JPH05177512A - During-cutting surface roughness judging method - Google Patents

During-cutting surface roughness judging method

Info

Publication number
JPH05177512A
JPH05177512A JP191492A JP191492A JPH05177512A JP H05177512 A JPH05177512 A JP H05177512A JP 191492 A JP191492 A JP 191492A JP 191492 A JP191492 A JP 191492A JP H05177512 A JPH05177512 A JP H05177512A
Authority
JP
Japan
Prior art keywords
cutting
ultrasonic
surface roughness
ultrasonic probe
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP191492A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yuzaki
芳啓 湯崎
Minoru Yashima
実 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP191492A priority Critical patent/JPH05177512A/en
Publication of JPH05177512A publication Critical patent/JPH05177512A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To accurately carry out surface roughness judgment during cutting for providing a judging method suitable as a machining abnormality detecting system during unmanned operation by obliquely applying ultrasonic waves to a cutting part through a liquid medium, and also by detecting the reflected waves from the cutting part. CONSTITUTION:A work to be cut 1 is cut by a cutting tool 2 that has been fitted to a tool holder 3. In this case, a chamber in which cutting oil 6 has been filled is formed on the work 1 on the opposite side of the cutting tool 2, and herein a probe holder 7 for holding a ultrasonic probe 4 is arranged. To this ultrasonic probe 4, a ultrasonic transmitter 9 and a receiver 10, and the others are connected. The ultrasonic waves from the ultrasonic probe 4 are obliquely applied to the cutting part through cutting oil 6, and also the reflected waves from the cutting part are detected by the ultrasonic probe 4. Further, the detected signals are compared with a voltage-roughness conversion table by means of a computer 14 for judging the surface roughness. On the other hand, in accordance with the result of the surface-roughness judgment, a machine tool is controlledly driven by a control unit 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の無人化運転
に要求される切削面精度監視のための表面粗さ判定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface roughness determination method for monitoring the cutting surface accuracy required for unmanned operation of machine tools.

【0002】[0002]

【従来の技術】工作機械の無人運転を行う場合、加工不
良品を最小に抑えるために、所定の切削面粗度が損なわ
れた際に即座に警報を発するシステムが要求されてい
る。このため、多方面で研究がなされ、例として、空気
リーク法とか高応答触針法、各種光学法(産業工具事典
(産業調査会発行))などが提案されている。ところ
が、いわゆる空気リーク法とか高応答触針法は、通常の
切削速度で回転しているものへの使用が困難であり、ま
た、光学法はその性質上切削油、煙、等の切削環境下で
の信頼性が不十分であり、実用例が非常に少ない。
2. Description of the Related Art When operating a machine tool unattended, there is a demand for a system for immediately issuing an alarm when a predetermined cutting surface roughness is impaired in order to minimize defective products. For this reason, research has been conducted in various fields, and as examples, an air leak method, a high response stylus method, various optical methods (Industrial Tool Encyclopedia (published by the Industrial Research Board)), etc. have been proposed. However, the so-called air leak method and high-response stylus method are difficult to use for those that rotate at normal cutting speed, and the optical method is characteristically used under cutting environment such as cutting oil, smoke, etc. Insufficient reliability and very few practical examples.

【0003】[0003]

【発明が解決しようとする課題】上述の従来方法にあっ
て、最も有望視されていた光学式粗さ計測方法が普及し
ていないのは、上述の如く切削面に切削油が付着すると
信頼性が著しく欠けることに基づく。本発明者らは、切
削油の影響を受けない方法を追求した結果、切削油を逆
に積極的に利用する方法を考察した。
Among the above-mentioned conventional methods, the most promising optical roughness measuring method is not widely used because the reliability of the cutting oil adhered to the cutting surface as described above. Based on the significant lack of. As a result of pursuing a method that is not affected by cutting oil, the present inventors considered a method of positively utilizing cutting oil.

【0004】本発明は切削環境下にて高精度に切削面粗
度をモニタリングする方法を開発した新たな切削中の表
面粗さ判定方法の提供を目的とする。
An object of the present invention is to provide a new method for determining surface roughness during cutting, which has developed a method for monitoring the roughness of the cutting surface with high accuracy in a cutting environment.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、切削加工中に液体媒質を介して切削部に超音波
を斜めに入射させ、ついでこの切削部表面からの反射波
を検出してその検出値を得ることを特徴とする。
According to the present invention for achieving the above object, an ultrasonic wave is obliquely incident on a cutting portion through a liquid medium during cutting, and then a reflected wave from the surface of the cutting portion is detected. Then, the detected value is obtained.

【0006】[0006]

【作用】切削部表面を切削油等にて満たした部屋を作
り、この切削油を介して超音波を切削部に放射し、戻っ
てきた表面乱反射成分を検出し、検出レベルにて切削面
粗度を判定したものである。
[Function] Creates a room in which the cutting surface is filled with cutting oil, etc., radiates ultrasonic waves to the cutting section through this cutting oil, detects the surface irregular reflection components that have returned, and cuts surface roughness at the detection level. The degree is judged.

【0007】[0007]

【実施例】ここで、図1〜図3を参照して本発明方法の
実施例を説明する。図1は実施例方法のための構成図で
ある。図において、1は被削物であり、工具ホルダ3に
取付けられた切削工具2により切削加工されている。他
方、切削工具2が位置する側と反対の側には、切削油6
が満たされた部屋を形成し超音波探触子4が保持される
探触子ホルダ7が備えられている。この場合、超音波5
は切削部に対して斜めに入射するように超音波探触子4
により放射される。また、8は切削油6の供給をオン/
オフするためのバルブである。
EXAMPLES Examples of the method of the present invention will now be described with reference to FIGS. FIG. 1 is a block diagram for an example method. In the figure, reference numeral 1 is a work piece, which is cut by a cutting tool 2 attached to a tool holder 3. On the other hand, on the side opposite to the side where the cutting tool 2 is located, the cutting oil 6
Is provided with a probe holder 7 that forms a room filled with the ultrasonic probe 4 and holds the ultrasonic probe 4. In this case, ultrasonic wave 5
The ultrasonic probe 4 so that it enters the cutting part at an angle.
Emitted by. Also, 8 turns on the supply of cutting oil 6 /
It is a valve for turning off.

【0008】9は超音波探触子4に接続された超音波送
信器、10は同じく超音波探触子4に接続された超音波
受信器である。この超音波受信器10に接続されたゲー
ト回路11は、切削部表面からの反射波のみを検出する
ものである。12はA/D変換器、13はコンピュータ
接続のためのインターフェース、14はコンピュータ、
15は工作機械の制御部である。
Reference numeral 9 is an ultrasonic transmitter connected to the ultrasonic probe 4, and 10 is an ultrasonic receiver similarly connected to the ultrasonic probe 4. The gate circuit 11 connected to the ultrasonic receiver 10 detects only the reflected wave from the surface of the cutting portion. 12 is an A / D converter, 13 is an interface for computer connection, 14 is a computer,
Reference numeral 15 is a control unit of the machine tool.

【0009】かかる図1に示す構造によれば、超音波送
信器9で発生されたパルス電圧を探触子4に印加する
と、切削油6の中に超音波が放射され、被削面に到達す
る。ここで大部分は鏡面反射するが、極く一部は表面状
態により微弱な乱反射成分となり探触子の方向に逆戻り
する。この逆戻りする超音波を探触子4で検出し、受信
器10で増幅する。次いで、ゲート回路11で有効信号
のみ取り出し(受信々号の中には探触子ホルダ7の内部
で反射したノイズエコーも含まれるが、伝播時間より、
表面から反射した信号のみ抽出する)、その電圧をA/
D変換器12にてディジタル信号に変換し、インターフ
ェース13を介してコンピュータ14に入力する。コン
ピュータは入力信号の電圧を予め登録している電圧−粗
さ変換表と対応させて、表面粗さを判定する。もし、異
常値であれば工作機械の制御装置15に加工停止の指令
を出力する。
According to the structure shown in FIG. 1, when the pulse voltage generated by the ultrasonic transmitter 9 is applied to the probe 4, ultrasonic waves are radiated into the cutting oil 6 and reach the work surface. .. Here, most of the light is specularly reflected, but a very small amount of it becomes a weak diffuse reflection component due to the surface condition and returns to the direction of the probe. This returning ultrasonic wave is detected by the probe 4 and amplified by the receiver 10. Next, the gate circuit 11 extracts only the effective signal (the received signal also includes the noise echo reflected inside the probe holder 7, but from the propagation time,
Only the signal reflected from the surface is extracted), and the voltage is A /
The digital signal is converted by the D converter 12 and input to the computer 14 via the interface 13. The computer determines the surface roughness by associating the voltage of the input signal with a voltage-roughness conversion table registered in advance. If it is an abnormal value, a machining stop command is output to the control device 15 of the machine tool.

【0010】図2、図3は被削材の面粗度と、反射レベ
ル測定結果を示す。即ち、図2は、(1)で示す直径1
10mmのステンレス鋼丸棒を旋盤で旋削する際に、途中
で工具を取替えながら加工して、図2の(2)(3)
(4)に見られるように表面粗さを3段階に変化させた
様子を示している。この加工を行った際に、周波数12
MHz 、振動子径6.3mm、焦点距離25mmの探触子4を
用いて、入射角40°、増幅度48dBの条件で表面反射
波を検出し、そのアナログ出力をペン書きレコーダに出
力させた。図3はその結果である。
2 and 3 show the surface roughness of the work material and the result of the reflection level measurement. That is, FIG. 2 shows a diameter of 1 shown in (1).
When turning a 10 mm stainless steel round bar with a lathe, change the tool in the middle of the process and process (2) (3) in Fig. 2.
As shown in (4), the surface roughness is changed in three stages. When this processing is performed, frequency 12
Using the probe 4 with MHz, transducer diameter 6.3 mm and focal length 25 mm, the surface reflected wave was detected under the conditions of incident angle 40 ° and amplification degree 48 dB, and the analog output was output to the pen writing recorder. .. FIG. 3 shows the result.

【0011】表面粗さが約6.5sのA部では、エコー
レベルは約1.5V、表面粗さが2.6sのB部では約
0.7V、表面粗さが約1.6sのC部ではエコーレベ
ルは約0.3Vという具合に明瞭に変化しており、表面
粗度変化は確実に検出できる。
The echo level is about 1.5 V at the A portion where the surface roughness is about 6.5 s, and about 0.7 V at the B portion where the surface roughness is 2.6 s, and the C is about 1.6 s. In the area, the echo level is clearly changed to about 0.3 V, and the change in surface roughness can be reliably detected.

【0012】なお、表面粗さと表面エコーレベルの関係
は入射角によって異なるが、上仕上げ面を監視する場
合、25°以下の入射角では変化量が小さく、30°〜
45°程度が適切である。また、この実施例では切削油
として水溶性切削液を用いたが、切削液を用いない加工
機では防錆剤を添加した水を利用しても良い。
The relationship between the surface roughness and the surface echo level varies depending on the incident angle, but when the top-finished surface is monitored, the change amount is small at an incident angle of 25 ° or less, which is 30 ° to
About 45 ° is suitable. Further, although water-soluble cutting fluid was used as the cutting oil in this example, water containing a rust preventive agent may be used in a processing machine that does not use the cutting fluid.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、切
削環境下においても信頼度の高い粗さ計測が行なえるた
め、無人運転中の加工異常検知システムとして有用であ
る。
As described above, according to the present invention, since highly reliable roughness measurement can be performed even in a cutting environment, it is useful as a machining abnormality detection system during unmanned operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例説明のための構成図。FIG. 1 is a configuration diagram for explaining an embodiment of a method of the present invention.

【図2】本発明方法の実施例の検証に用いた被削物の説
明図。
FIG. 2 is an explanatory diagram of a work piece used for verification of an embodiment of the method of the present invention.

【図3】図2に示す被削物の測定結果を示す波形図。FIG. 3 is a waveform chart showing measurement results of the work piece shown in FIG.

【符号の説明】[Explanation of symbols]

1 被削物 4 超音波探触子 6 切削油 7 探触子ホルダ 9 超音波送信器 10 超音波受信器 11 ゲート回路 12 A/D変換器 13 インターフェース 14 コンピュータ 15 工作機械の制御装置 1 Workpiece 4 Ultrasonic probe 6 Cutting oil 7 Probe holder 9 Ultrasonic transmitter 10 Ultrasonic receiver 11 Gate circuit 12 A / D converter 13 Interface 14 Computer 15 Machine tool control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 切削加工中に液体媒質を介して切削部に
超音波を斜めに入射させ、ついでこの切削部表面からの
反射波を検出してその検出値を得る切削中の表面粗さ判
定方法。
1. Surface roughness determination during cutting, in which ultrasonic waves are obliquely incident on a cutting portion through a liquid medium during cutting, and then a reflected wave from the surface of the cutting portion is detected to obtain a detected value. Method.
JP191492A 1992-01-09 1992-01-09 During-cutting surface roughness judging method Withdrawn JPH05177512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP191492A JPH05177512A (en) 1992-01-09 1992-01-09 During-cutting surface roughness judging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP191492A JPH05177512A (en) 1992-01-09 1992-01-09 During-cutting surface roughness judging method

Publications (1)

Publication Number Publication Date
JPH05177512A true JPH05177512A (en) 1993-07-20

Family

ID=11514854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP191492A Withdrawn JPH05177512A (en) 1992-01-09 1992-01-09 During-cutting surface roughness judging method

Country Status (1)

Country Link
JP (1) JPH05177512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463994B2 (en) 2004-09-10 2008-12-09 Okayama University Method and device for detecting surface state of work piece
CN110064971A (en) * 2016-04-28 2019-07-30 株式会社捷太格特 Machine tool system and Surface Roughness Detecting Method
US10502563B2 (en) 2017-05-10 2019-12-10 Fanuc Corporation Measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463994B2 (en) 2004-09-10 2008-12-09 Okayama University Method and device for detecting surface state of work piece
CN110064971A (en) * 2016-04-28 2019-07-30 株式会社捷太格特 Machine tool system and Surface Roughness Detecting Method
US10502563B2 (en) 2017-05-10 2019-12-10 Fanuc Corporation Measurement device
DE102018002838B4 (en) 2017-05-10 2021-11-11 Fanuc Corporation Measuring device

Similar Documents

Publication Publication Date Title
US7397421B2 (en) Method for detecting acoustic emission using a microwave Doppler radar detector
US5426980A (en) Booted ultrasonic transducer
JPH0436824B2 (en)
WO2006038910A3 (en) Method and device for ultrasonic vibration detection during high-performance machining
CA2052389A1 (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US4137778A (en) Method and apparatus for producing ultrasonic waves in light absorbing surfaces of workpieces
CA2042649A1 (en) Ultrasonic Measurement Apparatus and Method
US4241430A (en) Method and apparatus for determining the length of tubular members
WO2003042707A3 (en) System and method for sensing and locating disturbances in an energy path of a focused ultrasound system
US4738139A (en) Ultrasonic real-time monitoring device for part surface topography and tool condition in situ
JPS5750653A (en) Test piece for ultrasonic flaw detection
JPH05177512A (en) During-cutting surface roughness judging method
US3888114A (en) Verification means for shear wave ultrasonic inspection system
CA2012374C (en) Ultrasonic crack sizing method
Abu-Zahra et al. Calibrated method for ultrasonic on-line monitoring of gradual wear during turning operations
JP2786512B2 (en) Tool error detection method
KR20060004956A (en) Systems and methods for non-contact measuring sputtering target thickness using ultrasonics
US5850184A (en) Ultrasonic tool confirmation sensor
JP2764048B2 (en) Fluid propagation AE detection method and apparatus
US4510811A (en) Method for distinguishing between interfering signals and signals indicating defects of workpieces during ultrasonic testing
JPH038581A (en) Welding state monitoring device
US20030060920A1 (en) Detection of vibrations in mechanical systems
GB2130368A (en) Liquid change detector
GB2129130A (en) Fluid temperature change detector
GB2281393A (en) Gas acoustic distance measuring probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408