently fluidized and mixed. The crystallization zone is equipped with a stirring/progressive mechanism that is continuous below the crystallization zone and suppresses the vertical mixing of the fluid and constantly and gently mixes and contacts the crystal nuclei and the sucrose solution. It consists of a crystal growth zone equipped with a heat exchanger to maintain an appropriate temperature and adjust the growth rate of crystals and the generation of fine crystals.
The present invention is characterized in that a detection device is provided at the bottom of the crystal growth zone. That is, in the present invention, first, the raw sugar solution is concentrated in as short a time as possible at a temperature that is kept below its saturation point, and immediately supplied to a vacuum can whose pressure is reduced to a predetermined degree of vacuum. Then, the sugar solution supplied into the vacuum can reaches the boiling point temperature at the above degree of vacuum (= the evaporation temperature of water corresponding to this degree of vacuum plus the boiling point increase corresponding to the concentration of the sugar solution). The sugar solution is rapidly cooled, and at the same time evaporation occurs corresponding to the temperature difference between the supplied sugar solution temperature and the cooled sugar solution, and the sugar solution concentration increases. This rapid increase in concentration and decrease in temperature instantaneously brings the sugar solution into a highly supersaturated state, generating crystal nuclei. The rate of crystal nucleus generation changes depending on the pure sugar ratio, but in the case of pure sucrose solutions, it increases rapidly when the degree of supersaturation reaches 1.5 or higher. Therefore, setting the degree of supersaturation is the first factor that determines the grain size of the white undercoat. That is,
It is determined by the temperature and concentration of the supplied sugar solution and the vacuum degree in the can (=temperature of the sugar solution in the can). The generated crystal nuclei rapidly grow in contact with the highly supersaturated mother liquor, become fine crystals, and move to the lower crystal growth zone. The mixed fluid of crystals and mother liquor causes the sucrose content of the mother liquor to precipitate on the crystal side over time, the crystals gradually grow, the mother liquor increases in sugar, and its supersaturation level decreases. When the supersaturation degree of the mother liquor becomes 1.2 or less,
The degree of generation of new crystal nuclei decreases, and the white state becomes stable. The downward flow under the white must be as perfect a piston flow as possible, and the crystals and mother liquor must be in a constant state of fluidity and mixing. When producing foundation-sized Shiroshita with a high pure sugar percentage according to the above-mentioned method, a large amount of crystal nuclei are generated in the crystallization zone with a high degree of supersaturation reaching 2.5 to 3.0. In other words, if the temperature of the supplied sugar solution is 90 to 110℃ and the concentration is 82 to 84% by weight, and the inside vacuum level is around 60mmHg (the sugar solution temperature is 50 to 60℃), the concentration will be 86 to 90% by weight due to self-evaporation. The degree of supersaturation reaches 2.0-3.0, and the density of the produced white material reaches 86-90. In this case, the total crystal surface area is large in the initial stage, the desugarization of the mother liquor proceeds rapidly, the occurrence of pseudocrystals (microcrystals newly generated during crystal growth) is small, and the operation is performed at a relatively high flow rate. can do. Further, under these conditions, heating or cooling is not performed during crystal growth unless it is particularly necessary, but it is also possible to heat the crystal before discharging, for example, in order to lower the viscosity. Shiroshita with a relatively large crystal grain size (grain size 100~200μ
When producing m), the amount of crystal nuclei generated must be controlled by lowering the degree of supersaturation in the crystallization zone. In the case of pure sucrose solution, a suitable amount of nuclei is generated in the crystallization zone with a degree of supersaturation of 2.0 to 2.5. At this time, since the degree of supersaturation is relatively low, if the generation of crystal nuclei is slow, the generation of nuclei can be promoted by shock seeding. By the way, in this case, since the total surface area of crystals generated in the crystallization zone is small, the rate of transfer of sucrose content from the mother liquor to the crystal nuclei generated in the crystallization zone is slow, and therefore the generation of pseudocrystals to some extent can be avoided. I can't.
Since the occurrence of pseudocrystals decreases as the crystal growth zone moves and the supersaturation level of the mother liquor decreases, the crystallization conditions must be set so that the pseudocrystals that occur at this initial stage also reach the required number of crystals. Bye. However, the crystal grain size distribution in the white undertone is determined by the state, amount, and timing of the occurrence of pseudocrystals. Therefore, when producing Shishita by such a method, the standard deviation value of the particle size distribution increases as the crystal grain size of Shishita increases. For the production of refined sugar, the above Shiroshita is 100~
An average particle size of 200 μm is appropriate in terms of quality. When producing Shiroshita with a relatively large crystal grain size, it is also possible to reduce the occurrence of pseudocrystals and adjust the grain size distribution by programming the temperature gradient of the crystal growth zone. For example, in the case of a sugar solution with a high percentage of pure sugar, the temperature of the supplied sugar solution is 100℃, the concentration is 84% by weight,
If the crystallization operation is performed at a vacuum level of 130 mmHg in the can, the temperature of the sugar solution in the can will be 64°C, the concentration will be 88% by weight, and the degree of supersaturation will be 2.5, and crystal nuclei will be generated. The temperature at the top of the crystal growth zone is kept at 64℃, and the temperature is lowered from the position where the supersaturation level is 1.2 or less to grow the crystals, and the supersaturation level is 1.1 to 1.2.
If crystal growth is maintained while maintaining the concentration, the concentration will be 88% by weight and the average particle size will be
It is discharged from the bottom in the form of a stable white layer of 100 to 150 μm. In the present invention, increasing the temperature of the crystallization zone (lowering the degree of vacuum) causes sensible heat loss corresponding to the difference from the discharge temperature, and in extreme cases, energy saving, which is one of the features of the present invention, occurs. It will lose its effectiveness. Therefore, it is preferable to suppress the concentration of the supplied sugar solution to 86% by weight or less. Furthermore, if the concentration of the supplied sugar solution is less than 80% by weight, the concentration of the resulting white undercoat will be too low. In the method of the present invention, the concentration of the supplied sugar solution is preferably in the range of 80 to 86% by weight,
More preferably, it is 82 to 84% by weight. The apparatus for carrying out the present invention includes a sugar solution concentration can,
It consists of a crystallization device and a white discharge device. The sugar solution concentrator is preferably a one-pass type that completes evaporation in a short time, and there are no particular restrictions on the model, but if an evaporative vapor recompression type is adopted, it can be used as a continuous crystallization system that does not require steam energy. Become. Furthermore, due to its thixotropic nature, it is desirable to keep the liquid under stirring and mixing as much as possible until the discharge is complete. If so, it can be discharged using a white-bottom pump. The residence time of the sugar solution in the device is adjusted by the discharge rate. [Action] Solids concentration 80-86% by weight at temperatures above saturation temperature
When a concentrated sucrose solution is rapidly depressurized, the concentration increases due to self-evaporation and the temperature decreases, resulting in instantaneous supersaturation and the generation of crystal nuclei. At this time,
The number of crystal nuclei generated can be adjusted by selecting the degree of vacuum. Next, by keeping warm or slowly cooling to suppress the natural generation of new crystal nuclei and grow the crystals, depending on the number of crystal nuclei generated and the concentration of the supplied sucrose, the sizes range from foundation size to commercially available soft sugar size. Until then, white undercoats with various particle sizes are produced. [Example] Example of continuous sucrose crystallization device An example of a continuous sucrose crystallization device to which the present invention is applied will be described below with reference to the drawings. As shown in FIG. 1, the continuous crystallization apparatus of the present invention is configured as a vertical cylindrical crystallization can, and has a large-diameter evaporation chamber 1 at the top, and a crystallization zone below the evaporation chamber 1. 2, and a crystal growth zone 3 continuous below the crystallization zone 2. The evaporation chamber 1 is evacuated from the exhaust port 4 by a vacuum pump via a condenser (not shown), and the degree of vacuum is adjusted. Further, the evaporation chamber 1 has a capacity capable of smoothly discharging self-evaporated steam and preventing entrainment of the self-evaporated steam due to rapid pressure reduction of the supplied sugar solution. A stirrer 5 is installed in the crystallization zone 2 to mix and stir the sugar solution supplied from the concentrated sugar solution supply port 20. Since the sugar solution supplied to the crystallization zone 2 is violently flowing up and down due to rapid self-evaporation, there is no problem even if the stirrer 5 is rotated at a low speed. On the other hand, in the crystal growth zone 3, a plurality (5 stages in this embodiment) of screw-type stirring blades 6 are installed to prevent vertical mixing of the fluid and obtain a smooth downward flow. A plurality of curved stirring blades 7 (four stages in this embodiment) are installed between the stirring blades 6 to stir and mix the center portion and the outer peripheral portion. The screw-type stirring blades 6 at the bottom stage keep the viscosity of the thixotropic fluid at its lowest level, while
It plays a role in smooth discharge. It is preferable that each of the stirring blades 6 and 7 be kept in constant fluid contact, rotate at a low speed that does not cause vertical turbulence, and be driven by a variable speed motor of about 0 to 20 revolutions/minute. In this embodiment, the stirrer 5 in the crystallization zone 2, the stirring blade 6 in the crystal growth zone 3,
7 are attached to the same shaft 8, and are rotationally driven by an agitator electric motor 9 provided at the top. A heat insulating jacket 10 serving as a heat exchanger is attached to the outer periphery of the crystallization zone 2 and the crystal growth zone 3. The thermal jacket 10 is divided into three parts: an upper jacket 10a, a middle jacket 10b, and a lower jacket 10c. It has an inlet nozzle 11 and an outlet nozzle 12 for water. Here, in order to maintain the crystallization temperature, the temperature of the insulating water sent to each compartment jacket 10a, 10b, 10c may be the same temperature, but if the grain size of the white bottom produced is large, the crystallization temperature is relatively high, and in the initial stage, the temperature of the warm water in the upper section jacket 10a is adjusted in order to maintain the crystallization temperature for a certain period of time or to moderate the temperature drop gradient. Further, when the white undertone concentration is high and the viscosity is high, the temperature of the warm water in the lower section jacket 10c is increased. The bottom of the crystal growth zone 3 is shaped like an inverted cone, and a discharge port 13 is provided at the bottom thereof. Therefore, the produced white matter is transferred to this discharge port 1 by the screw-type stirring blade 6 at the bottom of the crystal growth zone 3.
Sent out from 3. As a discharge mechanism, as shown in the figure, a mechanism that includes two vacuum mixers 14 and alternately and continuously discharges with compressed air can be considered, but is not limited to this. degree is
If it is below 160mmHg, it can be discharged directly with a high viscosity slurry pump. The tower height of the above-mentioned continuous crystallization device is determined by the device capacity, manufacturing conditions, etc., but is typically determined by the liquid height/
It is appropriate that the column diameter is approximately 2.0 to 5.0. Note that here, the liquid height is the height of the liquid level of the sugar solution, and the tower diameter is the inner diameter of the apparatus in the crystallization zone 2 and the crystal growth zone 3. When a fixed amount of sugar solution concentrated to a predetermined concentration is supplied by the concentrator from the concentrated sugar solution supply port 20 of the continuous crystallization apparatus configured as described above, the sugar solution is rapidly depressurized in the crystallization zone 2 and becomes self-sustained. Evaporation and temperature drop occur, resulting in a supersaturated state and the generation of crystal nuclei. The steam generated by the self-evaporation is discharged to the outside through an evaporation chamber 1 for reducing pressure. When crystal nuclei are generated, the self-evaporation gradually subsides, and then the crystal nuclei are transferred to the crystal growth zone 3 by the screw type stirring blades 6 and the curved type stirring blades 7. The crystal nuclei in this sugar solution are in this crystal growth zone 3.
The particles grow as they gradually move downward, and are discharged from the discharge port 13 at the bottom by the vacuum mixer 14 in the form of white grains of a predetermined particle size. In the crystal growing zone 3, the outer periphery is covered with a heat insulating jacket 10.
Since a predetermined temperature gradient is formed by covering the sugar solution, new fine crystals will not be generated in the sugar solution. An example of a continuous sucrose crystallization apparatus to which the present invention is applied has been described above.Next, an experimental example in which various types of Shiroshita were produced using the continuous crystallization apparatus shown in FIG. 1 will be described. Experimental Example 1 A refined sugar solution was concentrated to a temperature of 90° C. and a concentration of 84% by weight, and the concentrated sugar solution was supplied to a continuous crystallization apparatus set at a vacuum degree of 40 mmHg. Crystallization temperature 48°C, residence time in the apparatus 20 minutes, upper section jacket 10a and middle section jacket 10
Temperature of b is 50℃, temperature of lower section jacket 10c
The temperature was set to 60°C, and the viscosity of the white undercoat produced was lowered and discharged. The discharged Shiroshita was a creamy fondant with a pleasant texture consisting of very fine crystals, and it did not solidify even after being stored in a sealed container at 18℃ for one month, with only a slight honey layer on the surface. Almost no changes were observed from the state at the time of manufacture. The refined sugar solution used and the resulting white brix Bx, pure sugar rate, reducing sugar rate, ash content, color value, and crystal grain size were investigated. In addition, Brix Bx was dissolved by diluting the sugar solution and Shiroshita twice, and was measured at 20°C using a Shugar refractometer. In addition, the pure sugar rate is sugar content /
Bx, color value (AI) of the sample is Bx50±0.2, PH7
After adjusting the absorbance at 420 nm using a spectrophotometer, the absorbance was determined using the following formula. Color value (AI)=1000×(−logT 420on )/l×C Here, l is the length of the cell used, and C is the sugar concentration (g/ml) of the material determined from Bx. Grain size was measured with a micrometer under a microscope. Reducing sugar and ash content are values per Bx. The results are shown in Table 1.

【表】 実験例 2 精製糖液を濃縮して温度105℃、濃度83.5重量
%とし、この濃縮糖液を真空度160mmHgの連続結
晶化装置に供給した。 晶出温度66℃、上部区分ジヤケツト10a64
℃、中間部区分ジヤケツト10b55℃、下部区分
ジヤケツト10c65℃で操作し、装置内滞溜時間
35分で白下を排出した。装置内温度は、晶出部66
℃、中間部64℃、底部65℃、排出白下温度65℃で
あつた。 次いで、この白下をバスケツト径20cm、
3000RPMの遠心分離機に0.6投入し、4分間分
蜜した時点でBx.82、転化率90%のビスコを10ml
全面に散布し、直ちに遠心分離機を停止して、バ
スケツト内部の砂糖を掻き落とし、458gの砂糖
を得た。この砂糖の対固形物回収率は52%であつ
た。 この砂糖を混合・風乾して水分0.8%とし、目
開き4mmの金網で玉糖を篩別して得た製品は、外
観、手ざわり共に細目の精製上白糖と同様な製品
であつた。 使用した精製糖液、得られた白下及び砂顛、比
較のために市販の上白糖について、それぞれブリ
ツクスBx、純糖率、還元糖、灰分、色価を調べ
た。結果を第2表に示す。
[Table] Experimental Example 2 A refined sugar solution was concentrated to a temperature of 105°C and a concentration of 83.5% by weight, and this concentrated sugar solution was supplied to a continuous crystallization device with a vacuum degree of 160 mmHg. Crystallization temperature 66℃, upper section jacket 10a64
℃, middle section jacket 10c55℃, lower section jacket 10c65℃, residence time in the device
Shiroshita was discharged in 35 minutes. The temperature inside the device is the crystallization section 66.
The temperature at the middle part was 64°C, the bottom part was 65°C, and the temperature at the bottom of the discharge was 65°C. Next, place this white bottom into a basket with a diameter of 20 cm.
Pour 0.6 into a centrifuge at 3000 RPM and separate for 4 minutes. Bx.82, 10 ml of Visco with a conversion rate of 90%.
After spreading it over the entire surface, the centrifuge was immediately stopped and the sugar inside the basket was scraped off to obtain 458 g of sugar. The solids recovery rate of this sugar was 52%. This sugar was mixed and air-dried to a moisture content of 0.8%, and the product obtained by sieving the corn sugar through a wire mesh with an opening of 4 mm had a product similar in appearance and texture to fine refined white sugar. The refined sugar solution used, the obtained white sugar and sand syrup, and commercially available white sugar for comparison were examined for Brix Bx, pure sugar percentage, reducing sugar, ash content, and color value. The results are shown in Table 2.

【表】 また、得られた白下をビスコ無添加で分蜜し、
混和・乾燥した砂糖を、目開き0.5mmの篩で塊状
物を除去したものについて、粒度分布を調べた。
結果を第3表に示す。なお、表中、MAは平均粒
径であつて、試料の50%が通過する篩の目開きと
する。CVは変動係数であつて、 CV=粒径の標準偏差/平均粒径 で表す。
[Table] In addition, the obtained Shiroshita is made into honey without adding Visco,
The particle size distribution of the mixed and dried sugar was examined using a sieve with a 0.5 mm opening to remove lumps.
The results are shown in Table 3. In the table, MA is the average particle size, which is the opening of the sieve through which 50% of the sample passes. CV is a coefficient of variation, and is expressed as CV=standard deviation of particle size/average particle size.

【表】 実験例 3 精製糖工程の煎糖蜜を配合した糖液を温度105
℃、濃度84.0重量%まで濃縮し、この濃縮糖液を
真空度120mmHgの連続結晶化装置に供給した。 晶出温度58℃、上部円分ジヤケツト10a60
℃、中間部区分ジヤケツト10b50℃、下部区分
ジヤケツト10c60℃で操作し、装置内滞溜時間
40分で白下を排出した。装置内温度は、晶出部62
℃、中間部56℃、底部52℃、排出白下温度56℃で
あつた。 次いで、この白下を、実施例2と同様の遠心分
離機に0.6投入し、6分間分蜜した時点で
Bx.82、転化率90%のビスコを15ml全面に散布
し、直ちに遠心を停止して、バスケツト内部の砂
糖を掻き落とし、464gの砂糖を得た。この砂糖
の対固形物回収率は52.5%であつた。 この砂糖を混合・風乾して水分1.4%とし、目
開き4mmの金網で玉糖を篩別して得た製品は、外
観、手ざわり共に三温糖と同様な製品であつた。 使用した精製糖液、得られた白下及び砂糖、比
較のために市販の三温糖について、それぞれブリ
ツクスBx、純糖率、還元糖、灰分、色価を調べ
た。結果を第4表に示す。
[Table] Experimental example 3 A sugar solution containing decoction molasses from the refined sugar process was heated to a temperature of 105
℃ to a concentration of 84.0% by weight, and the concentrated sugar solution was supplied to a continuous crystallization apparatus with a vacuum degree of 120 mmHg. Crystallization temperature 58℃, upper circular jacket 10a60
℃, middle section jacket 10c50℃, lower section jacket 10c60℃, residence time in the device
Shiroshita was discharged in 40 minutes. The temperature inside the device is the crystallization section 62.
℃, the middle part was 56°C, the bottom part was 52°C, and the temperature at the bottom of the discharge was 56°C. Next, this Shiroshita was put into the same centrifuge as in Example 2, and when it was separated for 6 minutes,
15 ml of Bx.82 with a conversion rate of 90% was sprinkled over the entire surface, the centrifugation was immediately stopped, and the sugar inside the basket was scraped off to obtain 464 g of sugar. The solids recovery rate of this sugar was 52.5%. This sugar was mixed and air-dried to a moisture content of 1.4%, and the product obtained by sifting the corn sugar through a wire mesh with an opening of 4 mm had a product similar in appearance and texture to samuna sugar. The refined sugar solution used, the obtained Shiroshita and sugar, and commercially available brown sugar for comparison were examined for Brix Bx, pure sugar percentage, reducing sugar, ash content, and color value. The results are shown in Table 4.

【表】 また、得られた白下をビスコ無添加で分蜜し、
混和・乾燥した砂糖を、目開き0.5mmの篩で塊状
物を除去したものについて、粒度分布を調べた。
結果を第5表に示す。
[Table] In addition, the obtained Shiroshita is made into honey without adding Visco,
The particle size distribution of the mixed and dried sugar was examined using a sieve with a 0.5 mm opening to remove lumps.
The results are shown in Table 5.

〔発明の効果〕〔Effect of the invention〕

上述の説明からも明らかなように、本発明の方
法によれば、予め濃縮された蔗糖溶液を飽和点以
下に保つための顕熱は、全て自己蒸発に利用され
るので、その省エネルギー効果は非常に大きい。
また、本発明の方法によれば、濃度の高い白下を
得ることができ、例えば温度110℃、濃度82重量
%の糖液を40mmHgの缶内真空度で晶出する場合、
濃度上昇は7%にも達し、89重量%の白下を製造
することができる。 さらに、本発明の方法によれば、条件の設定に
よつて、フオンダントサイズ(粒径40μm以下)
の白下からソフトシユガーサイズ(粒径100〜
200μm)の白下まで製造が可能であり、直接フ
オンダントとして製品化することも可能である。
その他、白下を全量噴霧乾燥、真空乾燥等の乾燥
手段によつて無定形糖とし、整粒・造粒して製品
化したり、白下を分蜜して精製糖を製造する等も
可能である。 さらにまた、本発明の方法は、低温処理が可能
であるので、濃縮、結晶化の際の着色はほとんど
無く、優れた品質の白下を得ることができる。特
に、無定形糖の製造の際には、各種甘味料、ミネ
ラル、ビタミン類、アミノ酸類、香料、着色料等
の添加剤を無定形構造内に吸蔵させるが、この場
合にも熱による分解あるいは変質等の虞れはな
く、多目的な砂糖製品を製造することができる。 一方、本発明の連続結晶化装置によれば、供給
糖液の温度、濃度、缶内真空度、保温ジヤケツト
の給水温度、排出速度の管理のみで連続操作が可
能で、生産性を大幅に向上することが可能である
とともに、装置の自動制御も容易である。 また、本発明の装置は、従来の真空結晶缶と比
較して生産量当りの設備容量がおよそ半分で済
み、また大型の熱交換器も不要であるので、設備
費も軽減することが可能である。
As is clear from the above explanation, according to the method of the present invention, all the sensible heat needed to keep the pre-concentrated sucrose solution below the saturation point is used for self-evaporation, so the energy saving effect is extremely high. big.
Further, according to the method of the present invention, it is possible to obtain a highly concentrated white undercoat. For example, when a sugar solution with a concentration of 82% by weight is crystallized at a temperature of 110°C and a vacuum degree of 40 mmHg inside the can,
The concentration increase reaches as much as 7%, and it is possible to produce 89% by weight Shiroshita. Furthermore, according to the method of the present invention, depending on the setting of conditions, the particle size (particle size of 40 μm or less)
Soft sugar size (particle size 100~
It is possible to manufacture products with a thickness of up to 200 μm), and it is also possible to directly commercialize them as foundationants.
In addition, it is also possible to turn Shiroshita into amorphous sugar by drying methods such as spray drying or vacuum drying, and then to make products by sizing and granulating it, or to produce refined sugar by separating Shiroshita into honey. be. Furthermore, since the method of the present invention allows low-temperature treatment, there is almost no coloring during concentration and crystallization, and it is possible to obtain a white undercoat of excellent quality. In particular, when manufacturing amorphous sugar, additives such as various sweeteners, minerals, vitamins, amino acids, flavorings, and colorants are occluded within the amorphous structure, but in this case, they are also decomposed by heat or There is no risk of deterioration and it is possible to produce multi-purpose sugar products. On the other hand, according to the continuous crystallization apparatus of the present invention, continuous operation is possible by simply controlling the temperature and concentration of the supplied sugar solution, the degree of vacuum inside the can, the temperature of the water supplied to the heat insulating jacket, and the discharge speed, greatly improving productivity. In addition, automatic control of the device is easy. Additionally, the equipment of the present invention requires approximately half the equipment capacity per production volume compared to conventional vacuum crystallizers, and does not require a large heat exchanger, so equipment costs can be reduced. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した蔗糖連続結晶化装置
の一例を示す模式的な断面図である。 1……蒸発室、2……晶出ゾーン、3……育晶
ゾーン、5……撹拌機、6……スクリユー型撹拌
翼、7……湾曲型撹拌翼、10……保温ジヤケツ
ト、13……排出口。
FIG. 1 is a schematic cross-sectional view showing an example of a continuous sucrose crystallization apparatus to which the present invention is applied. DESCRIPTION OF SYMBOLS 1... Evaporation chamber, 2... Crystallization zone, 3... Crystal growth zone, 5... Stirrer, 6... Screw type stirring blade, 7... Curved stirring blade, 10... Heat insulation jacket, 13... …Vent.

Claims (1)

【特許請求の範囲】 1 予め飽和温度以上の温度で固形物濃度80〜86
重量%に濃縮した蔗糖溶液を、急激に減圧して自
己蒸発による濃度上昇と温度低下を惹起せしめ、
瞬間的に過飽和状態として結晶核を発生させた
後、 前記結晶核を含む蔗糖溶液中に新たな結晶核が
自然発生するのを抑制するために、保温または徐
冷しながら結晶を成長させることを特徴とする蔗
糖連続結晶化方法。 2 上部に蒸発室を有し、蔗糖溶液を急激に減圧
して結晶核を発生させるとともに、発生した結晶
核が充分流動・混合されるように撹拌機を備えた
晶出ゾーンと、 この晶出ゾーンの下方に連続し、流体の上下混
流を抑制し結晶核と蔗糖溶液とを絶えず穏やかに
混合接触させるための撹拌・順送り機構と、上下
方向に段階的に適温を保ち結晶の成長速度と微細
結晶の発生を調節するための熱交換器とを備えた
育晶ゾーンとからなり、 上記育晶ゾーンの底部に検出装置を備えたこと
を特徴とする蔗糖連続結晶化装置。
[Claims] 1. Solids concentration 80-86 at a temperature higher than the saturation temperature in advance
A sucrose solution concentrated to % by weight is rapidly depressurized to cause an increase in concentration and a decrease in temperature due to self-evaporation.
After instantaneously generating crystal nuclei in a supersaturated state, in order to suppress the spontaneous generation of new crystal nuclei in the sucrose solution containing the crystal nuclei, the crystals are grown while being kept warm or slowly cooled. Characteristic continuous sucrose crystallization method. 2. A crystallization zone that has an evaporation chamber at the top, rapidly reduces the pressure of the sucrose solution to generate crystal nuclei, and is equipped with a stirrer to ensure that the generated crystal nuclei are sufficiently fluidized and mixed; Continuing below the zone, there is a stirring/progressive mechanism that suppresses the vertical mixing of the fluid and constantly and gently mixes and contacts the crystal nuclei and the sucrose solution, and maintains an appropriate temperature in stages in the vertical direction to control the growth rate and fineness of the crystals. 1. A continuous sucrose crystallization apparatus, comprising a crystal growth zone equipped with a heat exchanger for regulating the generation of crystals, and a detection device provided at the bottom of the crystal growth zone.
JP18464485A 1985-08-22 1985-08-22 Method and apparatus for continuously crystallizing sucrose Granted JPS6244200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18464485A JPS6244200A (en) 1985-08-22 1985-08-22 Method and apparatus for continuously crystallizing sucrose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18464485A JPS6244200A (en) 1985-08-22 1985-08-22 Method and apparatus for continuously crystallizing sucrose

Publications (2)

Publication Number Publication Date
JPS6244200A JPS6244200A (en) 1987-02-26
JPH0517839B2 true JPH0517839B2 (en) 1993-03-10

Family

ID=16156837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18464485A Granted JPS6244200A (en) 1985-08-22 1985-08-22 Method and apparatus for continuously crystallizing sucrose

Country Status (1)

Country Link
JP (1) JPS6244200A (en)

Also Published As

Publication number Publication date
JPS6244200A (en) 1987-02-26

Similar Documents

Publication Publication Date Title
FI80294B (en) FOERFARANDE FOER KRISTALLISATION AV SACKAROS ELLER GLUKOS.
US2728678A (en) Process for drying solutions containing crystallizable material, and product produced thereby
JPH04335870A (en) Erythritol composition
CN1104256A (en) New method of making crystalline sugar and products resulting therefrom
CN109513232B (en) Device for evaporative crystallization and crystallization method of ethyl maltol
US20060128953A1 (en) Crystal refining technologies by controlled crystallization
CN109289234A (en) For the device of evaporative crystallization, the method for crystallising of vitamin B6
JPH11217395A (en) Continuous production of anhydrous crystalline maltitol and production apparatus therefor
US3540927A (en) Granular total sugar products and process for producing
CN109453539A (en) For the device of evaporative crystallization, the method for crystallising of Sucralose
CN109289235A (en) Device, ascorbic method for crystallising for evaporative crystallization
US2369231A (en) Production of crystalline dextrose
JPH0517839B2 (en)
US3600222A (en) Dried sucrose-containing products from separate feeds
US3653929A (en) Process of freeze drying coffee
US3257236A (en) Method of making sugar
CN101747389B (en) Method for preparing powder crystal maltitol
US3674557A (en) Method for drying sugar solutions
JP2001505186A (en) Method for producing D-sorbit crystal
US2970057A (en) Process for producing crystalline spray dried material
JPH09110891A (en) Highly fluid maltitol powder and its production
US6015466A (en) Microcrystalline sugars or sugar-alcohols; method for preparing the same
USRE29647E (en) Dried sucrose-containing products from separate feeds
CN218910200U (en) Xylitol crystal's preparation system
JPH0116480B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term