JPH05177451A - Manufacture of metal probe - Google Patents

Manufacture of metal probe

Info

Publication number
JPH05177451A
JPH05177451A JP35892791A JP35892791A JPH05177451A JP H05177451 A JPH05177451 A JP H05177451A JP 35892791 A JP35892791 A JP 35892791A JP 35892791 A JP35892791 A JP 35892791A JP H05177451 A JPH05177451 A JP H05177451A
Authority
JP
Japan
Prior art keywords
probe
base material
metal
metal base
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35892791A
Other languages
Japanese (ja)
Inventor
Junji Masai
純次 正井
Sadako Shibata
禎子 柴田
Shunzo Kondo
俊三 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP35892791A priority Critical patent/JPH05177451A/en
Publication of JPH05177451A publication Critical patent/JPH05177451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To provide an industrially advantageous method for manufacturing an excellent metal probe in which the curvature radius of the probe top end part is extremely small, and the length of the electrolytic part of the probe is equal to or less than the diameter of the probe. CONSTITUTION:In a method for manufacturing a metal probe by dipping the top end part of a probe metal base material 4 in an electrolyte 3 and electrolytically polishing it, the metal base material 4 is lowered substantially following the lowering of the meniscus surface 3' of the electrolyte formed along the metal base material 4, and the meniscus surface 3' of the electrolyte 3 is regularly kept on the boundary between a part 4' to be polished and an unpolished part thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属探針の作製方法に
関するものであり、詳しくは、金属探針の先端部の曲率
半径が極めて小さく、且つ、探針の電解部の長さがその
直径と同程度ないしはそれ以下である優れた金属探針の
工業的有利な作成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal probe, and more specifically, the radius of curvature of the tip of the metal probe is extremely small and the length of the electrolytic portion of the probe is very small. The present invention relates to an industrially advantageous method for producing an excellent metal probe having a diameter equal to or smaller than the diameter.

【0002】[0002]

【従来の技術】各種の走査型プローブ顕微鏡(Scanning
Probe Microscope )等においては、試料表面構造の観
察・評価や操作・加工のために、極めて鋭い先端形状を
有する金属探針が使用される。特に、近年、装置と開発
が活発となっている走査型トンネル顕微鏡(Scanning T
unneling Microscop、以下「STM」と略す)等の分野
では、ナノメートルレベルの曲率半径を有する極めて鋭
利な金属探針の開発が不可欠である。
2. Description of the Related Art Various scanning probe microscopes (Scanning
In Probe Microscope) and the like, a metal probe having an extremely sharp tip shape is used for observing / evaluating the sample surface structure, operating / processing. In particular, the scanning tunnel microscope (Scanning T
In fields such as unneling Microscop (hereinafter abbreviated as “STM”), it is essential to develop an extremely sharp metal probe having a radius of curvature on the nanometer level.

【0003】従来より、金属探針の作製方法としては、
各種の方法が知られているが、最もよく利用される方法
は、電解研磨法を利用した作成方法である。上記の作成
方法は2種類に大別され、その1つは、電解液と非電解
液より成る2相系溶液中で探針母材の一部を完全に電解
反応を終了させる方法であり、他の1つは、電解研磨反
応が電解液と大気との界面に至るまで反応を放置し、電
解液中の母材減少に伴う電解電流の減少あるいは電流の
停止で電解研磨を止める方法である。
Conventionally, as a method of manufacturing a metal probe,
Although various methods are known, the most commonly used method is a preparation method using an electrolytic polishing method. The above-mentioned preparation methods are roughly classified into two types, one of which is a method of completely terminating the electrolytic reaction of a part of the probe base material in a two-phase system solution composed of an electrolytic solution and a non-electrolytic solution, The other one is a method in which the electropolishing reaction is allowed to stand until it reaches the interface between the electrolytic solution and the atmosphere, and the electrolytic polishing is stopped by decreasing the electrolytic current or stopping the current due to the decrease of the base material in the electrolytic solution. ..

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法は、何れも、電解最終時の物理的諸条件の変動(電
解液と大気との界面での探針先端形による電圧、電流の
微小な変動)のため、特に、探針先端部の形状の先鋭化
(先端部の曲率半径の極小化)及びその再現性に問題が
ある。再現性の確保のためには、電解研磨時の電流や電
圧変動等を常時モニターし、それらを安定化させるべく
フィードバック制御する方法が考えられるが、そのため
には、モニター及びフィードバック制御のための高価な
設備を必要とし、そればかりか、先端部の曲率半径の極
小化にも限度がある。
However, in any of the above-mentioned methods, fluctuations in physical conditions at the end of electrolysis (fine voltage and current due to the tip shape of the probe at the interface between the electrolyte and the atmosphere) Therefore, there is a problem in sharpening the shape of the tip of the probe (minimizing the radius of curvature of the tip) and its reproducibility. In order to ensure reproducibility, it is conceivable to constantly monitor current and voltage fluctuations during electropolishing and perform feedback control to stabilize them, but this requires expensive monitoring and feedback control. Various equipment is required, and there is a limit to the minimization of the radius of curvature of the tip.

【0005】また、STM等において、高分解能の像を
得るためには、探針先端部の曲率半径が極めて小さいこ
との他に、走査中に外部からの振動等の影響を避けるた
め、金属探針の固有振動数が高いことが必要である。そ
して、金属探針の固有振動数を高くするためには、金属
探針の電解部の長さがその直径と同程度であることが望
ましい。
In addition, in order to obtain a high resolution image in STM or the like, in addition to the radius of curvature of the tip of the probe being extremely small, in order to avoid the influence of external vibration during scanning, the metal probe is used. It is necessary that the natural frequency of the needle is high. In order to increase the natural frequency of the metal probe, it is desirable that the length of the electrolytic portion of the metal probe be about the same as its diameter.

【0006】しかしながら、従来の方法では、上記の2
つの条件を同時に満足した金属探針の作成は極めて困難
である。例えば、特開平1−135430号公報には、
被研磨部分と電解液と接触させながら金属母材を引上げ
る方法が開示されているが、この方法では、探針先端部
の曲率半径を十分に極小化できす、また、探針の電解部
の長さが大きくなり易い。本発明は、上記実情に鑑みな
されたものであり、その目的は、金属探針の先端部の曲
率半径が極めて小さく、且つ、探針の電解部の長さがそ
の直径と同程度ないしはそれ以下である優れた金属探針
の工業的有利な作成方法を提供することにある。
However, in the conventional method, the above-mentioned 2
It is extremely difficult to create a metal probe that satisfies the two conditions at the same time. For example, in Japanese Patent Laid-Open No. 1-135430,
Although a method of pulling up the metal base material while contacting the portion to be polished with the electrolytic solution is disclosed, this method can sufficiently minimize the radius of curvature of the tip portion of the probe, and the electrolytic portion of the probe is also minimized. Is likely to be large. The present invention has been made in view of the above circumstances, and an object thereof is that the radius of curvature of the tip portion of the metal probe is extremely small, and the length of the electrolytic portion of the probe is equal to or less than its diameter. Another object of the present invention is to provide an industrially advantageous method for producing an excellent metal probe.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の要旨
は、探針用金属母材の先端部を電解液に浸漬し電解研磨
して金属探針を作製する方法において、金属母材に沿っ
て形成された電解液のメニスカス表面の下降に実質的に
追従させて金属母材を下降させることを特徴とする金属
探針の作製方法に存する。
That is, the gist of the present invention is to provide a method for producing a metal probe by immersing the tip of a probe metal base material in an electrolytic solution and electrolytically polishing the metal base material. The method for producing a metal probe is characterized in that the metal base material is moved down substantially following the downward movement of the surface of the meniscus of the formed electrolyte solution.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の実施例を説明する電解研磨装置の
模式断面図である。図中、(1)は交流電源、(2)は
電極、(3)は電解液、(4)は探針用金属母材、
(5)は実体顕微鏡、(6)は交流電流計、(7)は交
流電圧計、(8)は探針ホルダー、(9)はホルダー位
置微調整器である。(1)として直流電源を使用する場
合は、(6)は直流電流計、(7)は直流電圧計とな
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of an electrolytic polishing apparatus for explaining an embodiment of the present invention. In the figure, (1) is an AC power supply, (2) is an electrode, (3) is an electrolytic solution, (4) is a metal base material for a probe,
(5) is a stereomicroscope, (6) is an AC ammeter, (7) is an AC voltmeter, (8) is a probe holder, and (9) is a holder position fine adjuster. When a DC power source is used as (1), (6) is a DC ammeter and (7) is a DC voltmeter.

【0009】本発明において、電解液(3)としては、
NaOH、KOH、KNO3 等が使用され、探針用金属
母材(4)の材料としては、タングステン(W)、白金
(Pt)等が使用される。
In the present invention, the electrolytic solution (3) is
NaOH, KOH, KNO 3 or the like is used, and tungsten (W), platinum (Pt) or the like is used as the material of the probe metal base material (4).

【0010】本発明の金属探針の作製方法は次のように
実施される。先ず、電極(2)と研磨すべき探針用金属
母材(4)の先端部とを電解液(3)に浸漬する。電極
(2)としては、例えば、炭素棒を使用することがで
き、その寸法は、一例として、直径7mm、長さ5cm
である。探針用金属母材(4)としては、例えば、タン
グステン製円柱棒を使用することができ、その寸法は、
一例として、直径0.25mm、長さ3cmである。ま
た、電解液(3)としては、例えば、1N−NaOHを
使用することが出来る。探針用金属部材(4)は、その
先端の浸漬部分が例えば約2mmになるように、探針ホ
ルダー(8)やホルダー位置微調整器(9)で調節され
る。そして、実体顕微鏡(5)の焦点を探針浸漬部分に
合わせる。
The method of manufacturing the metal probe of the present invention is carried out as follows. First, the electrode (2) and the tip of the probe metal base material (4) to be polished are immersed in the electrolytic solution (3). As the electrode (2), for example, a carbon rod can be used, and its dimensions are, for example, a diameter of 7 mm and a length of 5 cm.
Is. As the metal base material (4) for a probe, for example, a tungsten cylindrical rod can be used, and its dimensions are
As an example, the diameter is 0.25 mm and the length is 3 cm. As the electrolytic solution (3), for example, 1N-NaOH can be used. The probe metal member (4) is adjusted by the probe holder (8) and the holder position fine adjuster (9) so that the immersed portion at its tip is, for example, about 2 mm. Then, the focus of the stereomicroscope (5) is adjusted to the probe immersed portion.

【0011】次に、交流電源(1)の出力電圧を例えば
10ボルトにセットして電解研磨を開始する。図2は、
電解反応の進行に伴う電流量の変化を表した工程時間予
定表(電解電流の経時変化)の一例を示す説明図であ
る。電解研磨工程中の電解電流は、通常、図2に示すよ
うに、電界研磨の進行に従って逓減するように制御され
る。そして、電解研磨工程の後半部より、交流電流計
(6)の表示を参考にし、探針用金属母材(4)の研磨
部先端を実体顕微鏡(5)にて観察しながら、ホルダー
位置微調整器(9)を作動することにより、探針用金属
母材(4)の電解液(3)中への浸漬量状態をコントロ
ールする。
Next, the output voltage of the AC power source (1) is set to, for example, 10 volts to start electrolytic polishing. Figure 2
It is explanatory drawing which shows an example of the process time schedule (change with time of an electrolysis current) showing the change of the electric current amount with progress of an electrolysis reaction. The electrolysis current during the electropolishing step is usually controlled so as to gradually decrease as the electropolishing progresses, as shown in FIG. Then, from the latter half of the electrolytic polishing step, referring to the display of the AC ammeter (6), while observing the tip of the polished portion of the probe metal base material (4) with the stereoscopic microscope (5), the holder position By operating the adjuster (9), the amount of immersion of the probe metal base material (4) in the electrolytic solution (3) is controlled.

【0012】上記の制御に於いては、特に、気相中にあ
る探針表面と電解液の界面部の制御が肝要である。図3
は、電解研磨時における金属母材(4)の被研磨部
(4′)と電解液(3)の表面の状態を示す説明図であ
る。金属母材(4)が電解液(3)に浸漬されると、電
解液(3)はその表面張力により金属母材(4)に沿っ
て周囲が盛り上がり、メニスカス表面(3′)を形成す
る(図3(a))。上記のメニスカス表面(3′)を形
成した部分(図3(b)にて(*)にて示した部分)
は、研磨速度が速く、従って、電解研磨を継続すると、
金属母材(4)の表面は急激に研磨され、被研磨部
(4′)を形成する(図3(b))。更に研磨が進行す
ると、メニスカス表面(3′)は、降下して被研磨部
(4′)の下方部まで移動する(図3(c))。斯かる
状態で研磨を続行すると、作製される金属探針は、電解
部の長さが長いものになる。
In the above control, it is especially important to control the interface between the surface of the probe and the electrolyte in the gas phase. Figure 3
FIG. 4 is an explanatory view showing the state of the surface of the electrolytic solution (3) and the portion to be polished (4 ′) of the metal base material (4) during electrolytic polishing. When the metal base material (4) is dipped in the electrolytic solution (3), the electrolytic solution (3) rises around the metal base material (4) due to the surface tension of the electrolytic solution (3) to form a meniscus surface (3 '). (FIG. 3 (a)). The part where the above meniscus surface (3 ') is formed (the part indicated by (*) in Fig. 3 (b))
Has a high polishing rate, so if electrolytic polishing is continued,
The surface of the metal base material (4) is sharply polished to form a polished portion (4 ') (Fig. 3 (b)). As the polishing progresses further, the surface of the meniscus (3 ') descends and moves to the lower part of the portion to be polished (4') (Fig. 3 (c)). If the polishing is continued in such a state, the length of the electrolytic portion of the manufactured metal probe becomes long.

【0013】そこで、本発明においては、電解液(3)
のメニスカス表面(3′)の下降に実質的に追従させて
金属母材(4)を下降させる。その結果、本発明におい
ては、図3(c)に示すように、メニスカス表面
(3′)は、実質的に、被研磨部(4′)とその上の未
研磨部との境界線上に常時維持される。属母材(4)の
下降は、探針ホルダー(8)やホルダー位置微調整器
(9)により行なう。そして、斯かる金属母材(4)の
降下制御により、作製される金属探針の電解部の長さを
その直径より短くすることが出来る。なお、ホルダー位
置微調整器(9)は、手動操作あるいは自動制御電子回
路による操作のいずれで駆動させてもよい。
Therefore, in the present invention, the electrolytic solution (3)
The metal base material (4) is lowered by substantially following the lowering of the meniscus surface (3 '). As a result, in the present invention, as shown in FIG. 3 (c), the meniscus surface (3 ') is substantially always on the boundary line between the polished portion (4') and the unpolished portion on the polished portion (4 '). Maintained. The metal base material (4) is lowered by the probe holder (8) and the holder position fine adjuster (9). By controlling the drop of the metal base material (4), the length of the electrolytic portion of the metal probe to be manufactured can be made shorter than its diameter. The holder position fine adjuster (9) may be driven by either manual operation or operation by an automatic control electronic circuit.

【0014】上記の操作を継続した後、電解反応の進行
に伴う電流量の変化曲線(例えば前述の図2)に基づく
工程時間予定表と実体顕微鏡観察より判断できる電解研
磨の最終工程に於いて、短時間(一例として、1〜2秒
間)、交流電源(1)の出力電圧を初期設定値の数倍
(例えば、初期設定値5ボルトを20ボルト)にするこ
とにより、作製される金属探針の最先端部を極めて鋭利
にすることが出来る。
After continuing the above operation, in the final step of electropolishing which can be judged from the process time schedule based on the change curve of the amount of current accompanying the progress of the electrolytic reaction (for example, FIG. 2 described above) and observation with a stereoscopic microscope. , A metal probe produced by making the output voltage of the AC power supply (1) several times the initial set value (for example, the initial set value of 5 V is 20 V) for a short time (for example, 1 to 2 seconds). The tip of the needle can be made extremely sharp.

【0015】図4及び図5は、以上の方法で作製した金
属探針の一例の形状についての説明図であり、走査型電
子顕微鏡(SEM)により観察した写真に基づいて作成
したものである。図4は、SEMの低倍(約40倍)観
察の写真に基づくものであり、非電解研磨部を含む金属
探針全体の形状を示す。図5は、SEMの高倍(約30
000倍)観察の写真に基づくものであり、金属探針最
先端部の形状を示している。上記の例では、金属探針の
電解部の長さがその直径と同程度以下であり、また、探
針最先端部の曲率半径は約5ナノメートル程度と判断で
き、優れた金属探針であることが理解される。従って、
本発明の作製方法で得られた金属探針は、その優れた特
性を活かし、走査型トンネル顕微鏡(Scanning Tunneli
ng Microscope )、原子間力顕微鏡(Atomic Force Mic
roscope )、磁気力顕微鏡(Magnetic Force Microscop
e )、近視野顕微鏡(Near Field Optical Microscope
)、走査型光子顕微鏡(Scanning Photon Microscop
e)等の各種の走査型プローブ顕微鏡(Scanning Probe
Microscope )の他、電界イオン顕微鏡、イオンビーム
電極等における金属探針として有用である。
FIG. 4 and FIG. 5 are explanatory views of an example of the shape of the metal probe manufactured by the above method, which is prepared on the basis of photographs observed by a scanning electron microscope (SEM). FIG. 4 is based on a photograph of SEM observation at low magnification (about 40 times) and shows the shape of the entire metal probe including the non-electrolytic polishing portion. Figure 5 shows a high magnification of SEM (about 30
(000 times), and is based on the photograph of observation, and shows the shape of the tip of the metal probe. In the above example, the length of the electrolytic portion of the metal probe is equal to or less than its diameter, and the radius of curvature of the tip of the probe can be judged to be about 5 nanometers. It is understood that there is. Therefore,
The metal probe obtained by the manufacturing method of the present invention makes use of its excellent characteristics, and is a scanning tunneling microscope (Scanning Tunneli
ng Microscope), Atomic Force Mic
roscope), Magnetic Force Microscop
e), Near Field Optical Microscope
), Scanning Photon Microscop
e) various scanning probe microscopes (Scanning Probe microscope)
Microscope), and is also useful as a metal probe in field ion microscopes, ion beam electrodes, etc.

【0016】[0016]

【発明の効果】以上で説明した本発明によれば、金属探
針の先端部の曲率半径が極めて小さく、且つ、探針の電
解部の長さがその直径と同程度ないしはそれ以下である
優れた金属探針を極めて簡便な装置構成で且つ容易に再
現性良く作製することが出来る。
According to the present invention described above, the radius of curvature of the tip of the metal probe is extremely small, and the length of the electrolytic portion of the probe is about the same as or less than its diameter. The metal probe can be easily manufactured with excellent reproducibility with an extremely simple device configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する電解研磨装置の模式
断面図である。
FIG. 1 is a schematic cross-sectional view of an electrolytic polishing apparatus for explaining an embodiment of the present invention.

【図2】電解反応の進行に伴う電流量の変化を表した工
程時間予定表(電解電流の経時変化の例)を示す説明図
である。
FIG. 2 is an explanatory diagram showing a process time schedule (an example of changes over time in electrolytic current) showing changes in the amount of current with the progress of an electrolytic reaction.

【図3】電解研磨時における金属母材の被研磨部と電解
液の表面の状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state of a portion to be polished of a metal base material and a surface of an electrolytic solution during electrolytic polishing.

【図4】本発明方法で作製した金属探針の一例の形状に
ついての説明図であり、走査型電子顕微鏡(SEM)に
より観察した写真(倍率約40倍)に基づいて作成した
ものである。
FIG. 4 is an explanatory diagram of an example of a shape of a metal probe manufactured by the method of the present invention, which is created based on a photograph (magnification: about 40 times) observed by a scanning electron microscope (SEM).

【図5】本発明方法で作製した金属探針の一例の形状に
ついての説明図であり、走査型電子顕微鏡(SEM)に
より観察した写真(倍率約約30000倍)に基づいて
作成したものである。
FIG. 5 is an explanatory diagram of the shape of an example of a metal probe manufactured by the method of the present invention, which is created based on a photograph (magnification: about 30,000 times) observed by a scanning electron microscope (SEM). ..

【符号の説明】[Explanation of symbols]

1 :交流電源 2 :電極 3 :電解液 3′:電解液のメニスカス表面 4 :探針 4′:被研磨部 5 :実体顕微鏡 6 :交流電流計 7 :交流電圧計 8 :探針ホルダー 9 :ホルダー位置微調整器 1: AC power supply 2: Electrode 3: Electrolyte solution 3 ': Surface of meniscus of electrolyte solution 4: Probe 4': Part to be polished 5: Stereomicroscope 6: AC ammeter 7: AC voltmeter 8: Probe holder 9: Holder position fine adjuster

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 探針用金属母材の先端部を電解液に浸漬
し電解研磨して金属探針を作製する方法において、金属
母材に沿って形成された電解液のメニスカス表面の下降
に実質的に追従させて金属母材を下降させることを特徴
とする金属探針の作製方法。
1. A method for producing a metal probe by dipping the tip of a metal base material for a probe in an electrolytic solution and electrolytically polishing the metal base material, wherein the surface of the meniscus of the electrolytic solution formed along the metal base material is lowered. A method of manufacturing a metal probe, which is characterized in that the metal base material is lowered substantially following the metal base material.
JP35892791A 1991-12-26 1991-12-26 Manufacture of metal probe Pending JPH05177451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35892791A JPH05177451A (en) 1991-12-26 1991-12-26 Manufacture of metal probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35892791A JPH05177451A (en) 1991-12-26 1991-12-26 Manufacture of metal probe

Publications (1)

Publication Number Publication Date
JPH05177451A true JPH05177451A (en) 1993-07-20

Family

ID=18461836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35892791A Pending JPH05177451A (en) 1991-12-26 1991-12-26 Manufacture of metal probe

Country Status (1)

Country Link
JP (1) JPH05177451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358290B1 (en) * 2000-01-27 2002-10-25 이억기 Method for manufacturing a probe using electrolytic processing
JP2021038468A (en) * 2020-11-25 2021-03-11 学校法人千葉工業大学 Metal probe and method for producing metal probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358290B1 (en) * 2000-01-27 2002-10-25 이억기 Method for manufacturing a probe using electrolytic processing
JP2021038468A (en) * 2020-11-25 2021-03-11 学校法人千葉工業大学 Metal probe and method for producing metal probe

Similar Documents

Publication Publication Date Title
Klein et al. An improved lamellae drop-off technique for sharp tip preparation in scanning tunneling microscopy
Nagahara et al. Preparation and characterization of STM tips for electrochemical studies
Madden et al. Three-dimensional microfabrication by localized electrochemical deposition
Heben et al. Preparation of STM tips for in‐situ characterization of electrode surfaces
Park et al. Scanning microsensors for measurement of local pH distributions at the microscale
Kazinczi et al. Novel methods for preparing EC STM tips.
JP2008038237A (en) Method of manufacturing alumina porous structure
CN109706515A (en) A kind of preparation facilities and preparation method of the tungsten wire needle point of controllable draw ratio
Zhang et al. Fabrication of STM tips with controlled geometry by electrochemical etching and ECSTM tips coated with paraffin
US5085746A (en) Method of fabricating scanning tunneling microscope tips
JPH05177451A (en) Manufacture of metal probe
US5286355A (en) Electrochemical wire sharpening device and method for the fabrication of tips
Kar et al. A reverse electrochemical floating-layer technique of SPM tip preparation
US5164595A (en) Scanning tunneling microscope tips
Said Adaptive tip-withdrawal control for reliable microfabrication by localized electrodeposition
JP4942530B2 (en) Manufacturing method of single-crystal chip with pointed tip
JPH04217427A (en) Method and device for producing probe tip
Bani Milhim et al. Electrochemical etching technique: Conical-long-sharp tungsten tips for nanoapplications
JPH1010154A (en) Manufacture for probe unit
JPH06297253A (en) Electrolytic polishing method and device to manufacture extremely thin needle
Kotibhaskar et al. Fast and high-yield fabrication of axially symmetric ion-trap needle electrodes via two step electrochemical etching
Liu et al. Investigation of electrochemical nanostructuring with ultrashort pulses by using nanoscale electrode
Watanabe et al. Fine probe for an STM-SQUID probe microscope
JPH06128800A (en) Production of metallic probe for scanning microscope
Qian et al. Note: A simple, convenient, and reliable method to prepare gold scanning tunneling microscope tips

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011015