JPH0517831B2 - - Google Patents

Info

Publication number
JPH0517831B2
JPH0517831B2 JP1171752A JP17175289A JPH0517831B2 JP H0517831 B2 JPH0517831 B2 JP H0517831B2 JP 1171752 A JP1171752 A JP 1171752A JP 17175289 A JP17175289 A JP 17175289A JP H0517831 B2 JPH0517831 B2 JP H0517831B2
Authority
JP
Japan
Prior art keywords
amylase
streptomyces
culture
amylase inhibitor
aiu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1171752A
Other languages
Japanese (ja)
Other versions
JPH02131571A (en
Inventor
Kyun Rii Iyoo
Uon Paku Iyoo
Uon Choi Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YON JIN PHARM IND CO Ltd
Original Assignee
YON JIN PHARM IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YON JIN PHARM IND CO Ltd filed Critical YON JIN PHARM IND CO Ltd
Publication of JPH02131571A publication Critical patent/JPH02131571A/en
Publication of JPH0517831B2 publication Critical patent/JPH0517831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

技術分野 本発明は新芏な埮生物であるストレプトマむセ
スsp.Y−125及びこれからアミラヌれ阻害物質を
補造する方法に関するものである。 背景技術 䞀般的に、人䜓に必芁である䞉倧栄逊玠の䞀぀
である炭氎化物はその倧郚分が二糖類又は倚糖類
の圢態で摂取された埌に、䜓内に吞収される盎前
にアミラヌれ又はマルタヌれ又はサツカラヌれ等
の配糖䜓加氎分解酵玠の䜜甚により分解され、こ
の際䜓内お過量の糖が生成するず糖尿病、肥満
症、過脂肪症、胃炎、胃朰瘍、十二指腞朰瘍等の
原因になる。 埓぀お、これらの疟病を予防、治療するために
は配糖䜓加氎分解酵玠の阻害物質を䜿甚しお䜓内
に存圚する各皮の配糖䜓加氎分解酵玠の䜜甚を抑
制する事により過量の糖が生成するのを防止する
方法が知られおおり米囜特蚱第4307194号、同
第4451455号、このような配糖䜓加氎分解酵玠阻
害物質は攟線菌、特にストレプトマむセス
Streptomycesによ぀お産生されるこずが倚い
物質ずしお知られおいる。 埓来の配糖䜓加氎分解酵玠はその分子量によ぀
お高分子量のものはアミラヌれに察する阻害効果
が優れ、これに察し䜎分子量のものはマルタヌれ
又はサツカラヌれに察する阻害効果が優れおいる
ず報告されおいるが、本発明方法で埗られるのは
比范的䜎分子量でありながらアミラヌれに察しお
特異的な阻害効果を瀺すアミラヌれ阻害物質であ
る。 埓来知られおいるアミラヌれ阻害物質の補造方
法ずしおは、生物孊的方法以倖な方法、すなわ
ち、サルチル酞又はアビスシンabiscineのよ
うな䜎分子物質の物理的吞着によ぀お非特異的に
酵玠を阻害するか、あるいは酵玠を倉成、沈柱さ
せる高分子物質を利甚しお補造する方法もある。 しかし、このような埓来のアミラヌれ阻害物質
は唟液アミラヌれのみに圱響を及がすにすぎず、
膵臓アミラヌれにはほずんど圱響を及がすこずが
できずE.Kneen、R.M.Standtest、「Arch.
Biochem.Biophys.」、2351946、そのほか
のアミラヌれに察しおも非特異的であ぀おほずん
ど阻害䜜甚を及がすこずができない欠点があるず
同時に、熱に察しお䞍安定であり、トリプシンに
よ぀お䞍掻性になるため、掻性床が比范的䜎いず
報告されおいる米囜特蚱第4282318号。 そこで本発明者等はアミラヌれ阻害物質を産生
する高い掻性を有する新芏な埮生物を発芋し、そ
の分離及び利甚に関しお広範囲な研究を行぀た結
果、䞊蚘新芏な埮生物が産生するアミラヌれ阻害
物質が埓来のアミラヌれ阻害物質に比べおその掻
性及び安定性が䞀局優れた物質であるこずを芋い
出し、本発明に至぀たものである。 本発明の目的はアミラヌれ阻害物質を産生する
新芏な菌株及びこれを利甚しお高収率でアミラヌ
れ阻害物質を効果的に補造する方法を提䟛するこ
ずにある。 発明の開瀺 本発明の埮生物であるストレプトマむセスsp.
Y−125は倧韓民囜江原道春川及び京畿道烏山で
採取された土壌詊料から分離培逊した新菌株で、
1988幎月日付けにお韓囜科孊技術院に受蚗番
号KCTC8387Pで受蚗され、1989幎月31日付け
におアメリカン・タむプ・カルチダヌ・コレクシ
ペンAmerican Type Culture Collection
ATCCに受蚗番号ATCC53890で受蚗されおい
る。 以䞋に、新菌株ストレプトマむセスsp.Y−125
の系統孊的特性を逐次に説明する。特性の枬定は
むンタヌナシペナル・ストレプトマむセス・プロ
ゞ゚クトIntarnational Streptomyces
ProjectISPによ぀お勧奚されおいる方法お
よび「バヌゲむス・マニナアル・オブ・デむタヌ
ミネむテむブ・バクテリオロゞヌBergey′s
Manual of Determinative Bacteriology」第
巻1986に蚘茉されおいる方法に準拠しお行
぀た。以䞋に、次の皮の公知のストレプトマむ
セス属埮生物ずの特性比范デヌタを瀺した 埮生物ストレプトマむセス・カルプスSt.
carvesゞダヌナル・オブ・ザ・アンチビオ
テむクスJ.Antibiotics351156〜1159
1982 埮生物ストレプトマむセス・コルコルシヌ
St.Corchorusiiアグリカルチダル・アン
ド・バむオロゞカル・ケミストリむAgric.
Biol.chem.49(1)、107〜1101985 埮生物ストレプトマむセス・ゞアスタテむク
スSt.diastaticusの亜皮であるアミロスタ
テむクスamylostaticsアグリカルチダ
ル・アンド・バむオロゞカル・ケミストリむ、
41(6)、919〜9241977 埮生物ストレプトマむセス・グリスコスポレ
りスSt.griscosporeusアグリカルチダ
ル・アンド・バむオロゞカル・ケミストリむ、
45(11)、2599−26041981 埮生物ストレプトマむセス・スピリツス
St.spiritus米囜特蚱第4254256 (1) 培逊孊的特性 次の皮の培地を䜿甚しお培逊孊的特性の枬
定を行぀た (1) ISP No.むヌスト・麊芜寒倩培地 (2) ISP No.オヌトミル寒倩培地 (3) ISP No.スタヌチ・無機塩寒倩培地 (4) ISP No.グリセリン・アスパラギン寒
倩培地 (5) ISP No.ペプチド・むヌスト・鉄寒倩
培地 (6) ISP No.チロシン寒倩培地 (7) SM脱脂牛乳寒倩培地 (8) NT栄逊寒倩培地 (9) GAグルコヌス・アスパラギン寒倩培地 (泚) ISPむンタヌナシペナル・ストレプト
マむセス・プロゞ゚クトInternational
Streptomuces Project培地 本発明の新菌株であるストレプトマむセス
sp.Y−125は胞子の色が灰色系列に属する豊富
な連続菌系䜓を生成するので、このような培逊
䞊の特性は次の衚に瀺すようにオヌトミヌル
寒倩培地ISP No.、スタヌチ・無機塩寒
倩培地ISP No.、チロシン寒倩培地ISP
No.䞊で珟われるし、特にオヌトミヌル寒
倩培地ISP No.で生育状態及び色盞を明
確に芳察するこずができる。裏面の色盞は黄耐
色で、この色盞はPHの圱響を受けない。チロシ
ン寒倩培地では黄色色玠が、脱脂牛乳寒倩培地
では淡黄色色玠が生成し、これ以倖の培地䞊で
は可溶性色玠が生成しなか぀た。衚に、スト
レプトマむセスsp.Y−125ず䞊述のの公知の
ストレプトマむセス属埮生物ずの比范デヌタを
瀺す。
(Technical Field) The present invention relates to a novel microorganism, Streptomyces sp. Y-125, and a method for producing an amylase inhibitor therefrom. (Background Art) In general, most of carbohydrates, which are one of the three major nutrients necessary for the human body, are ingested in the form of disaccharides or polysaccharides, and then immediately before being absorbed into the body, carbohydrates are processed by amylase or maltase. Or, it is decomposed by the action of glycoside hydrolase such as satucalase, and if an excessive amount of sugar is produced in the body at this time, it causes diabetes, obesity, hyperlipidemia, gastritis, gastric ulcer, duodenal ulcer, etc. Therefore, in order to prevent and treat these diseases, excessive amounts of sugar can be prevented by suppressing the action of various glycoside hydrolases existing in the body using glycoside hydrolase inhibitors. Methods are known to prevent the production of glycoside hydrolase (U.S. Pat. Nos. 4,307,194 and 4,451,455), and such glycoside hydrolase inhibitors are inhibited by actinomycetes, particularly Streptomyces. It is known as a substance that is often produced. It has been reported that conventional glycoside hydrolases have a superior inhibitory effect on amylase depending on their molecular weight, whereas those with a low molecular weight have an excellent inhibitory effect on maltase or satucarase. What is obtained by the method of the present invention is an amylase inhibitor that has a relatively low molecular weight but exhibits a specific inhibitory effect on amylase. Conventionally known methods for producing amylase inhibitors include non-biological methods, i.e. physical adsorption of low molecular weight substances such as salicylic acid or abiscine to non-specifically inhibit the enzyme. There are also methods of manufacturing using polymeric substances that inhibit, denature, or precipitate the enzyme. However, these conventional amylase inhibitors only affect salivary amylase;
It has little effect on pancreatic amylase (E. Kneen, RMStandtest, "Arch.
Biochem . It is reported that the degree of activity is relatively low because it becomes inactive by (US Pat. No. 4,282,318). Therefore, the present inventors discovered a new microorganism with high activity that produces an amylase inhibitor, and conducted extensive research on its isolation and utilization. As a result, the amylase inhibitor produced by the new microorganism was found to We have discovered that this substance has better activity and stability than inhibitors, leading to the present invention. An object of the present invention is to provide a novel strain that produces amylase inhibitors and a method for effectively producing amylase inhibitors in high yield using the same. (Disclosure of the Invention) The microorganism of the present invention, Streptomyces sp.
Y-125 is a new bacterial strain isolated and cultured from soil samples collected in Chuncheon, Gangwon-do, and Osan, Gyeonggi-do, Republic of Korea.
Entrusted to the Korea Advanced Institute of Science and Technology under accession number KCTC8387P on July 5, 1988, and designated as the American Type Culture Collection on March 31, 1989.
(ATCC) under accession number ATCC53890. Below, the new strain Streptomyces sp.Y−125
We will explain the phylogenetic characteristics of The characteristics were measured using the International Streptomyces project.
The methods recommended by the Bergey's Manual of Determinative Bacteriology (ISP) and the Bergey's Manual of Determinative Bacteriology (ISP)
This was carried out in accordance with the method described in "Manual of Determinative Bacteriology" Volume 2 (1986). Below is data comparing characteristics with the following five known Streptomyces microorganisms: Microorganism 1: Streptomyces carpus (St.
(J. Antibiotics) 35: 1156-1159
(1982)) Microorganism 2: St. Corchorusii (Agricultural and Biological Chemistry (Agric.
Biol.chem.) 49(1), 107-110 (1985)) Microorganism 3: amylostatics, a subspecies of St. diastaticus (Agricultural and biological chemistry,
41(6), 919-924 (1977)) Microorganism 4: St. griscosporeus (Agricultural and Biological Chemistry,
45(11), 2599-2604 (1981)) Microorganism 5: St. spiritus (U.S. Patent No. 4254256) The following properties were measured: (1) ISP No. 2 = yeast/malt agar medium (2) ISP No. 3 = oatmil agar medium (3) ISP No. 4 = starch/inorganic salt agar medium (4) ISP No. 5 = Glycerin/Asparagine Agar (5) ISP No. 6 = Peptide/Yeast/Iron Agar (6) ISP No. 7 = Tyrosine Agar (7) SM = Skim Milk Agar (8) NT = Nutrition Agar medium (9) GA = glucose-asparagine agar medium (Note) ISP = International Streptomyces project (International
Streptomuces Project) medium The new strain of Streptomuces of the present invention
Since sp. , starch/inorganic salt agar medium (ISP No.4), tyrosine agar medium (ISP
No. 7), and the growth state and color can be clearly observed especially on oatmeal agar medium (ISP No. 3). The hue of the back side is tan, and this hue is not affected by pH. A yellow pigment was produced on the tyrosine agar medium, a pale yellow pigment was produced on the skim milk agar medium, and no soluble pigment was produced on the other media. Table 2 shows comparative data between Streptomyces sp. Y-125 and the above-mentioned five known microorganisms of the genus Streptomyces.

【衚】【table】

【衚】【table】

【衚】 生成する −生成せず ±䞍明瞭。
×デヌタなし。
(2) 圢態孊的特性 オヌトミヌル寒倩䞊で生育したストレプトマ
むセスsp.Y−125の圢態孊的特性を芳察した結
果、分裂しおいない分枝状菌糞䜓が生成し、胞
子嚢は生成しなか぀た。又、気生菌糞のふちに
は胞子䜓が生成し、気生菌糞は波状圢態であ
り、胞子は球圢又は棒圢である。胞子の衚面は
柔らかく平滑であり、その倧きさは0.7〜1.2×
1.2〜1.8Όであ぀た。この際、圢態孊的特性
は光孊顕埮鏡で調査し、胞子の衚面及び倧きさ
は走査型電子顕埮鏡で芳察した。衚にストレ
プトマむセスsp.Y−125ず䞊述の公知の皮の
ストレプトマむセス属埮生物ずの比范デヌタを
瀺す。
[Table] +: Generated; -: Not generated; ±: Unclear.
×: No data.
(2) Morphological characteristics Observation of the morphological characteristics of Streptomyces sp. Ta. In addition, sporophytes are produced at the edges of aerial hyphae, and the aerial hyphae are wavy in shape, and the spores are spherical or rod-shaped. The surface of the spore is soft and smooth, and its size is 0.7~1.2×
It was 1.2 to 1.8 ÎŒm. At this time, the morphological characteristics were investigated using an optical microscope, and the surface and size of the spores were observed using a scanning electron microscope. Table 3 shows comparative data between Streptomyces sp. Y-125 and the above-mentioned five known microorganisms of the genus Streptomyces.

【衚】 (3) 生理孊的特性 次の衚はストレプトマむセスsp.Y−125ず
䞊述の公知の皮のストレプトマむセス属埮生
物ずの比范デヌタを瀺す。衚に瀺した炭玠利
甚床すなわち炭玠源の同化性は、滅菌した炭玠
源を加えお最終濃床を1.0にしたプリドハ
ム・ゎドリヌブ寒倩培地を䜿甚しお炭玠利甚床
を枬定した結果である。培逊枩床は30℃ずし、
14日埌に枬定を行぀た。
[Table] (3) Physiological characteristics The following Table 4 shows comparative data between Streptomyces sp. Y-125 and the above-mentioned five known microorganisms of the genus Streptomyces. The degree of carbon utilization, that is, the assimilability of the carbon source shown in Table 4 is the result of measuring the degree of carbon utilization using a Pridham-Godlieb agar medium to which a sterilized carbon source was added to give a final concentration of 1.0%. The culture temperature was 30℃.
Measurements were taken 14 days later.

【衚】 (泚) −利甚されない 利甚される
±䞍明瞭 ×デヌタなし
衚に瀺すように、ストレプトマむセスsp.
Y−125はスタヌチを加氎分解するが、れラチ
ンを液化すなわち加氎分解せず、脱脂牛乳
を凝固およびペプトン化せず、硝酞塩を亜硝酞
塩に還元せず、又セルロヌスを分解しなか぀
た。又、これらの菌株は20〜80℃で生育し、特
に25〜30℃で増殖が旺盛であり、奜気性で、チ
ロシン寒倩ISP No.䞊でメラニン様色玠
を生成した。 䞊述のように、本発明のストレプトマむセス
sp.Y−125は、培逊孊的、圢態孊的及び生理孊的
特性を公知の類䌌皮の特性ず比范するず、公知の
皮ず皮々の点で異なるので、これを新芏な菌株に
分離した参照バヌゲむス・マニナアル・オ
ブ・デむタヌミネむテブ・バクテリオロゞヌ」第
巻、第1383〜1418頁1986。 本発明の新菌株であるストレプトマむセスsp.
Y−125が産生するアミラヌれ阻害物質は倚糖類
ずアミノ酞ずから構成される物質で、その掻性は
12000AIUmg以䞊で非垞に高く、100℃で120分
間加熱しおも優れた阻害掻性を瀺した。 アミラヌれ阻害物質単䜍1AIUはアミラ
ヌれの単䜍が50阻害された時の阻害物質の量ず
定矩し、アミラヌれ単䜍は分間に柱粉から
1ÎŒMのグルコヌスが生成する時の酵玠量ず定矩
し、生成するグルコヌスは−ゞニトロサリ
チル酞で還元糖を枬定し、マルトヌスで暙準曲線
を求めた 又、本発明に係るアミラヌれ阻害物質の掻性は
次の方法で枬定した。すなわち、の塩化カ
ルシりムを含む100トリス塩酞緩衝液PH
7.0䞭に×10-2のアミラヌれ溶液10〜
20AIUml0.5mlを溶解し、これに0.5mlの阻害
物質溶液〜300Ό又は培逊液を加え、混
合した埌にこれを37℃で10分間反應させ、次いで
100トリス塩酞緩衝溶液䞭に溶解した1.5の
可溶性柱粉溶液mlを添加し、10分間反應させ
る。次いで、mlの−ゞニトロサリチル酞
を加え、分間加熱埌充分に冷华し、蒞留氎で10
倍皀釈し、しかる埌に546nで吞光床を枬定し
た。なお、察照詊隓は阻害物質溶液の代わりに蒞
留氎0.5mlを加えた点を陀いお䞊述ず同䞀の方法
で実斜し、空詊隓はアミラヌれ溶液の代わりに10
トリス塩酞緩衝液PH7.00.5mlを加え、阻
害物質溶液の代わりに蒞留氎0.5mlを加えた点を
陀いお䞊述ず同䞀の方法で実斜した。吞光床の枬
定倀から次匏に基づいお阻害率を求めた 阻害率−−−×100 䞊匏においお、及びはそれぞれ阻害物質
の詊隓、察照詊隓及び空詊隓のそれぞれで埗られ
た吞光床を瀺す。 本発明に係るアミラヌれ阻害物質はPHに察する
安定性が極めお高く、PH2.0ないし12.0の範囲に
おいお安定であり、埓぀お分解過皋においおその
掻性が䜎䞋するこずはない。 本発明に係るアミラヌれ阻害物質は、セフアテ
クスSephadex−25商品名で枬定した分
子量が700〜1500であり、分子量が比范的䜎いに
もかかわらずアミラヌれ、マルタヌれ、及びサツ
カラヌれに察しお充分な阻害効果を瀺し、特に唟
液アミラヌれに察するよりも膵臓アミラヌれに察
する阻害効果が䞀局優れおいるこずが分぀た。 本発明のストレプトマむセスsp.Y−125
KCTC8387P、ATCC53890菌皮が産生するア
ミラヌれ阻害物質は、これを掻性成分ずし、これ
に薬孊的に蚱容できる担䜓又は垌釈剀を含有させ
るこずにより、肥満症、糖尿病、胃炎、過脂肪
症、胃朰瘍、十二指腞朰瘍の予防及び治療剀ずし
お䜿甚するこずができ、たた本発明のストレプト
マむセスsp.Y−125KCTC8387P、ATCC53890
菌皮が産生するアミラヌれ阻害物質は食品添加剀
ずしお有甚である。 以䞋に、本発明の新菌株であるストレプトマむ
セスsp.Y−125の培逊方法及びその培逊物からア
ミラヌれ阻害物質を分離する方法を詳述する。 (1) 菌株の培逊 酵母抜出物、脱脂倧豆、ペプトンのような窒
玠源、可溶性柱粉、グルコヌスのような炭玠
源、及び塩化ナトリりムのような無機塩を含有
する培地に垌薄塩酞氎溶液を加えおそのPHを
6.0〜7.0に調節し、121℃で15分間殺菌した埌
に、菌を接皮しお奜気性条件䞋に25〜30℃で
〜日間培逊を行぀た。 次の衚には皮々の炭玠源濃床に察
する阻害物質の掻性を瀺す。衚には窒玠源に
察する阻害物質の掻性を瀺す。衚及び衚か
ら分るように、炭玠源が可溶性柱粉で、窒玠源
が酵母抜出物ずホリペプトンpolypeptone
の混合物である堎合に掻性は最も高か぀た。 歀の際、消泡剀を䜿甚するこずもでき、消泡
剀は䞀般的に過床の泡を防止するのに有甚であ
る。シリコヌン消泡剀のように普通に䜿甚され
る消泡剀を䜿甚した。
[Table] (Note) −: Not used; +: Used;
±: Unclear; ×: No data As shown in Table 4, Streptomyces sp.
Y-125 hydrolyzed starch but did not liquefy (i.e. hydrolyze) gelatin, coagulate and peptonize skimmed milk, reduce nitrate to nitrite, or degrade cellulose. Furthermore, these strains grew at 20 to 80°C, particularly actively multiplied at 25 to 30°C, were aerobic, and produced melanin-like pigments on tyrosine agar (ISP No. 7). As mentioned above, the Streptomyces of the present invention
Since sp. 2, pp. 1383-1418 (1986)). The new strain of the present invention, Streptomyces sp.
The amylase inhibitor produced by Y-125 is a substance composed of polysaccharides and amino acids, and its activity is
It was extremely high at over 12,000 AIU/mg, and showed excellent inhibitory activity even when heated at 100°C for 120 minutes. One unit of amylase inhibitor (1 AIU) is defined as the amount of inhibitor when a unit of amylase is inhibited by 50%, and one unit of amylase is converted from starch per minute.
Defined as the enzyme amount when 1 ÎŒM of glucose is produced, the glucose produced was measured for reducing sugar using 3,5-dinitrosalicylic acid, and a standard curve was obtained using maltose.The activity of the amylase inhibitor according to the present invention was It was measured using the following method. That is, 100mM Tris-HCl buffer containing 5mM calcium chloride (PH
7.0) in 2 x 10 -2 % amylase solution (10~
Dissolve 0.5 ml of 20 AIU/ml), add 0.5 ml of inhibitor solution (0-300 Όg) or culture medium, mix and incubate at 37°C for 10 minutes, then
Add 2 ml of 1.5% soluble starch solution in 100 mM Tris-HCl buffer and incubate for 10 minutes. Next, 2 ml of 3,5-dinitrosalicylic acid was added, heated for 5 minutes, cooled thoroughly, and diluted with distilled water for 10 minutes.
After dilution, the absorbance was measured at 546 nm. The control test was carried out in the same manner as above except that 0.5 ml of distilled water was added instead of the inhibitor solution, and the blank test was carried out using 10 ml of distilled water instead of the amylase solution.
It was carried out in the same manner as described above, except that 0.5 ml of mM Tris-HCl buffer (PH 7.0) was added and 0.5 ml of distilled water was added instead of the inhibitor solution. Inhibition rate (%) was determined from the measured value of absorbance based on the following formula: Inhibition rate (%) = (B-T)-C/B-C×100 In the above formula, T, C, and B each represent an inhibitory substance. The absorbance obtained in the test, control test, and blank test is shown. The amylase inhibitor according to the present invention has extremely high stability against pH, being stable in the pH range of 2.0 to 12.0, and therefore its activity does not decrease during the decomposition process. The amylase inhibitor according to the present invention has a molecular weight of 700 to 1500 as measured by Sephadex G-25 (trade name), and is sufficient for amylase, maltase, and satucalase despite its relatively low molecular weight. It was found that the inhibitory effect on pancreatic amylase was particularly superior to that on salivary amylase. Streptomyces sp.Y-125 of the present invention
(KCTC8387P, ATCC53890) The amylase inhibitor produced by the bacterial species can be used as an active ingredient and by containing it in a pharmaceutically acceptable carrier or diluent, it can be used to treat obesity, diabetes, gastritis, hyperlipidemia, and gastric ulcers. , can be used as a prophylactic and therapeutic agent for duodenal ulcer, and Streptomyces sp. Y-125 (KCTC8387P, ATCC53890) of the present invention
Amylase inhibitors produced by the bacterial species are useful as food additives. Below, a method for culturing Streptomyces sp. Y-125, a new strain of the present invention, and a method for separating amylase inhibitors from the culture will be described in detail. (1) Cultivation of the strain A dilute aqueous hydrochloric acid solution is added to a medium containing yeast extract, defatted soybeans, a nitrogen source such as peptone, soluble starch, a carbon source such as glucose, and an inorganic salt such as sodium chloride. PH
After adjusting the temperature to 6.0 to 7.0 and sterilizing at 121℃ for 15 minutes, the bacteria were inoculated and incubated at 25 to 30℃ under aerobic conditions.
Culture was carried out for ~4 days. Table 5 below shows the activity of the inhibitors against various carbon sources (1% concentration). Table 6 shows the activity of inhibitors against nitrogen sources. As can be seen from Tables 5 and 6, the carbon source is soluble starch, and the nitrogen source is yeast extract and polypeptone.
The activity was highest when it was a mixture of Antifoaming agents may also be used at this time, and antifoaming agents are generally useful in preventing excessive foaming. A commonly used antifoam agent such as a silicone antifoam agent was used.

【衚】【table】

【衚】【table】

【衚】 (2) アミラヌれ阻害物質の分離 菌株培逊物から培逊液ず菌䜓ずを分離する工
皋は遠心分離法たたはセラむトCelite、商品
名のような濟過助情を䜿甚する濟過法等のよ
うな埓来方法で行うこずができる。このように
しお分離された培逊液からアミラヌれ阻害物質
を分離する工皋は、埓来方法、すなわち培逊液
の凍結也燥、塩析、又は有機溶媒による沈柱、
吞着等のような方法、ならびにむオン亀換暹脂
による吞着、ゲル濟過のような方法を䜿甚しお
行うこずができる。以䞋にこれらの方法を䞀局
具䜓的に説明する。 (ã‚€) 菌株培逊地を遠心分離30000〜
40000rpmしお菌䜓ず培逊液ずを分離した
埌に、培逊液を50〜70℃においお枛圧10〜
50mmHg䞋に1/5〜1/10に濃瞮する。次いで
沈柱物を濟別する。埗られた濃瞮液は所芁に
応じお凍結也燥させる。 (ロ) 遠心分離された培逊液たたは濃瞮液に有機
溶媒ずしおメタノヌル、アセトンのような芪
氎性溶媒を加えお阻害物質を沈柱させる。䞍
玔物は䜎濃床においお沈柱し、濃床60〜70
皋床の堎合に䞍玔物の陀去が容易である。 (ハ) 硫酞アンモニりムたたは塩化ナトリりムの
ような塩類を䜿甚しお沈柱物を沈柱分離す
る。沈柱物は遠心分離又は有機溶媒で盎接掗
浄しお透析、也燥させる。 (ニ) むオン亀換暹脂による吞着この方法はア
ミラヌれ阻害物質が極性を有しおいる堎合
に、この物質を分離するに最も適圓な方法で
あ぀お、むオン匷床の倉化たたはPHの倉化に
よ぀お溶出させ、分子量の倧きさを利甚した
ゲル濟過によ぀おアミラヌれ阻害物質を分離
する。 䞊述のような分離方法のほかに、熱倉成による
䞍玔物の沈柱、分子量による分子膜の透過性、限
倖濟過等を利甚するこずも出来る。 実斜䟋 次に本発明を実斜䟋に぀いお説明する。 実斜䟋  しんずうフラスコに0.1の可溶性柱粉、
のグルコヌス、0.5の肉汁、0.5のペプト
ン、及び0.3の塩化ナトリりムを含有するPH7.0
の培地400mlを入れ、121℃で15分間殺菌した埌
に、予め培逊しおおいたストレプトマむセスsp.
Y−125菌液20mlを接皮し、28℃で日間培逊し
た。 培逊埌に、この培逊液を遠心分離により菌䜓ず
培逊液ずに分離し、埗られた15AIUmlである
培逊液270mlを40〜60℃においお枛圧10〜50mm
Hg䞋に濃瞮しお30mlの濃瞮液を埗た。この濃
瞮液に90゚タノヌルを加え、生成した沈柱を遠
心分離し、次いでこの濃瞮液を蒞留氎に溶解し、
しかる埌に36時間凍結也燥しお×104AIU
である0.07のアミラヌれ阻害物質を埗た。 実斜䟋  しんずうフラスコ個に、の可溶性柱
粉、0.5のペプトン、0.5の肉汁、及0.3の塩
化ナトリりムを含有するPH7.0の培地をそれぞれ
400mlづ぀入れ、121℃で15分間殺菌した埌に、予
め培逊しおおいたストレプトマむセスsp.Y−125
菌液をそれぞれ20mlづ぀接皮し、28℃で日間培
逊した。 次いで、この培逊物を遠心分離により菌䜓ず培
逊液ずに分離しお85AIUmlである培逊液1500
mlを埗、この培逊液50〜60℃においお枛圧䞋に
150mlたで濃瞮し、濟過しお䞍玔物沈柱を陀去し、
しかる埌に60゚タノヌルで凊理し、生成した沈
柱を濟過しお陀去し、濟液を濃瞮した。この濃瞮
物を24時間凍結也燥しお×105AIUである
6.4のアミラヌれ阻害物質を埗た。 実斜䟋  しんずうフラスコ10個を䜿甚し、実斜䟋
ず同様にしお培逊を行぀お培逊液3000mlを埗た。
この培逊液を60〜70℃においお枛圧䞋に1/10に濃
瞮し、次いで90゚タノヌルで凊理し、生成した
沈柱を濟過しお陀去し、濟液を再床濃瞮し、生成
した濃瞮物を蒞留氎に溶解し、しかる埌に24時間
凍結也燥しお4.7×105AIUである10.2のア
ミラヌれ阻害物質を埗た。 実斜䟋  しんずうフラスコ個に、の可溶性柱
粉、0.5のポリペプトン、0.5の肉汁、及び0.3
の塩化ナトリりムを含有するPH7.0の培地をそ
れぞれ400mlづ぀入れ、これを121℃で15分間殺菌
した埌に、予め培逊しおおいたストレプトマむセ
スsp.Y−125菌液を20mlづ぀接皮し、28℃で日
間培逊し、しかる埌にこの培逊物を遠心分離によ
り菌䜓ず培逊液ずに分離した。 このようにしお埗た218AIUmlの培逊液1550
mlを60〜70℃においお枛圧䞋に1/10たで濃瞮し、
濟過しお䞍玔物沈柱を陀去し、次いでこの濃瞮液
を90メタノヌルで凊理し、生成した沈柱を再床
濟過しお陀去し、しかる埌に濟液を濃瞮しお濃瞮
物を埗た。この濃瞮物を蒞留氎に溶解し、36時間
凍結也燥した結果、5.5×105AIUである8.2
のアミラヌれ阻害物質を埗た。 実斜䟋  しんずうフラスコ個に、のずうもろ
こし柱粉、0.5のポリペプトン、0.5の肉汁、
0.3の塩化ナトリりムを含有するPH7.0の培地を
それぞれ400mlづ぀入れ、これを121℃で15分間殺
菌した埌に、予め培逊しおおいたストレプトマむ
セスsp.Y−125菌液20mlをそれぞれ接皮し、28℃
で日間培逊した。 次いで、この培逊液を遠心分離により菌䜓ず培
逊液ずに分離しお186AIUmlである培逊液1600
mlを埗、この培逊液を1/10たで濃瞮し、沈柱を濟
過しお陀去した。次いで濃瞮液に90゚タノヌル
を加えお凊理し、生成した沈柱を再床濟別し、し
かる埌に濟液を濃瞮しお濃瞮物を埗た。この濃瞮
物を蒞留氎に溶解し、42時間凍結也燥した結果、
×105AIUである9.8のアミラヌれ阻害物
質を埗た。 実斜䟋  のずうもろこし柱粉を含有する培地を䜿甚
した点を陀いお実斜䟋ず同䞀の条件で培逊した
結果、培逊液は220AIUmlであり、このように
しおアミラヌれ阻害物質を12.05.8×
105AIU埗た。 実斜䟋  しんずうフラスコ個に、2.5の可溶性
柱粉、0.5のポリペプトン、0.5の酵母゚キ
ス、及び0.3の塩化ナトリりムを含有し、PH6.0
に調節した培地をそれぞれ400mlづ぀入れ、これ
を121℃で15分間殺菌した埌に、予め培逊しおお
いたストレプトマむセスsp.Y−125菌液を20mlづ
぀を接皮し、28℃で日間培逊した。 次いで、この培逊物を遠心分離により菌䜓ず培
逊液ずに分離しお2750AIUmlである培逊液
1550mlを埗た。この培逊液を60〜70℃においお枛
圧䞋に濃瞮しお濃瞮液200mlを埗、これを濟過し
お䞍玔物沈柱を陀去した埌に90゚タノヌルで凊
理し、生成した沈柱を濟過しお陀去し、濟液を濃
瞮した。濃瞮物を24時間凍結也燥した結果、70×
105AIUである阻害物質を埗た。この阻害物
質を再床蒞留氎に溶解した埌に、セフアデツクス
−10カラム1.8×30cmを䜿甚しおゲル濟過
を行぀た。この際、溶出には蒞留氎を䜿甚し、掻
性を有する郚分のみを集めお凍結也燥した結果、
2.1×103AIUmgであるアミラヌれ阻害物質0.8
を埗た。 実斜䟋  しんずうフラスコ10個を䜿甚し、実斜䟋
ず同様にしお培逊を行぀お3000AIUmlである
3000mlの培逊液を埗た。 次いで、この培逊液を300mlたで濃瞮し、次い
で90゚タノヌルで凊理し、生成した沈柱を濟過
しお陀去し、濟液を濃瞮しお濃瞮物を埗た。この
濃瞮物を再床蒞留氎に溶解し、しかる埌に24時間
凍結也燥しお7.1×105AIUである阻害物質
15.5を埗た。これを再床蒞留氎に溶解し、セフ
アデツクス−10カラム2.1×30cmに通しお
ゲル濟過を行い、掻性を有する郚分のみを集めお
凍結也燥した結果、2700AIUmgであるアミラ
ヌれ阻害物質1.02を埗た。 実斜䟋  消泡剀ずしお0.1のシリコヌンシグマ瀟
補、商品名を添加した点を陀いお実斜䟋ず同
様にしお培逊を行぀た結果、7.3×105AIUで
ある阻害物質16.4を埗た。さらにセフアデツク
ス−10カラム2.1×30cmを䜿甚し、実斜䟋
ず同様にしお3100AIUmgであるアミラヌれ
阻害物質1.2を埗た。 実斜䟋 10 しんずうフラスコ10個に2.5の可溶性柱
粉、0.5のポリペプトン、0.5の酵母抜出物、
0.3の塩化ナトリりム、及び0.05の消泡剀を
含有し、PH6.0に調節した培地を400mlづ぀入れ、
これを121℃で15分間殺菌した埌に予め培逊しお
おいた菌液を20mlづ぀接皮し、28℃で日間培逊
しお埗た培逊物を遠心分離しお5250AIUmlの
培逊液3000mlを埗た。 この培逊液を60〜70℃においお枛圧10〜50mm
Hg䞋に1/10たで濃瞮し、濟過しお䞍玔物を陀
去し、これを90゚タノヌルで凊理し、生成した
沈柱を濟過しお陀去し、濟液を゚タノヌルが完党
に陀去されるたで濃瞮した。 次いで、濃瞮液を凍結也燥しお7.5×105AIU
であるアミラヌれ阻害物質を埗おた。これをセ
フアデツクス−10カラム1.8×40cmに通し
おゲル濟過した結果、3300AIUmgであるアミ
ラヌれ阻害物質1.70を埗た。埗られた阻害物質
1.70をセフアデツクス−25カラム2.6×60
cmを通しおゲル濟過した結果、15200AIUmg
の阻害物質350mgを埗た。 血糖倀の倉化特性 実斜䟋10で埗たアミラヌれ阻害物質を䜿甚しお
動物実隓を実斜した。䜿甚した動物は17〜20の
マりスで、匹を䞀矀にしお過血糖症を誘発さ
せ、これらのマりスに぀いお、15及び30分の間
隔で血糖倀の倉化を枬定した。過血糖症を誘発さ
せるには、2.5の柱粉又はマルトヌスを2.5
Kgマりスの甚量で経口投䞎するか、あるいは5.0
Kgマりスのサツカロヌスを経口投䞎した。血
糖倀の枬定はグルコヌスオキシタヌれを䜿甚しお
行぀た。
[Table] (2) Isolation of amylase inhibitors The process of separating the culture fluid from the bacterial cells from the bacterial strain culture can be carried out using centrifugation or a filtration method using a filter aid such as Celite (trade name). This can be done using conventional methods such as The step of separating the amylase inhibitor from the culture solution thus separated can be carried out using conventional methods, such as freeze-drying the culture solution, salting out, or precipitation with an organic solvent.
This can be done using methods such as adsorption, as well as adsorption with ion exchange resins, gel filtration. These methods will be explained in more detail below. (b) Centrifuge the bacterial strain culture medium (30,000 ~
40,000 rpm) to separate the bacterial cells and the culture solution, and then the culture solution was heated under reduced pressure (10 to 70°C) at 50 to 70°C.
50mmHg) and concentrate to 1/5 to 1/10. The precipitate is then filtered off. The obtained concentrate is freeze-dried as required. (b) A hydrophilic solvent such as methanol or acetone is added as an organic solvent to the centrifuged culture solution or concentrate to precipitate inhibitory substances. Impurities precipitate at low concentrations, with concentrations of 60-70%
It is easy to remove impurities if the (c) Separating the precipitate using salts such as ammonium sulfate or sodium chloride. The precipitate is centrifuged or directly washed with an organic solvent, dialyzed, and dried. (d) Adsorption by ion exchange resin: This method is the most suitable method for separating amylase inhibitors when they have polarity, and is based on changes in ionic strength or pH. The amylase inhibitor is separated by elution and gel filtration using its molecular weight. In addition to the above-mentioned separation methods, it is also possible to use methods such as precipitation of impurities due to thermal denaturation, permeability of molecular membranes based on molecular weight, and ultrafiltration. (Example) Next, the present invention will be described with reference to an example. Example 1 0.1% soluble starch in 2 thin flasks,
PH7.0 containing 1% glucose, 0.5% gravy, 0.5% peptone, and 0.3% sodium chloride
After adding 400 ml of culture medium and sterilizing it at 121°C for 15 minutes, Streptomyces sp.
20 ml of Y-125 bacterial solution was inoculated and cultured at 28°C for 4 days. After culturing, this culture fluid was separated into bacterial cells and culture fluid by centrifugation, and 270 ml of the resulting culture fluid with a concentration of 15 AIU/ml was heated at 40 to 60°C under reduced pressure (10 to 50 mm
Hg) to obtain 30 ml of concentrated solution. Add 90% ethanol to this concentrate, centrifuge the generated precipitate, then dissolve this concentrate in distilled water,
After that, freeze-dry for 36 hours to obtain 2×10 4 AIU/g.
0.07g of amylase inhibitor was obtained. Example 2 2 Five flasks were each filled with a pH 7.0 medium containing 1% soluble starch, 0.5% peptone, 0.5% meat juice, and 0.3% sodium chloride.
Pour 400 ml of Streptomyces sp.
20 ml of each bacterial solution was inoculated and cultured at 28°C for 4 days. Next, this culture was separated into bacterial cells and a culture solution by centrifugation, and 1500% of the culture solution with a concentration of 85AIU/ml was obtained.
ml of this culture under reduced pressure at 50-60 °C.
Concentrate to 150ml, filter to remove impurity precipitate,
Thereafter, it was treated with 60% ethanol, the precipitate formed was removed by filtration, and the filtrate was concentrated. This concentrate was freeze-dried for 24 hours to give a concentration of 3×10 5 AIU/g.
6.4g of amylase inhibitor was obtained. Example 3 2 Using 10 flasks, Example 2
Culture was carried out in the same manner as above to obtain 3000 ml of culture solution.
This culture solution was concentrated to 1/10 under reduced pressure at 60-70°C, then treated with 90% ethanol, the formed precipitate was filtered off, the filtrate was concentrated again, and the formed concentrate was mixed with distilled water. and then lyophilized for 24 hours to obtain 10.2 g of amylase inhibitor with 4.7×10 5 AIU/g. Example 4 2% soluble starch, 0.5% polypeptone, 0.5% meat juice, and 0.3% soluble starch in 5 thin flasks.
Pour 400 ml of a medium with a pH of 7.0 containing % sodium chloride into each plate, sterilize it at 121°C for 15 minutes, and then inoculate 20 ml of Streptomyces sp. The cells were cultured at 28° C. for 3 days, and then the culture was separated into bacterial cells and a culture medium by centrifugation. 218 AIU/ml culture solution obtained in this way 1550
ml was concentrated to 1/10 under reduced pressure at 60-70°C,
The impurity precipitate was removed by filtration, and then the concentrate was treated with 90% methanol, the formed precipitate was filtered out again, and then the filtrate was concentrated to obtain a concentrate. This concentrate was dissolved in distilled water and freeze-dried for 36 hours, resulting in 8.2 g, which is 5.5 × 10 5 AIU/g.
amylase inhibitor was obtained. Example 5 2 In 5 flasks, 1% corn starch, 0.5% polypeptone, 0.5% meat juice,
Pour 400 ml of PH7.0 medium containing 0.3% sodium chloride into each plate, sterilize them at 121°C for 15 minutes, and inoculate each with 20 ml of Streptomyces sp. and 28℃
The cells were cultured for 4 days. Next, this culture solution was separated into bacterial cells and culture solution by centrifugation, and 1600 of culture solution with 186 AIU/ml was obtained.
ml was obtained, the culture solution was concentrated to 1/10, and the precipitate was removed by filtration. The concentrated solution was then treated with 90% ethanol, the resulting precipitate was filtered off again, and then the filtrate was concentrated to obtain a concentrate. This concentrate was dissolved in distilled water and freeze-dried for 42 hours.
9.8 g of amylase inhibitor, which is 5×10 5 AIU/g, was obtained. Example 6 Culture was carried out under the same conditions as in Example 5 except that a medium containing 1% corn starch was used. The culture solution had a concentration of 220 AIU/ml, and in this way, 12.0 g of amylase inhibitor was obtained. (5.8×
10 5 AIU/g) was obtained. Example 7 Five 2 flasks containing 2.5% soluble starch, 0.5% polypeptone, 0.5% yeast extract, and 0.3% sodium chloride, pH 6.0
Add 400 ml of culture medium adjusted to the above and sterilize it at 121°C for 15 minutes, then inoculate 20 ml of Streptomyces sp. did. Next, this culture was separated into bacterial cells and a culture solution by centrifugation to obtain a culture solution with a concentration of 2750 AIU/ml.
Obtained 1550ml. This culture solution was concentrated under reduced pressure at 60 to 70°C to obtain 200 ml of a concentrated solution, which was filtered to remove impurity precipitates and then treated with 90% ethanol. was concentrated. The concentrate was freeze-dried for 24 hours, resulting in 70×
An inhibitor of 10 5 AIU/g was obtained. After this inhibitory substance was dissolved again in distilled water, gel filtration was performed using a Sephadex G-10 column (1.8 x 30 cm). At this time, distilled water was used for elution, and only the active part was collected and freeze-dried.
0.8 g of amylase inhibitor which is 2.1×10 3 AIU/mg
I got it. Example 8 2 Using 10 flasks, Example 7
Cultured in the same manner as above, the yield was 3000 AIU/ml.
3000 ml of culture solution was obtained. The culture solution was then concentrated to 300 ml, then treated with 90% ethanol, the precipitate formed was filtered off, and the filtrate was concentrated to obtain a concentrate. This concentrate was redissolved in distilled water and then lyophilized for 24 hours to yield 7.1 x 10 5 AIU/g of inhibitor.
15.5g was obtained. This was dissolved in distilled water again, gel-filtered through a Cephadex G-10 column (2.1 x 30 cm), and only the active portion was collected and freeze-dried. As a result, 1.02 g of amylase inhibitor with a concentration of 2700 AIU/mg was obtained. I got it. Example 9 Culture was carried out in the same manner as in Example 8 except that 0.1% silicone A (manufactured by Sigma, trade name) was added as an antifoaming agent. As a result, inhibition was 7.3 × 10 5 AIU/g. 16.4 g of material was obtained. Further, using a Sephadex G-10 column (2.1 x 30 cm), 1.2 g of an amylase inhibitor having a concentration of 3100 AIU/mg was obtained in the same manner as in Example 8. Example 10 2.5% soluble starch, 0.5% polypeptone, 0.5% yeast extract,
Add 400 ml each of a medium containing 0.3% sodium chloride and 0.05% antifoaming agent and adjusted to pH 6.0.
After sterilizing this at 121℃ for 15 minutes, 20ml of the previously cultured bacterial solution was inoculated and cultured at 28℃ for 3 days. The resulting culture was centrifuged to obtain 3000ml of a culture solution with a concentration of 5250AIU/ml. Ta. This culture solution was heated to 60 to 70°C under reduced pressure (10 to 50 mm).
Concentrate to 1/10 under Hg), filter to remove impurities, treat it with 90% ethanol, filter out the formed precipitate, and concentrate the filtrate until ethanol is completely removed. . The concentrate was then freeze-dried to 7.5×10 5 AIU/
We obtained amylase inhibitor g. As a result of gel filtration through a Sephadex G-10 column (1.8 x 40 cm), 1.70 g of an amylase inhibitor with a concentration of 3300 AIU/mg was obtained. Obtained inhibitor
Transfer 1.70 g to a Cephadex G-25 column (2.6 x 60
As a result of gel filtration through cm), 15200AIU/mg
350 mg of inhibitor was obtained. Characteristics of changes in blood sugar level Animal experiments were conducted using the amylase inhibitor obtained in Example 10. The animals used were mice weighing 17 to 20 g. Hyperglycemia was induced in groups of five mice, and changes in blood glucose levels of these mice were measured at intervals of 5, 15, and 30 minutes. To induce hyperglycemia, add 2.5 g of starch or 2.5 g of maltose/
Orally administered at a dose of Kg mice or 5.0
Sutucarose was orally administered to g/Kg mice. Blood sugar levels were measured using glucose oxidase.

【衚】【table】

【衚】【table】

【衚】 毒性実隓 実斜䟋10で埗たアミラヌれ阻害物質を䜿甚しお
毒性実隓を行぀た。䜿甚した動物は17〜20のマ
りスで、匹を䞀矀にしおアミラヌれ阻害物質を
3000〜3000000AIUKgマりスの甚量で䜿甚し
た。芳察の結果、死亡したマりスは認められず、
たた特別な症状も芋い出されなか぀た。 䜓重倉化に関する詊隓 実斜䟋10で埗たアミラヌれ阻害物質を濃床別に
マりスの飌料に混合しお投䞎した埌にマりスの䜓
重の倉化を枬定した。䜿甚したマりスの䜓重は17
〜20で、匹を䞀矀にしお玄60日間䜓重の倉化
を芳察した結果、アミラヌれ阻害物質が
3000AIUの堎合には42日埌に少しづ぀䜓重
の枛少が認められ、アミラヌれ阻害物質が
9000AIUの堎合には21日埌に䜓重の枛少が
認められた。 次の衚にマりスの䜓重の枛少を瀺す。
[Table] Toxicity experiment A toxicity experiment was conducted using the amylase inhibitor obtained in Example 10. The animals used were mice weighing 17 to 20 g, and groups of 5 were treated with amylase inhibitors.
A dose of 3000-3000000 AIU/Kg mouse was used. As a result of observation, no dead mice were observed.
Also, no special symptoms were found. Test on body weight change After administering the amylase inhibitors obtained in Example 10 by mixing them into mouse feed at different concentrations, changes in the body weight of mice were measured. The weight of the mouse used was 17
~20g, and as a result of observing changes in body weight for about 60 days in groups of 5 animals, it was found that amylase inhibitors
In the case of 3000 AIU/g, a gradual decrease in body weight was observed after 42 days, and amylase inhibitor
In the case of 9000 AIU/g, a decrease in body weight was observed after 21 days. Table 7 below shows the weight loss (%) of the mice.

【衚】 実斜䟋10で埗たアミラヌれ阻害物質は次の特性
を瀺した。 (1) 分子量 アミラヌれ阻害物質の分子量を枬定するため
に、アミラヌれ阻害物質をセフアデツクス−
25カラムを䜿甚しおゲル濟過し、薄局クロマト
グラフむヌにより展開させた結果、分子量は
700〜1500であるこずが分぀た。この際、展開
溶媒ずしお゚チルアセテヌトメタノヌル氎
271523の混合物を䜿甚した。 (2) PH安定性 PH〜12たでの溶液にアミラヌれ阻害物質を
加え、37℃で30分間反應させた埌に、人䜓の唟
液アミラヌれに察する掻性を枬定した。この結
果、酞性、䞭性、及び塩基性のいずれにおいお
も安定であ぀た第図参照。 (3) 熱安定性 PH7.0の䞭性溶液にのアミラヌれ阻害物
質を添加し、100℃で30〜120分加熱した埌に冷
华し、人䜓の唟液アミラヌれに察する掻性を枬
定した。この結果、30分加熱の時は党く安定で
あり、120分加熱の時でも85の掻性を瀺した
第図参照。 (4) 他のアミラヌれに察する阻害効果 ヒトの唟液アミラヌれのほかに现菌、かび等
の埮生物が産生するアミラヌれに察しおも阻害
特性を詊隓した結果、次の衚に瀺すように埮
生物アミラヌれに察しおは50未満の阻害床を
瀺したが、豚の膵臓アミラヌれ、ヒトの唟液の
アミラヌれ等の動物アミラヌれに察しおは90
以䞊の顕著な阻害効果を瀺した。
[Table] The amylase inhibitor obtained in Example 10 exhibited the following properties. (1) Molecular weight In order to measure the molecular weight of amylase inhibitors, amylase inhibitors are
As a result of gel filtration using a 25 column and development by thin layer chromatography, the molecular weight was
It turned out to be between 700 and 1500. At this time, a mixture of ethyl acetate:methanol:water=27:15:23 was used as a developing solvent. (2) PH stability An amylase inhibitor was added to a solution with a pH of 2 to 12, and after incubation at 37°C for 30 minutes, the activity against human salivary amylase was measured. As a result, it was stable in all acidic, neutral, and basic conditions (see Figure 1). (3) Thermostability 1% amylase inhibitor was added to a neutral solution with a pH of 7.0, heated at 100°C for 30 to 120 minutes, then cooled, and the activity against human salivary amylase was measured. As a result, it was completely stable when heated for 30 minutes, and showed 85% activity even when heated for 120 minutes (see Figure 2). (4) Inhibitory effect on other amylases In addition to human salivary amylase, we tested the inhibitory properties against amylase produced by microorganisms such as bacteria and fungi. showed less than 50% inhibition, but 90% inhibition against animal amylases such as porcine pancreatic amylase and human salivary amylase.
The above-mentioned remarkable inhibitory effects were demonstrated.

【衚】 (5) アミラヌれ阻害物質の化孊的特性 本発明に係るアミラヌれ阻害物質の化孊的特
性は、次の衚に瀺すように、゚ル゜ン−モル
ガン反應に察しお陜性である点のほか、赀倖線
吞収スペクトルがオリゎ糖類の吞収波長におけ
る特性ず類䌌しおいる点においおもマルトペン
トヌスmaltopentoseず類䌌であ぀た第
図参照。 たた、還元糖枬定倀は塩酞による加氎分解埌
に顕著に増倧するこずが分぀た。 䞊述の結果から、本発明に係るアミラヌれ阻害
物質は〜個の糖化合物から構成され、玔粋な
糖ではなく、ヘテロオリゎ糖
heterooligoaccharideであるこずが分る。た
た、本発明に係るアミラヌれ阻害物質は糖ずアミ
ノ酞ずが結合した圢態のものであるず思われる。
又、氎のみに可溶性であり、メタノヌル、゚タノ
ヌル等には䞍溶性である。
[Table] (5) Chemical properties of the amylase inhibitor The chemical properties of the amylase inhibitor according to the present invention are as shown in Table 9 below. It was also similar to maltopentose in that its absorption spectrum was similar to the absorption wavelength characteristics of oligosaccharides (see Figure 3). It was also found that the measured reducing sugar values increased significantly after hydrolysis with hydrochloric acid. From the above results, it can be seen that the amylase inhibitor according to the present invention is composed of 3 to 6 sugar compounds and is not a pure sugar but a heterooligoaccharide. Furthermore, the amylase inhibitor according to the present invention is thought to be in the form of a sugar and an amino acid bonded together.
Moreover, it is soluble only in water and insoluble in methanol, ethanol, etc.

【衚】【table】

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明方法により補造したアミラヌれ
阻害物質の䞀䟋の安定性を瀺すグラフ、第図は
本発明方法により補造したアミラヌれ阻害物質の
䞀䟋の熱安定性を瀺すグラフ、第図は本発明方
法により補造したアミラヌれ阻害物質の䞀䟋の赀
倖スペクトルを瀺す図である。
FIG. 1 is a graph showing the stability of an example of an amylase inhibitor produced by the method of the present invention, FIG. 2 is a graph showing the thermostability of an example of an amylase inhibitor produced by the method of the present invention, and FIG. FIG. 2 is a diagram showing an infrared spectrum of an example of an amylase inhibitor produced by the method of the invention.

Claims (1)

【特蚱請求の範囲】  むヌスト・麊芜寒倩培地においお癜色の気生
菌糞を生成し、オヌトミル寒倩培地においお胞子
を担持する波圢圢態の気生菌糞を生成し、−グ
ルコヌスに察しお炭玠源の同化性を瀺さず、アミ
ラヌれ阻害物質産生胜を有するこずを特城ずする
ストレプトマむセスsp.Y−125KCTC8387P、
ATCC53890。  ストレプトマむセスsp.Y−125
KCTC8387P、ATCC53890の菌株を培逊し、
その培逊物からアミラヌれ阻害物質を分離するこ
ずを特城ずするアミラヌれ阻害物質の補造方法。
[Scope of Claims] 1. Produces white aerial mycelium on a yeast malt agar medium, produces corrugated aerial mycelia carrying spores on an oatmilk agar medium, and assimilates carbon sources for D-glucose. Streptomyces sp. Y-125 (KCTC8387P,
ATCC53890). 2 Streptomyces sp.Y−125
(KCTC8387P, ATCC53890) strains were cultured,
A method for producing an amylase inhibitor, which comprises separating the amylase inhibitor from the culture.
JP1171752A 1988-08-09 1989-07-03 Novel microbe streptomyces sp. y-125 and amirase inhibitor substance produced from it Granted JPH02131571A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019880010151A KR900007643B1 (en) 1988-08-09 1988-08-09 Novel microorganism streptomyces sp.y-125
KR88-10151 1988-08-09

Publications (2)

Publication Number Publication Date
JPH02131571A JPH02131571A (en) 1990-05-21
JPH0517831B2 true JPH0517831B2 (en) 1993-03-10

Family

ID=19276821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171752A Granted JPH02131571A (en) 1988-08-09 1989-07-03 Novel microbe streptomyces sp. y-125 and amirase inhibitor substance produced from it

Country Status (2)

Country Link
JP (1) JPH02131571A (en)
KR (1) KR900007643B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1026239C2 (en) * 2004-05-19 2005-11-22 Ten Cate Thiolon Bv Method for manufacturing a plastic fiber for use in an artificial grass sports field as well as such a plastic fiber.
CN114540213B (en) * 2021-11-11 2024-03-19 䞭囜热垊农䞚科孊院海口实验站 Actinomycetes with antibacterial activity and application thereof

Also Published As

Publication number Publication date
KR900003360A (en) 1990-03-26
JPH02131571A (en) 1990-05-21
KR900007643B1 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
JPS6216638B2 (en)
IE893482L (en) The glycosidase inhibitor salbostatin, process for its¹preparation, and its use
US3919049A (en) Process for preparing {62 -galactosidase
US4010258A (en) Microbial amylase inhibitor and preparation thereof with the use of streptomyces diasticus var. amylostaticus
EP0468411B1 (en) A mutant of bacterium Clostridium histolyticum, a process for the obtaining thereof, and its use in the production of clostripain-free collagenase
FR2520379A1 (en) PROCESS FOR THE PREPARATION OF A DISACCHARIDE-TRIPEPTIDE AND A DISACCHARIDE-TETRAPEPTIDE HAVING IMMUNOSTIMULANT PROPERTIES
JPS59118712A (en) Antitumor agent and its preparation
DK143906B (en) PROCEDURE FOR THE PREPARATION OF AMYLASE BY CULTIVATION OF A STREPTOMYCY STOCK IN A NUTRITIONAL SUBSTANCE CONTAINING CARBON AND NITROGEN SOURCES
US3806421A (en) Amylase inhibitor and method of producing the same
US4229539A (en) β-Galactosidase and production thereof
JPH0517831B2 (en)
JPS6147515B2 (en)
JPS611384A (en) Preparation of n-acetylneuraminic lyase
JPS6178396A (en) Novel alpha-glucosidase inhibitor and its production
US4197292A (en) Novel amylase inhibitors
JP2688854B2 (en) Method for producing α-galactosidase with strong transglycosylation activity
DE2164018A1 (en) Process for the biotechnological production of uricase
JP3107455B2 (en) New antibiotic MI481-42F4-A and method for producing the same
JPH0795947B2 (en) Method for producing α-1,3-glucanase
JPS60188066A (en) Novel collagenase discolysin and its preparation
JPH01153693A (en) Modification of soybean oligosaccharide
JPH01110653A (en) Fungicidal fermentation product and composition
JPH0112474B2 (en)
JPS5912274B2 (en) Method for producing an enzyme that decomposes α-1,3-glucoside bonds
KR840000934B1 (en) Process for preparing antibiotic sf-2080 a and sf-2080 b