JPH05176916A - Tissue oxygen flowmeter - Google Patents

Tissue oxygen flowmeter

Info

Publication number
JPH05176916A
JPH05176916A JP3356814A JP35681491A JPH05176916A JP H05176916 A JPH05176916 A JP H05176916A JP 3356814 A JP3356814 A JP 3356814A JP 35681491 A JP35681491 A JP 35681491A JP H05176916 A JPH05176916 A JP H05176916A
Authority
JP
Japan
Prior art keywords
tissue
laser
wavelength
tissual
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3356814A
Other languages
Japanese (ja)
Other versions
JP3114312B2 (en
Inventor
Susumu Kajima
進 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP03356814A priority Critical patent/JP3114312B2/en
Publication of JPH05176916A publication Critical patent/JPH05176916A/en
Application granted granted Critical
Publication of JP3114312B2 publication Critical patent/JP3114312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously measure the rate between the blood quantity, the blood flow rate and oxygenated type erythrocytes in a tissue by synthesizing laser beams having different wavelengths and outputting as one composite laser beam to the tissue, demultiplexing the laser beam scattered and reflected from the tissue and executing mutually an arithmetic processing. CONSTITUTION:A laser oscillator A 11 oscillates the laser beams of the same wavelength as the absorbing point wavelength of an erythrocyte, etc., and a laser oscillator B 12 oscillates a laser beam having absorbing point wavelength being different from that of the laser oscillator A 11. In such a state, two or more laser inputs are mixed and multiplexed by a synthesizer 13 and outputted as one laser beam. The laser beam reflected from a tissue is divided and outputted at every wavelength by a spectroscope 17, passes through filters A18, B19 and amplifiers 20, 21, and a tissual blood flow rate A and a tissual blood quantity, and a tissual blood quantity B are outputted by an arithmetic circuit A22, and an arithmetic circuit B 23, respectively. Subsequently, by an arithmetic circuit C24, and arithmetic circuits D25, E26, a signal (e) for indicating the ratio of oxygenated type erythrocytes from the tissual blood quantities A, B, and tissual oxygen content; tissual oxygen flow rate signal (d) are outputted, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体組織の血流量及び
該血液量中の酸化赤血球の割合を同時に測定する組織酸
素流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tissue oxygen flow meter for simultaneously measuring the blood flow of living tissue and the proportion of oxidized red blood cells in the blood.

【0002】[0002]

【従来の技術】現在、レーザ光を用いて血流量を測定す
る装置として図5に示す様な装置が提案されている。レ
ーザ発振器(51)から出力されたレーザ光を送光用光ファ
イバ(52)に導光し、プローブ(53)を通じて組織(54)に照
射する。組織(54)によって散乱された光の一部をプロー
ブ中で送光ファイバと対になっている受光ファイバ(55)
で受光する。この光が光検出器(56)に導かれ、増幅器(5
7)で増幅された後に演算回路(58)で組織血流量(5a)と
して∫ωP(ω)dω、組織血液量(5b)として∫P
(ω)dωが計算される。この装置においては、レーザ
発振器(51)の光の波長は赤血球による吸収が少ないもの
が使用されている。
2. Description of the Related Art Currently, an apparatus as shown in FIG. 5 has been proposed as an apparatus for measuring blood flow using laser light. The laser light output from the laser oscillator (51) is guided to the optical fiber for light transmission (52), and the tissue (54) is irradiated through the probe (53). Receiving fiber (55) that pairs part of the light scattered by the tissue (54) with the sending fiber in the probe
To receive light. This light is guided to the photodetector (56) and the amplifier (5
After being amplified in 7), ∫ωP (ω) dω as tissue blood flow (5a) and ∫P as tissue blood volume (5b) in the arithmetic circuit (58).
(Ω) dω is calculated. In this device, the wavelength of the light of the laser oscillator (51) is such that the red blood cells have little absorption.

【0003】また、動脈血液中の酸素飽和度を測定する
装置として、図6に示す様にパルスオキシメータが提案
されている。赤色LED(62)近赤外線LED(63)のドラ
イバー(61)によって、赤色LED(62)と近赤外LED(6
3)が交互に点灯される。これらの光が送光ファイバ(64)
を通って指などに照射され、その透過光が受光ファイバ
(65)で取り込まれて光検出器(66)に導かれる。これを増
幅器(67)で増幅し、演算回路(68)で演算を行い動脈血の
酸素飽和度(6a)として出力する。赤色波長は約660
nm付近のものを用い、近赤外波長は約805nm付近
のものを用いる。これは等吸収点(805nm)と異等
吸収点(660nm)に当たる。
A pulse oximeter as shown in FIG. 6 has been proposed as a device for measuring the oxygen saturation level in arterial blood. The red LED (62) and the near infrared LED (63) are driven by the driver (61) of the near infrared LED (63).
3) is lit up alternately. These lights are fiber optics (64)
Is radiated to your finger through the
It is taken in by (65) and guided to the photodetector (66). This is amplified by the amplifier (67) and is calculated by the arithmetic circuit (68) to output it as the oxygen saturation (6a) of arterial blood. Red wavelength is about 660
A wavelength of around 805 nm is used for the near infrared wavelength. This corresponds to the isosbestic point (805 nm) and the isosbestic point (660 nm).

【0004】[0004]

【発明が解決しようとする課題】従来のレーザ血流計で
は組織中の血液量、血流量を測定することができるが、
酸化赤血球の割合が不明である。
The conventional laser blood flow meter can measure the blood volume and blood flow in the tissue.
The proportion of oxidized red blood cells is unknown.

【0005】パルスオキシメータは動脈血液中の酸素飽
和度を測定することができるがLEDを使用しているた
め血流速度を計測することができないので、単位時間当
たりの運搬量として測定することができない。また、実
際の組織中の酸素飽和度ではないので、心臓や肺の機能
を確認することができるが、末端の組織まで酸素が送り
込まれているかどうかは不明である。
A pulse oximeter can measure the oxygen saturation in arterial blood, but cannot measure the blood flow velocity because it uses an LED. Therefore, it can be measured as a delivery amount per unit time. Can not. Moreover, since it is not the oxygen saturation in the actual tissue, it is possible to confirm the functions of the heart and lungs, but it is unclear whether oxygen has been sent to the terminal tissues.

【0006】[0006]

【課題を解決する為の手段】上記に鑑み本発明は、異な
る波長を有するレーザ光を合成して1つの合成レーザ光
として組織へ出力し、組織から散乱反射したレーザ光を
分波して相互に演算処理を施すことにより、組織血液量
と血流量とを抽出し、尚且つ、酸素血液量、組織酸素血
流量が求められる装置を実現した。
In view of the above, according to the present invention, the laser beams having different wavelengths are combined and output as one combined laser beam to the tissue, and the laser beams scattered and reflected from the tissue are demultiplexed. By performing the arithmetic processing on (1) and (2), the tissue blood volume and the blood flow volume are extracted, and the device that can obtain the oxygen blood volume and the tissue oxygen blood flow volume is realized.

【0007】本発明の特徴は次の通りである。レーザ光
を用いた血流計は組織血流量を連続で無侵襲に測定する
事ができるため、広く利用されている。しかし血液中に
は酸素化されたヘモグロビンを含む赤血球(酸化赤血
球)と酸素化されていないヘモグロビンを含む赤血球
(還元赤血球)が同時に含まれている。この酸化赤血球
と還元赤血球の割合を2波長レーザ光を用いて測定し、
今まで1波長で測定されていた組織血液量と血流量との
関係から、酸化血液量と酸化血流量つまり組織酸素含有
量や酸素流量を求める。
The features of the present invention are as follows. A blood flow meter using laser light is widely used because it can continuously and non-invasively measure a tissue blood flow rate. However, blood simultaneously contains red blood cells containing oxygenated hemoglobin (oxidized red blood cells) and red blood cells containing non-oxygenated hemoglobin (reduced red blood cells). The ratio of this oxidized red blood cell and reduced red blood cell is measured using a two-wavelength laser light,
The oxidized blood volume and the oxidized blood flow, that is, the tissue oxygen content and the oxygen flow rate are obtained from the relationship between the tissue blood volume and the blood flow that have been measured at one wavelength until now.

【0008】血液循環の目的の1つは、組織への酸素運
搬であり、この流量を測定するための装置である。脳な
どの血流量は、そこへ送り込む酸素量によっても制御さ
れる。通常空気中の酸素の割合が減少すると、脳への酸
素量を確保するため血流量が増加する。この場合血流量
の変化だけを測定していたのではその変化の原因をつか
むことができない。しかし酸化赤血球の割合を同時に測
定すれば、血流変化の1つの要因を調べることができ
る。この測定を行うために、酸化赤血球と還元赤血球の
吸収断面積が波長によって異なる点(異吸収点)と同じ
点(等吸収点)があるので、LEDの代わりに等吸収点
のレーザ光を用いて全体の組織血液量と組織血流量を求
め、異吸収点と等吸収点の関係から酸化赤血球の割合を
求める。これらの吸収断面積と散乱断面積は、あらかじ
め別の方法で測定しておくか、既に公表されているデー
タの値を用いる。
One of the purposes of blood circulation is the delivery of oxygen to tissues, a device for measuring this flow rate. Blood flow in the brain is also controlled by the amount of oxygen sent to it. Normally, when the proportion of oxygen in the air decreases, the blood flow increases to secure the amount of oxygen to the brain. In this case, the cause of the change cannot be grasped by measuring only the change in blood flow. However, if the ratio of oxidized red blood cells is measured at the same time, one factor of blood flow change can be investigated. In order to perform this measurement, there is a point where the absorption cross sections of oxidized red blood cells and reduced red blood cells differ according to wavelength (different absorption point) and the same point (isosorption point). Then, the total tissue blood volume and tissue blood flow volume are obtained, and the ratio of oxidized red blood cells is obtained from the relationship between different absorption points and isosbestic points. The absorption cross section and the scattering cross section are measured by another method in advance, or the values of already published data are used.

【0009】[0009]

【実施例】(11)はレーザ発振器Aであり、赤血球の等吸
収点波長と同一波長のレーザ光を発振する。(12)はレー
ザ発振器Bであり、レーザ発振器A(1)とは異なる吸収
点波長を有するレーザ光を発振する。(13)は合波器であ
り、2以上のレーザ入力を混合合波して1つのレーザ光
として出力する。(14)は送光ファイバであり光ファイバ
よりなる。(15)は受光ファイバであり、送光ファイバと
同様光ファイバよりなる。(16)はプローブであり送光フ
ァイバの出力口、受光ファイバ入力口を束ねたものであ
って、且つ、生体組織との接触面を形成するものであ
る。プローブ(16)は測定部位に応じて測定しやすい形状
になっている。(17)は分波器であり、1つのレーザ入力
[受光ファイバ(15)を介して伝送されたレーザ]を波長
ごとに割けて出力するものである。(18)はフィルタAで
あり、目的とする波長を有するレーザ光を濾波検出する
ものである。フィルタA(18)は分波器(17)の出力の1つ
に接続している。(19)はフィルタBであり、目的とする
波長を有するレーザ光を濾波検出するものである。フィ
ルタB(19)は分波器(17)の他の出力に接続している。(2
0)(21)は、増幅器であり光電変換後、電気増幅を行うも
のである。増幅器(20)の入力はフィルタA(18)の出力
と、増幅器(21)の入力はフィルタB(19)の出力と接続し
ている。(22)は演算回路Aであり、増幅器(20)の出力と
接続し組織血流量Aを出力端(a)に出力し、組織血液量
Aを出力端(b)に出力する。(23)は演算回路Bであり、
増幅器(21)の出力と接続し組織血液量Bを出力する。(2
4)は演算回路Cであり、組織血液量Aと組織血液量Bか
ら酸化赤血球の割合を示す信号(e)を出力する。(25)は
演算手段Dであり、組織血液量Aを示す信号と酸化赤血
球の割合を示す信号(e)より、組織酸素含有量を示す信
号(c)を出力する。(26)は演算回路Eであり、組織血液
量A及び酸化赤血球の割合を示す信号(e)より組織酸素
流量信号(d)を出力する。
[Embodiment] (11) is a laser oscillator A which oscillates a laser beam having the same wavelength as the wavelength of the isosbestic point of red blood cells. Reference numeral (12) is a laser oscillator B, which oscillates laser light having an absorption point wavelength different from that of the laser oscillator A (1). (13) is a multiplexer, which mixes and combines two or more laser inputs and outputs as one laser beam. Reference numeral (14) is an optical fiber, which is composed of an optical fiber. Reference numeral (15) is a light receiving fiber, which is made of an optical fiber like the light transmitting fiber. Reference numeral (16) is a probe, which is a bundle of the output port of the light-transmitting fiber and the input port of the light-receiving fiber and which forms a contact surface with the living tissue. The probe (16) has a shape that facilitates measurement depending on the measurement site. Reference numeral (17) is a demultiplexer, which divides one laser input [laser transmitted through the light receiving fiber (15)] for each wavelength and outputs it. Reference numeral (18) is a filter A, which filters and detects laser light having a target wavelength. Filter A (18) is connected to one of the outputs of the duplexer (17). Reference numeral (19) is a filter B, which filters and detects laser light having a desired wavelength. Filter B (19) is connected to the other output of the duplexer (17). (2
0) and (21) are amplifiers that perform electric amplification after photoelectric conversion. The input of the amplifier (20) is connected to the output of the filter A (18), and the input of the amplifier (21) is connected to the output of the filter B (19). Reference numeral (22) is an arithmetic circuit A, which is connected to the output of the amplifier (20) to output the tissue blood flow volume A to the output end (a) and the tissue blood volume A to the output end (b). (23) is the arithmetic circuit B,
It is connected to the output of the amplifier (21) and outputs the tissue blood volume B. (2
Reference numeral 4) is an arithmetic circuit C, which outputs a signal (e) indicating the proportion of oxidized red blood cells from the tissue blood volume A and the tissue blood volume B. (25) is a calculating means D, which outputs a signal (c) indicating the tissue oxygen content from the signal indicating the tissue blood volume A and the signal (e) indicating the ratio of oxidized red blood cells. (26) is an arithmetic circuit E which outputs a tissue oxygen flow rate signal (d) from a signal (e) indicating the tissue blood volume A and the ratio of oxidized red blood cells.

【0010】赤血球の等吸収点波長のレーザ光発振器A
(11)と、異吸収点波長のレーザ発振器B(12)から出力さ
れた2つのレーザ光はそれぞれ光ファイバを通った後、
合波器(13)で1本の送光ファイバ(14)に導光されてプロ
ーブ(16)によって組織(MM)に照射される。組織によっ
て散乱された光の一部が、プローブ中の受光ファイバ(1
5)を通り分波器(17)によって2本の光ファイバに分けら
れる。その後それぞれが、等吸収点のレーザ波長を通過
させるフィルタA(18)と異吸収点のレーザ波長を通過さ
せるフィルタB(19)を通過した後、増幅器(20)、(21)で
光電変換後に増幅される。等吸収点の波長の信号は演算
回路A(22)によって演算されて、組織血流量Aと組織血
液量Aが得られる。演算回路B(23)によって演算され
た、異吸収点波長の信号から組織血液量Bが得られ、組
織血液量AとBから演算回路C(24)によって酸化赤血球
の割合が求められる。この割合と組織血液量Aから組織
酸素含有量が演算回路D(25)から求められ、組織血流量
Aとから演算回路E(26)によって組織酸素流量が求めら
れる。
Laser light oscillator A of the wavelength of the isosbestic point of red blood cells A
(11) and the two laser beams output from the laser oscillator B (12) with different absorption point wavelengths respectively pass through the optical fiber,
The light is guided to one light transmitting fiber (14) by the multiplexer (13) and is irradiated onto the tissue (MM) by the probe (16). Some of the light scattered by the tissue will be absorbed by the receiving fiber (1
It passes through 5) and is split into two optical fibers by a demultiplexer (17). After that, after passing through the filter A (18) that passes the laser wavelength at the isosbestic point and the filter B (19) that passes the laser wavelength at the different absorption point, after each photoelectric conversion by the amplifiers (20) and (21). Is amplified. The signal of the wavelength at the isosbestic point is calculated by the calculation circuit A (22) to obtain the tissue blood flow volume A and the tissue blood volume A. The tissue blood volume B is obtained from the signal of the different absorption point wavelength calculated by the arithmetic circuit B (23), and the ratio of oxidized red blood cells is obtained from the tissue blood volumes A and B by the arithmetic circuit C (24). The tissue oxygen content is obtained from the arithmetic circuit D (25) from this ratio and the tissue blood volume A, and the tissue oxygen flow rate is obtained from the tissue blood flow A by the arithmetic circuit E (26).

【0011】次に上記演算手段の具体的アルゴリズムの
一例を次に示す。散乱光のパワースペクトルの積分強度
(IIPS)はmを光子と赤血球の平均衡突回数で組織
中の赤血球量の割合に比例するとすると、(1)式で表さ
れる。 IIPS=∫S(ω)dω=I−exp(−m) (1)ここでmは次のようにも表される。
Next, an example of a concrete algorithm of the arithmetic means will be shown below. The integrated intensity (IIPS) of the power spectrum of scattered light is expressed by equation (1), where m is proportional to the ratio of red blood cell amount in the tissue by the number of parallel equilibrium collisions between photons and red blood cells. IIPS = ∫S (ω) dω = I-exp (-m) (1) Here, m is also expressed as follows.

【数1】 (2)数密度ρは単位組織体積当たりの赤血球の数で、[Equation 1] (2) The number density ρ is the number of red blood cells per unit tissue volume,

【外1】 は赤血球の散乱断面積、Lは光路長である。(1)式には
吸収の影響が考慮されていないので、吸収の影響を考え
ると(3)式のようになる。
[Outer 1] Is the scattering cross section of red blood cells, and L is the optical path length. Since the effect of absorption is not taken into consideration in Eq. (1), it becomes as shown in Eq. (3) considering the effect of absorption.

【数2】 (3)ここで、[Equation 2] (3) where

【外2】 は赤血球の呼吸断面積である。酸化赤血球と還元赤血球
の等吸収点の波長のレーザ光(例805nm)と、吸収
が異なる波長のレーザ光(例633nm)を用いると、
それぞれのIIPSは次式のように表される。
[Outside 2] Is the respiratory cross section of red blood cells. Using laser light (eg, 805 nm) having a wavelength at the same absorption point of oxidized red blood cells and reduced red blood cells and laser light (eg, 633 nm) having different absorption wavelengths,
Each IIPS is represented by the following equation.

【数3】 [Equation 3]

【数4】 (4)ここで、[Equation 4] (4) where

【外3】 :異吸収波長で測定されたIIPS[Outside 3] : IIPS measured at different absorption wavelengths

【外4】 :等吸収波長で測定されたIIPS[Outside 4] : IIPS measured at isosbestic wavelength

【外5】 :酸化赤血球の数密度[Outside 5] : Number density of oxidized red blood cells

【外6】 :異吸収波長での酸化赤血球の吸収断面積[Outside 6] : Absorption cross section of oxidized red blood cells at different absorption wavelengths

【外7】 :異吸収波長での還元赤血球での吸収断面積[Outside 7] : Absorption cross section of reduced red blood cells at different absorption wavelengths

【外8】 :等吸収波長での赤血球の吸収断面積[Outside 8] : Absorption cross section of red blood cells at isosbestic wavelength

【外9】 :異吸収波長での赤血球の散乱断面積[Outside 9] : Scattering cross section of red blood cells at different absorption wavelengths

【外10】 :等吸収波長での赤血球の散乱断面積である。赤血球の
散乱断面積は600nmから1000nmの間では酸化
の程度に依存しないので、1波長につき1つの散乱断面
積を用いる。近赤外波長の範囲では、
[Outside 10] : Scattering cross section of red blood cells at the isosbestic wavelength. Since the scattering cross section of red blood cells does not depend on the degree of oxidation between 600 nm and 1000 nm, one scattering cross section per wavelength is used. In the near infrared wavelength range,

【外11】 の値は小さいのでρは次式で与えられる。[Outside 11] Since ρ is small, ρ is given by the following equation.

【数5】 (5)もし、2波長の間隔が小さくまた、[Equation 5] (5) If the distance between the two wavelengths is small,

【外12】 ならば、酸化赤血球の割合[Outside 12] If so, the proportion of oxidized red blood cells

【外13】 は、[Outside 13] Is

【数6】 で求められる。この割合と組織血液量から、組織酸化血
液量又は組織酸素含有量は、
[Equation 6] Required by. From this ratio and the tissue blood volume, the tissue oxidized blood volume or tissue oxygen content is

【数7】 で求められることができ、さらに組織酸素流量は、[Equation 7] And the tissue oxygen flow rate is

【数8】 で求められることができる。ここで<ω>は信号のパワ
ースペクトルの1次モーメントで、平均血流速度に比例
する。
[Equation 8] Can be sought in. Here, <ω> is the first moment of the power spectrum of the signal and is proportional to the average blood flow velocity.

【0012】次に本発明の一実施例を使用して行った実
験の一例について説明する。図2に組織血流のモデルシ
ステムの図を示す。図3はX−X’の断面図である。こ
のモデルシステムはポリエチレンチューブ(215)とポリ
アセタール(213)(214)板から構成されており、チューブ
(215)の外径は0.8mmで内径は0.5mmである。こ
のチューブ(215)の中に直系0.8μmの赤と青のポリス
チレン粒子分散液をマイクロフィーダー(212)によって
流した。赤い粒子と青い粒子は近赤外光領域では吸収断
面積がほぼ同じで、赤い光では大きく異なるため、赤い
粒子は酸化赤血球のモデルとして用い、青い粒子は還元
赤血球のモデルとして用いた。両方の粒子を混ぜてその
比を10:0.8:2.5:5.2:8.0:10とし、そ
の全体の粒子分散液濃度を0.064%と0.13%に調
整した。組織への光の照射と散乱光の一部を受光してフ
ォトダイオードに導くために、光ファイバプローブ(16)
を使用した。プローブ(16)には平行に照射用(14)と受光
用(15)の光ファイバが入っており、その中心間隔は0.
5mmである。光ファイバのコア径は100μmであ
る。出力約2mWのHeNeレーザ光(632.8n
m)と、半導体レーザ光(780nm)が照射ファイバ
(14)を通じてモデルシステムに照射される。モデルシス
テムからの散乱光は、受光ファイバ(15)を通じてフォト
ダイオードに導かれ、増幅後に0.25Hzから20K
Hzまでのパワースペクトルの積分強度(IIPS)と
1次モーメント<ω>がFFTアナライザー(211)から
得られる。散乱断面積、吸収断面積は分光光度計と積分
球を用いて測定した。この実験の結果得られた図を図4
に示す。青粒子数割合(横軸)と測定結果から求めた。
Next, an example of an experiment conducted by using one embodiment of the present invention will be described. FIG. 2 shows a diagram of a model system of tissue blood flow. FIG. 3 is a sectional view taken along line XX ′. This model system consists of polyethylene tubes (215) and polyacetal (213) (214) plates,
(215) has an outer diameter of 0.8 mm and an inner diameter of 0.5 mm. The 0.8 μm red and blue polystyrene particle dispersion liquid was directly flowed into the tube (215) by a micro feeder (212). Red particles and blue particles have almost the same absorption cross section in the near-infrared region, but they differ greatly in red light, so red particles were used as a model of oxidized red blood cells and blue particles were used as a model of reduced red blood cells. Both particles were mixed to a ratio of 10: 0.8: 2.5: 5.2: 8.0: 10 and the total particle dispersion concentration was adjusted to 0.064% and 0.13%. .. A fiber optic probe (16) to illuminate the tissue and receive some of the scattered light and direct it to the photodiode.
It was used. The probe (16) contains an optical fiber for irradiation (14) and an optical fiber for reception (15) in parallel, and the center distance between them is 0.
It is 5 mm. The core diameter of the optical fiber is 100 μm. HeNe laser light with output of about 2 mW (632.8n
m) and the semiconductor laser light (780 nm) are irradiation fibers
The model system is illuminated through (14). Scattered light from the model system is guided to the photodiode through the receiving fiber (15) and amplified to 0.25Hz to 20K.
The integrated intensity (IIPS) of the power spectrum up to Hz and the first moment <ω> are obtained from the FFT analyzer (211). The scattering cross section and the absorption cross section were measured using a spectrophotometer and an integrating sphere. Figure 4 shows the result of this experiment.
Shown in. It was determined from the blue particle number ratio (horizontal axis) and the measurement results.

【外14】 (縦軸)の関係は比例関係であった。[Outside 14] The relationship (vertical axis) was proportional.

【0013】[0013]

【発明の効果】上記詳述の通り本発明はレーザ光により
正確な組織酸素流量を検出することができる等の効果を
有する。
As described above in detail, the present invention has the effect that the accurate tissue oxygen flow rate can be detected by laser light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】[Fig. 2]

【図3】本発明の一実施例を用いた実験を説明する図。FIG. 3 is a diagram illustrating an experiment using an embodiment of the present invention.

【図4】図2で示した実験の結果を示す図。FIG. 4 is a diagram showing the results of the experiment shown in FIG.

【図5】[Figure 5]

【図6】従来例を示す図。FIG. 6 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

11 レーザ発振器A 12 レーザ発振器B 13 合波器 14 送光ファイバ 15 受光ファイバ 16 プローブ 17 分波器 18 フィルタA 19 フィルタB 20,21 増幅器 22 演算回路A 23 演算回路B 24 演算回路C 25 演算回路D 26 演算回路E MM 生体組織 11 Laser Oscillator A 12 Laser Oscillator B 13 Multiplexer 14 Transmitter Fiber 15 Receiving Fiber 16 Probe 17 Splitter 18 Filter A 19 Filter B 20, 21 Amplifier 22 Arithmetic Circuit A 23 Arithmetic Circuit B 24 Arithmetic Circuit C 25 Arithmetic Circuit D 26 arithmetic circuit E MM biological tissue

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】各々異なる波長を有する複数のレーザ光を
出力するレーザ光出力手段、前記レーザ光出力手段を生
体組織に照射し、該組織から散乱反射したレーザ光を検
出する為のプローブ、前記プローブにて検出されたレー
ザ光を分波する分波手段、前記分波したレーザ光の各々
から、組織血流量、組織血液量、組織酸素含有量、組織
酸素流量を検出する検出手段よりなることを特徴とする
組織酸素流量計。
1. A laser beam output means for outputting a plurality of laser beams having different wavelengths, a probe for irradiating a living tissue with the laser beam output means, and detecting a laser beam scattered and reflected from the tissue, Demultiplexing means for demultiplexing the laser light detected by the probe, and detection means for detecting the tissue blood flow rate, tissue blood volume, tissue oxygen content, tissue oxygen flow rate from each of the demultiplexed laser light A tissue oxygen flow meter.
JP03356814A 1991-12-26 1991-12-26 Tissue oxygen flow meter Expired - Fee Related JP3114312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03356814A JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03356814A JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Publications (2)

Publication Number Publication Date
JPH05176916A true JPH05176916A (en) 1993-07-20
JP3114312B2 JP3114312B2 (en) 2000-12-04

Family

ID=18450912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03356814A Expired - Fee Related JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Country Status (1)

Country Link
JP (1) JP3114312B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175971A (en) * 2014-03-14 2015-10-05 富士通株式会社 Led light source device, led control device, and terminal device
CN110573069A (en) * 2017-04-19 2019-12-13 学校法人关西大学 Biological information estimation device
CN112067534A (en) * 2020-09-26 2020-12-11 宁波大学 Single cell mass spectrometry system and method
CN113382679A (en) * 2019-01-31 2021-09-10 Cpr 流动公司 Device and method for calculating the volumetric flow rate of oxygenated blood

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205450B1 (en) 2009-12-08 2012-11-29 신토고교 가부시키가이샤 Apparatus and method for making casting mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175971A (en) * 2014-03-14 2015-10-05 富士通株式会社 Led light source device, led control device, and terminal device
CN110573069A (en) * 2017-04-19 2019-12-13 学校法人关西大学 Biological information estimation device
CN113382679A (en) * 2019-01-31 2021-09-10 Cpr 流动公司 Device and method for calculating the volumetric flow rate of oxygenated blood
CN112067534A (en) * 2020-09-26 2020-12-11 宁波大学 Single cell mass spectrometry system and method
CN112067534B (en) * 2020-09-26 2023-07-14 宁波大学 Single cell mass spectrometry system and method

Also Published As

Publication number Publication date
JP3114312B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US5176882A (en) Dual fiberoptic cell for multiple serum measurements
US4449535A (en) Apparatus for measuring in situ the state of oxidation-reduction of a living organ
US4114604A (en) Catheter oximeter apparatus and method
CA1301474C (en) Sensor for measuring the concentration of a gaseous component in a fluid absorption
US6064474A (en) Optical measurement of blood hematocrit incorporating a self-calibration algorithm
EP0691820B1 (en) Quantitative and qualitative in vivo tissue examination using time resolved spectroscopy
CA1282251C (en) Optical fiber transducer driving and measuring circuit and method for using same
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
JP3643842B2 (en) Glucose concentration testing device
US4303336A (en) Method and apparatus for making a rapid measurement of the hematocrit of blood
US8352005B2 (en) Noninvasive blood analysis by optical probing of the veins under the tongue
JPH05506171A (en) Infrared and near-infrared testing of blood components
KR20070032643A (en) Photometers with spatially uniform multi-color sources
JPH0894517A (en) Concentration measuring method and device for absorption component of scattering absorption body
EP0167272B1 (en) Particle size measuring apparatus
Takatini et al. A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood
JP3114312B2 (en) Tissue oxygen flow meter
RU2040912C1 (en) Optical method and device for determining blood oxygenation
EP0059032A1 (en) Measurement of dye concentration in the bloodstream
JPH1119074A (en) Measuring apparatus for degree of oxygenation of tissue blood of living body
EP0484547A1 (en) Catheter for measurement and method of measuring oxygen saturation degree or flow speed of blood
KR900000843B1 (en) Tissue metabolism measuring apparatus
JPH11104114A (en) Measuring device of blood characteristics
JPH027653B2 (en)
JPH06285049A (en) Sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees